Advertisement

Molecular Pathways of Mitochondrial Dysfunction in Neurodegeneration: the Paradigms of Parkinson's and Huntington's Diseases

  • Ana Cristina Rego
  • Sandra Morais Cardoso
  • Catarina R. Oliveira

Mitochondria play an important role as ATP producers through the activity of the citric acid cycle and oxidative phosphorylation, as regulators of intracellular calcium homeostasis, and producers of endogenous reactive oxygen species (ROS). Mitochondria also regulate cell death, marking the point of no return in necrosis and apoptosis. Many evidences have been raised implicating mitochondria defects as crucial mechanisms in the pathogenesis of several neurodegenerative diseases, as well as in aging. This chapter resumes some of the findings that provide evidence for the role of mitochondria in neurodegeneration associated with Parkinson’s disease (PD) and Huntington’s disease (HD), two neurodegenerative disorders that cause movement disturbances.

Keywords

Mitochondrial Dysfunction Huntington Disease Mitochondrial Complex Striatal Neuron Autophagic Cell Death 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. Almeida, S., Domingues, A., Rodrigues, L., Oliveira, C.R. and Rego, A.C., 2004, FK506 prevents mitochondrial-dependent apoptotic cell death induced by 3-nitropropionic acid in rat primary cortical cultures. Neurobiol. Dis. 17: 435.PubMedGoogle Scholar
  2. Almeida, S., Brett, A.C., Gois, I.N., Oliveira, C.R. and Rego, A.C., 2006, Caspase-dependent and -independent cell death induced by 3-nitropropionic acid in rat cortical neurons. J. Cell Biochem. 98: 93.PubMedGoogle Scholar
  3. Alston, T.A., Mela, L. and Bright, H.J., 1977, Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc. Natl. Acad. Sci. USA 74: 3767.PubMedGoogle Scholar
  4. Andreassen, O.A., Dedeoglu, A., Ferrante, R.J., Jenkins, B.G., Ferrante, K.L., Thomas, M., Friedlich, A., Browne, S.E., Schilling, G., Borchelt, D.R., Hersch, S.M., Ross, C.A. and Beal, M.F., 2001, Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiol. Dis. 8: 479.PubMedGoogle Scholar
  5. Anglade, P., Vyas, S., Javoy-Agid, F., Herrero, M.T., Michel, P.P., Marquez, J., Mouatt-Prigent, A., Ruberg, M., Hirsch, E.C. and Agid, Y., 1997, Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol. Histopathol. 12: 25.PubMedGoogle Scholar
  6. Araújo, I.M., Xapelli, S., Gil, J.M., Mohapel, P., Petersen, A., Pinheiro, P.S., Malva, J.O., Bahr, B.A., Brundin, P. and Carvalho, C.M., 2005, Proteolysis of NR2B by calpain in the hippocampus of epileptic rats. Neuroreport 16: 393.PubMedGoogle Scholar
  7. Atlante, A., Calissano, P., Bobba, A., Azzariti, A., Marra, E. and Passarella, S., 2000, Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J. Biol. Chem. 275: 37159.PubMedGoogle Scholar
  8. Atlante, A., Bobba, A., de Bari, L., Fontana, F., Calissano, P., Marra, E. and Passarella, S., 2006, Caspase-dependent alteration of the ADP/ATP translocator triggers the mitochondrial permeability transition which is not required for the low-potassium-dependent apoptosis of cerebellar granule cells. J. Neurochem. 97: 1166.PubMedGoogle Scholar
  9. Attardi, G. and Schatz, G., 1988, Biogenesis of mitochondria. Annu. Rev. Cell Biol. 4: 289.PubMedGoogle Scholar
  10. Bailey, C.D. and Johnson, G.V., 2006, The protective effects of cystamine in the R6/2 Huntington’s disease mouse involve mechanisms other than the inhibition of tissue transglutaminase. Neurobiol. Aging 27: 871.PubMedGoogle Scholar
  11. Barroso, N., Campos, Y., Huertas, R., Esteban, J., Molina, J.A., Alonso, A., Gutierrez-Rivas, E. and Arenas, J., 1993, Respiratory chain enzyme activities in lymphocytes from untreated patients with Parkinson disease. Clin. Chem. 39: 667.PubMedGoogle Scholar
  12. Beal, M.F., 2005, Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol. 58: 495.PubMedGoogle Scholar
  13. Beal, M.F., Brouillet, E., Jenkins, B.G., Ferrante, R.J., Kowall, N.W., Miller, J.M., Storey, E., Srivastava, R., Rosen, B.R. and Hyman, B.T., 1993, Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13: 4181.PubMedGoogle Scholar
  14. Beal, M.F., Matthews, R.T., Tieleman, A. and Shults, C.W., 1998, Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res. 783: 109.PubMedGoogle Scholar
  15. Beckman, J.S., 1994, Peroxynitrite versus hydroxyl radical: the role of nitric oxide in superoxide-dependent cerebral injury. Ann. N.Y. Acad. Sci. 738: 69.PubMedGoogle Scholar
  16. Benchoua, A., Trioulier, Y., Zala, D., Gaillard, M.C., Lefort, N., Dufour, N., Saudou, F., Elalouf, J.M., Hirsch, E., Hantraye, P., Deglon, N. and Brouillet, E., 2006, Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol. Biol. Cell. 17: 1652.PubMedGoogle Scholar
  17. Benecke, R., Strumper, P. and Weiss, H., 1993, Electron transfer complexes I and IV of platelets are abnormal in Parkinson’s disease but normal in Parkinson-plus syndromes. Brain 116: 1451.PubMedGoogle Scholar
  18. Bezprozvanny, I. and Hayden, M.R., 2004, Deranged neuronal calcium signaling and Huntington disease. Biochem. Biophys. Res. Commun. 322: 1310.PubMedGoogle Scholar
  19. Bi, X., Rong, Y., Chen, J., Dang, S., Wang, Z. and Baudry, M., 1998, Calpain-mediated regulation of NMDA receptor structure and function. Brain Res. 790: 245.PubMedGoogle Scholar
  20. Bizat, N., Hermel, J. M., Boyer, F., Jacquard, C., Creminon, C., Ouary, S., Escartin, C., Hantraye, P., Kajewski, S. and Brouillet, E., 2003, Calpain is a major cell death effector in selective striatal degeneration induced in vivo by 3-nitropropionate: implications for Huntington’s disease. J. Neurosci. 23: 5020.PubMedGoogle Scholar
  21. Blandini, F., Nappi, G. and Greenamyre, J.T., 1998, Quantitative study of mitochondrial complex I in platelets of parkinsonian patients. Mov. Disord. 13: 11.PubMedGoogle Scholar
  22. Bossy-Wetzel, E., Schwarzenbacher, R. and Lipton, S.A., 2004, Molecular pathways to neurodegeneration. Nat. Med. 10: S2.PubMedGoogle Scholar
  23. Brito, O., Almeida, S., Oliveira, C.R. and Rego, A.C., 2003, Bcl-2 prevents loss of cell viability and caspases activation induced by 3-nitropropionic acid in GT1-7 cells. Ann. NY Acad. Sci. 1010: 148.PubMedGoogle Scholar
  24. Brouillet, E., Jenkins, B.G., Hyman, B.T., Ferrante, R.J., Kowall, N.W., Srivastava, R., Roy, D.S., Rosen, B.R. and Beal, M.F., 1993, Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem. 60: 356.PubMedGoogle Scholar
  25. Brouillet, E., Hantraye, P., Ferrante, R.J., Dolan, R., Leroy-Willig, A., Kowall, N.W. and Beal, M.F., 1995, Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc. Natl. Acad. Sci. USA 92: 7105.PubMedGoogle Scholar
  26. Brouillet, E., Jacquard, C., Bizat, N. and Blum, D., 2005, Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J. Neurochem. 95: 1521.PubMedGoogle Scholar
  27. Brunk, U.T. and Terman, A., 2002, The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269: 1996.PubMedGoogle Scholar
  28. Brustovetsky, N., LaFrance, R., Purl, K.J., Brustovetsky, T., Keene, C.D., Low, W.C. and Dubinsky, J.M. (2005), Age-dependent changes in the calcium sensitivity of striatal mitochondria in mouse models of Huntington’s Disease. J. Neurochem. 93: 1361.PubMedGoogle Scholar
  29. Bursch, W., Hochegger, K., Torok, L., Marian, B., Ellinger, A. and Hermann, R.S., 2000, Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J. Cell Sci. 113: 1189.PubMedGoogle Scholar
  30. Cardoso, S.M., Santos, S., Swerdlow, R.H. and Oliveira, C.R., 2001, Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB J. 15: 1439.PubMedGoogle Scholar
  31. Cassarino, D.S., Fall, C.P., Swerdlow, R.H., Smith, T.S., Halvorsen, E.M., Miller, S.W., Parks, J.P., Parker, W.D., Jr. and Bennett, J.P., Jr., 1997, Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease. Biochim. Biophys. Acta. 1362: 77.PubMedGoogle Scholar
  32. Chartier-Harlin, M.C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Larvor, L., Andrieux, J., Hulihan, M., Waucquier, N., Defebvre, L., Amouyel, P., Farrer, M. and Destee, A., 2004, Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364: 1167.PubMedGoogle Scholar
  33. Chee, J.L., Guan, X.L., Lee, J.Y., Dong, B., Leong, S.M., Ong, E.H., Liou, A.K. and Lim, T.M., 2005, Compensatory caspase activation in MPP+-induced cell death in dopaminergic neurons. Cell. Mol. Life Sci. 62: 227.PubMedGoogle Scholar
  34. Chen, M., Ona, V.O., Li, M., Ferrante, R.J., Fink, K.B., Zhu, S., Bian, J., Guo, L., Farrell, L.A., Hersch, S.M., Hobbs, W., Vonsattel, J.-P., Cha, J.-H. and Friedlander, R.M., 2000, Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. 6: 797.PubMedGoogle Scholar
  35. Chiu, K., Lam, T.T., Ying Li, W.W., Caprioli, J. and Kwong Kwong, J.M., 2005, Calpain and N-methyl-D-aspartate (NMDA)-induced excitotoxicity in rat retinas. Brain Res. 1046: 207.PubMedGoogle Scholar
  36. Choo, Y.S., Johnson, G.V., MacDonald, M., Detloff, P.J. and Lesort, M., 2004, Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum. Mol. Genet. 13: 1407.PubMedGoogle Scholar
  37. Clohessy, J.G., Zhuang, J., de Boer, J., Gil-Gomez, G. and Brady, H.J., 2006, Mcl-1 interacts with truncated Bid and inhibits its induction of cytochrome c release and its role in receptor-mediated apoptosis. J. Biol. Chem. 281: 5750.PubMedGoogle Scholar
  38. Coles, C.J., Edmondson, D.E. and Singer, T.P., 1979, Inactivation of succinate dehydrogenase by 3-nitropropionate. J. Biol. Chem. 254: 5161.PubMedGoogle Scholar
  39. Cookson, M.R., 2003, Pathways to Parkinsonism. Neuron 37: 7.PubMedGoogle Scholar
  40. Darios, F, Corti, O., Lucking, C.B., Hampe, C., Muriel, M.P., Abbas, N., Gu, W.J., Hirsch, E.C., Rooney, T., Ruberg, M. and Brice, A., 2003, Parkin prevents mitochondrial swelling and cytochrome c release in mitochondriadependent cell death. Hum. Mol. Genet. 12: 517.PubMedGoogle Scholar
  41. Dauer, W., Kholodilov, N., Vila, M., Trillat, A.C., Goodchild, R., Larsen, K.E, Staal, R., Tieu, K., Schmitz, Y., Yuan, C.A., Rocha, M., Jackson-Lewis, V., Hersch, S., Sulzer, D., Przedborski, S., Burke, R. and Hen, R., 2002, Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc. Natl. Acad. Sci. USA 99: 14524.PubMedGoogle Scholar
  42. Dawson, T.M. and Dawson, V.L., 2003, Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302: 819.PubMedGoogle Scholar
  43. Du, C., Fang, M., Li, Y., Li, L. and Wang, X., 2000, Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33.PubMedGoogle Scholar
  44. Enoksson, M., Robertson, J.D., Gogvadze, V., Bu, P., Kropotov, A., Zhivotovsky, B. and Orrenius, S., 2004, Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts the binding of cytochrome c to anionic phospholipids, J. Biol. Chem. 279: 49575.PubMedGoogle Scholar
  45. Eskes, R., Antonsson, B., Osen-Sand, A., Montessuit, S., Richter, C., Sadoul, R., Mazzei, G., Nichols, A. and Martinou, J.-C., 1998, Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J. Cell. Biol. 143: 217.PubMedGoogle Scholar
  46. Feany, M.B. and Pallanck, L.J., 2003, Parkin: a multipurpose neuroprotective agent? Neuron 38: 13.PubMedGoogle Scholar
  47. Ferrante, R.J., Andreassen, O.A., Jenkins, B.G., Dedeoglu, A., Kuemmerle, S., Kubilus, J.K., Kaddurah-Daouk, R., Hersch, S.M. and Beal, M.F., 2000, Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J. Neurosci. 20: 4389.PubMedGoogle Scholar
  48. Ferrante, R.J., Andreassen, O.A., Dedeoglu, A., Ferrante, K.L., Jenkins, B.G., Hersch, S.M. and Beal, M.F., 2002, Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J. Neurosci. 22: 1592.PubMedGoogle Scholar
  49. Ferrante, R.J., Kubilus, J.K., Lee, J., Ryu, H., Beesen, A., Zucker, B., Smith, K., Kowall, N.W., Ratan, R.R., Luthi-Carter, R. and Hersch, S.M., 2003, Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J. Neurosci. 23: 9418.PubMedGoogle Scholar
  50. Flower, T.R., Chesnokova, L.S., Froelich, C.A., Dixon, C. and Witt, S.N., 2005, Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson’s disease. J. Mol. Biol. 351: 1081.PubMedGoogle Scholar
  51. Forno, L.S., 1996, Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 55: 259.PubMedGoogle Scholar
  52. Gafni, J. and Ellerby, L.M., 2002, Calpain activation in Huntington’s disease. J. Neurosci. 22: 4842.PubMedGoogle Scholar
  53. Galas, M.C., Bizat, N., Cuvelier, L., Bantubungi, K., Brouillet, E., Schiffmann, S.N. and Blum, D., 2004, Death of cortical and striatal neurons induced by mitochondrial defect involves differential molecular mechanisms. Neurobiol. Dis. 15: 152.PubMedGoogle Scholar
  54. Gardian, G., Browne, S.E., Choi, D.K., Klivenyi, P., Gregorio, J., Kubilus, J.K., Ryu, H., Langley, B., Ratan, R.R., Ferrante, R.J. and Beal, M.F., 2005, Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J. Biol. Chem. 280: 556.PubMedGoogle Scholar
  55. Ghafourifar, P. and Richter, C., 1997, Nitric oxide synthase activity in mitochondria. FEBS Lett. 418: 291.PubMedGoogle Scholar
  56. Ghafourifar, P., Schenk, U., Klein, S.D. and Richter, C., 1999, Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J. Biol. Chem. 274: 31185.PubMedGoogle Scholar
  57. Gines, S., Seong, I.S., Fossale, E., Ivanova, E., Trettel, F., Gusella, J.F., Wheeler, V.C., Persichetti, F. and Macdonald, M.E., 2003, Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington’s disease knock-in mice. Hum. Mol. Genet. 12: 497.PubMedGoogle Scholar
  58. Giulivi, C., Poderoso, J.J. and Boveris, A., 1998, Production of nitric oxide by mitochondria. J. Biol. Chem. 273: 11038.PubMedGoogle Scholar
  59. Gomez, C., Reiriz, J., Pique, M., Gil, J., Ferrer, I. and Ambrosio, S., 2001, Low concentrations of 1-methyl-4-phenylpyridinium ion induce caspase-mediated apoptosis in human SH-SY5Y neuroblastoma cells. J. Neurosci. Res. 63: 421.PubMedGoogle Scholar
  60. Gómez-Santos, C., Ferrer, I., Santidrian, A.F., Barrachina, M., Gil, J. and Ambrosio, S., 2003, Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J. Neurosci. Res. 73: 341.PubMedGoogle Scholar
  61. Gorman, A.M., Szegezdi, E., Quigney, D.J. and Samali, A., 2005, Hsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC12 cells. Biochem. Biophys. Res. Commun. 327: 801.PubMedGoogle Scholar
  62. Green, D.R., 2005, Apoptotic pathways: ten minutes to dead. Cell 121: 671.PubMedGoogle Scholar
  63. Greenamyre, J.T. and Hastings, T.G., 2004, Biomedicine. Parkinson’s-divergent causes, convergent mechanisms. Science 304: 1120.PubMedGoogle Scholar
  64. Greene, J.C., Whitworth, A.J., Kuo, I., Andrews, L.A., Feany, M.B. and Pallanck, L.J., 2003, Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. USA 100: 4078.PubMedGoogle Scholar
  65. Gu, M., Gash, M.T., Mann, V.M., Javoy-Agid, F., Cooper, J.M. and Schapira, A.H., 1996, Mitochondrial defect in Huntington’s disease caudate nucleus. Ann. Neurol. 39: 385.PubMedGoogle Scholar
  66. Gu, M., Cooper, J.M., Taanman, J.W. and Schapira, A.H., 1998, Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann. Neurol. 44: 177.PubMedGoogle Scholar
  67. Guo, Y., Srinivasula, S.M., Druilhe, A., Fernandes-Alnemri, T. and Alnemri, E.S., 2002, Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J. Biol. Chem. 277: 13430.PubMedGoogle Scholar
  68. Haas, R.H., Nasirian, F., Nakano, K., Ward, D., Pay, M., Hill, R. and Shults, C.W., 1995, Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann. Neurol. 37: 714.PubMedGoogle Scholar
  69. Hanagasi, H.A., Ayribas, D., Baysal, K. and Emre, M., 2005, Mitochondrial complex I, II/III, and IV activities in familial and sporadic Parkinson’s disease. Int. J. Neurosci. 115: 479.PubMedGoogle Scholar
  70. Hanrott, K., Gudmunsen, L., O’neill, M.J. and Wonnacott, S., 2006, A6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase C{delta}. J. Biol. Chem. 281: 5373.PubMedGoogle Scholar
  71. Hartmann, A., Hunot, S., Michel, P.P., Muriel, M.P., Vyas, S., Faucheux, B.A., Mouatt-Prigent, A., Turmel, H., Srinivasan, A., Ruberg, M., Evan, G.I., Agid, Y. and Hirsch, E.C., 2000, Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 97: 2875.PubMedGoogle Scholar
  72. Hartmann, A., Michel, P.P., Troadec, J.D., Mouatt-Prigent, A., Faucheux, B.A., Ruberg, M., Agid, Y. and Hirsch, E.C., 2001, Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson’s disease? J. Neurochem. 76: 1785.PubMedGoogle Scholar
  73. Hattori, N., Tanaka, M., Ozawa, T. and Mizuno, Y., 1991, Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease. Ann. Neurol. 30: 563.PubMedGoogle Scholar
  74. HDCRG (The Huntington’s Disease Collaborative Research Group), 1993, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971.Google Scholar
  75. Hermel, E., Gafni, J., Propp, S.S., Leavitt, B.R., Wellington, C.L., Young, J.E., Hackam, A.S., Logvinova, A.V., Peel, A.L., Chen, S.F., Hook, V., Singaraja, R., Krajewsk, S., Goldsmith, P.C., Ellerby, H.M., Hayden, M.R., Bredesen, D.E. and Ellerby, L.M., 2004, Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington’s disease. Cell Death Differ. 11: 424.PubMedGoogle Scholar
  76. Hersch, S.M., Gevorkian, S., Marder, K., Moskowitz, C., Feigin, A., Cox, M., Como, P., Zimmerman, C., Lin, M., Zhang, L., Ulug, A.M., Beal, M.F., Matson, W., Bogdanov, M., Ebbel, E., Zaleta, A., Kaneko, Y., Jenkins, B., Hevelone, N, Zhang, H., Yu, H., Schoenfeld, D., Ferrante, R. and Rosa, H.D., 2006, Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2’dG. Neurology 66: 250.PubMedGoogle Scholar
  77. Holtz, W.A. and O’Malley, K.L., 2003, Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J. Biol. Chem. 278: 19367.PubMedGoogle Scholar
  78. Horton, T.M., Graham, B.H., Corral-Debrinski, M., Shoffner, J.M., Kaufman, A.E., Beal, M.F. and Wallace, D.C., 1995, Marked increase in mitochondrial DNA deletion in the cerebral cortex of Huntington’s disease patients. Neurology 45: 1879.PubMedGoogle Scholar
  79. Humbert, S., Bryson, E.A., Cordelieres, F.P., Connors, N.C., Datta, S.R., Finkbeiner, S., Greenberg, M.E. and Saudou, F., 2002, The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves huntingtin phosphorylation by Akt. Dev. Cell. 2: 831.PubMedGoogle Scholar
  80. Hyun, D.H., Lee, M., Halliwell, B. and Jenner, P., 2005, Effect of overexpression of wild-type or mutant parkin on the cellular response induced by toxic insults. J. Neurosci. Res. 82: 232.PubMedGoogle Scholar
  81. Iwata, A., Christianson, J.C., Bucci, M., Ellerby, L.M., Nukina, N., Forno, L.S. and Kopito, R.R., 2005a, Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc. Natl. Acad. Sci. USA 102: 13135.PubMedGoogle Scholar
  82. Iwata, A., Riley, B.E., Johnston, J.A. and Kopito, R.R., 2005b, HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280: 40282.PubMedGoogle Scholar
  83. Janetzky, B., Hauck, S., Youdim, M.B., Riederer, P., Jellinger, K., Pantucek, F., Zochling, R., Boissl, K.W. and Reichmann, H., 1994, Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neurosci. Lett. 169: 126.PubMedGoogle Scholar
  84. Jenkins, B.G., Koroshetz, W.J., Beal, M.F. and Rosen, B.R., 1993, Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43: 2689.PubMedGoogle Scholar
  85. Jiang, S., Cai, J., Wallace, D.C. and Jones, D.P., 1999, Cytochrome c-mediated apoptosis in cells lacking mitochondrial DNA. J. Biol. Chem. 274: 29905.PubMedGoogle Scholar
  86. Junn, E., Taniguchi, H., Jeong, B.S., Zhao, X., Ichijo, H. and Mouradian, M.M., 2005, Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc. Natl. Acad. Sci. USA 102: 9691.PubMedGoogle Scholar
  87. Keeney, P.M., Xie, J., Capaldi, R.A. and Bennett, J.P., Jr, 2006, Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J. Neurosci. 26: 5256.PubMedGoogle Scholar
  88. Kiechle, T., Dedeoglu, A., Kubilus, J., Kowall, N.W., Beal, M.F., Friedlander, R., Hersch, S.M. and Ferrante, R.J., 2002, Cytochrome c and caspase-9 expression in Huntington’s disease. Neuromol. Med. 1: 183.Google Scholar
  89. Kim, J. and Klionsky, D.J., 2000, Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu. Rev. Biochem. 69: 303.PubMedGoogle Scholar
  90. King, M.P. and Attardi, G., 1989, Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246: 500.PubMedGoogle Scholar
  91. Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y. and Shimizu, N., 1998, Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605.PubMedGoogle Scholar
  92. Klionsky, D.J. and Ohsumi, Y., 1999, Vacuolar import of proteins and organelles from the cytoplasm. Annu. Rev. Cell Dev. Biol. 15: 1.PubMedGoogle Scholar
  93. Klivenyi, P., Siwek, D., Gardian, G., Yang, L., Starkov, A., Cleren, C., Ferrante, R.J., Kowall, N.W., Abeliovich, A. and Beal, M.F., 2006, Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol. Dis. 21: 541.PubMedGoogle Scholar
  94. Koroshetz, W.J., Jenkins, B.G., Rosen, B.R. and Beal, M.F., 1997, Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann. Neurol. 41: 160.PubMedGoogle Scholar
  95. Kowaltowski, A.J., Castilho, R.F. and Vercesi, A.E., 1995, Ca2+-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state. Am. J. Physiol. 269: 141.Google Scholar
  96. Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J.T., Schols, L. and Riess, O., 1998, Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genet. 18: 106.PubMedGoogle Scholar
  97. Langston, J.W., Ballard, P., Tetrud, J.W. and Irwin, I., 1983, Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979.PubMedGoogle Scholar
  98. Lashuel, H.A., Hartley, D., Petre, B.M., Walz, T. and Lansbury, P.T., Jr., 2002, Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418: 291.PubMedGoogle Scholar
  99. Lassus, P., Opitz-Araya, X. and Lazebnik, Y., 2002, Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297: 1352.PubMedGoogle Scholar
  100. Li, L.Y., Luo, X. and Wang, X., 2001, Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412: 95.PubMedGoogle Scholar
  101. Li, L., Fan, M., Icton, C.D., Chen, N., Leavitt, B.R., Hayden, M.R., Murphy, T.H. and Raymond, L.A., 2003, Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Neurobiol. Aging 24: 1113.PubMedGoogle Scholar
  102. Lin, D.T., Wu, J., Holstein, D., Upadhyay, G., Rourk, W., Muller, E. and Lechleiter, J.D., 2005, Ca(2+) signaling, mitochondria and sensitivity to oxidative stress in aging astrocytes. Neurobiol. Aging (Epub ahead of print)Google Scholar
  103. Liu, X., Zou, H., Slaughter, C. and Wang, X., 1997, DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89: 175.PubMedGoogle Scholar
  104. Luetjens, C.M., Bui, N.T., Sengpiel, B., Münstermann, G., Poppe, M., Krohn, A.J., Bauerbach, E., Krieglstein, J. and Prehn, J.H.M., 2000, Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J. Neurosci. 20: 5715.PubMedGoogle Scholar
  105. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X., 1998, Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481.PubMedGoogle Scholar
  106. Maciel, E.N., Vercesi, A.E. and Castilho, R.F., 2001, Oxidative stress in Ca(2+)-induced membrane permeability transition in brain mitochondria. J. Neurochem. 79: 1237.PubMedGoogle Scholar
  107. Maciel, E.N., Kowaltowski, A.J., Schwalm, F.D., Rodrigues, J.M., Souza, D.O., Vercesi, A.E., Wajner, M. and Castilho, R.F., 2004, Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition. J. Neurochem. 90: 1025.PubMedGoogle Scholar
  108. Mann, V.M., Cooper, J.M., Krige, D., Daniel, S.E., Schapira, A.H. and Marsden, C.D., 1992, Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 115: 333.PubMedGoogle Scholar
  109. Manyam, B.V., Dhanasekaran, M. and Hare, T.A., 2004, Neuroprotective effects of the antiparkinson drug Mucuna pruriens. Phytother. Res. 18: 706.PubMedGoogle Scholar
  110. Mao, Z., Choo, Y.S. and Lesort, M., 2006, Cystamine and cysteamine prevent 3-NP-induced mitochondrial depolarization of Huntington’s disease knock-in striatal cells. Eur. J. Neurosci. 23: 1701.PubMedGoogle Scholar
  111. Martin, L.J., Pan, Y., Price, A.C., Sterling, W., Copeland, N.G., Jenkins, N.A., Price, D.L. and Lee, M.K., 2006, Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 26: 41.PubMedGoogle Scholar
  112. Milakovic, T. and Johnson, G.V., 2005, Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. J. Biol. Chem. 280: 30773.PubMedGoogle Scholar
  113. Mizuno, Y., Ohta, S., Tanaka, M., Takamiya, S., Suzuki, K., Sato, T., Oya, H., Ozawa, T. and Kagawa, Y., 1989, Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem. Biophys. Res. Commun. 163: 1450.PubMedGoogle Scholar
  114. Mochizuki, H., Goto, K., Mori, H. and Mizuno, Y., 1996, Histochemical detection of apoptosis in Parkinson’s disease. J. Neurol. Sci. 137: 120.PubMedGoogle Scholar
  115. Muftuoglu, M., Elibol, B., Dalmizrak, O., Ercan, A., Kulaksiz, G., Ogus, H., Dalkara, T. and Ozer, N., 2004, Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov. Disord. 19: 544.PubMedGoogle Scholar
  116. Muller, T., Buttner, T., Gholipour, A.F. and Kuhn, W., 2003, Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson’s disease. Neurosci. Lett. 341: 201.PubMedGoogle Scholar
  117. Myers, R.H., Vonsattel, J.P., Paskevich, P.A., Kiely, D.K., Stevens, T.J., Cupples, L.A., Richardson, E.P., Jr. and Bird, E.D., 1991, Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus. J. Neuropathol. Exp. Neurol. 50: 729.PubMedGoogle Scholar
  118. Neumar, R.W., Xu, Y.A., Gada, H., Guttmann, R.P. and Siman, R., 2003, Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J. Biol. Chem. 278: 14162.PubMedGoogle Scholar
  119. Nicholls, D.G. and Ferguson, S.J., 1992, Bioenergetics 2. Academic, London, UK.Google Scholar
  120. Nicholls, D.G. and Budd, S.L., 2000, Mitochondria and neuronal survival. Physiol. Rev. 80: 315.PubMedGoogle Scholar
  121. Nicholls, D.G. and Ward, M.W., 2000, Mitochondrial membrane potential and cell death: mortality and millivolts. Trends Neurosci. 23: 166.PubMedGoogle Scholar
  122. Nijlmans, L.G.J., Spelbrink, J.N., Van Galen, M.J.M., Zwaan, M., Klement, P. and Van den Bogert, C., 1995, Expression and fate of the nuclearly encoded subunits of cytochrome c oxidase in cultured human cells depleted of mitochondrial gene products. Biochem. Biophys. Acta 1265: 117.Google Scholar
  123. Oliveira, J.M.A., Jekabsons, M.B., Chen, S., Lin, A., Rego, A.C., Gonçalves, J., Ellerby, L.M. and Nicholls, D.G., 2006a, Mitochondrial dysfunction in Huntington’s disease: the bioenergetics of isolated and in situ mitochondria from transgenic mice. J. Neurochem. (in press) doi: 10.1111/j.1471-4159.2006.04361.x.Google Scholar
  124. Oliveira, J.M.A., Chen, S., Almeida, S., Riley, R., Gonçalves, J., Oliveira, C.R., Hayden, M.R., Nicholls, D.G., Ellerby, L.M. and Rego, A.C., 2006b, Mitochondrial-dependent Ca2+ handling in Huntington’s disease striatal cells: effect of histone deacetylase inhibitors. J. Neurosci. 26: 11174.PubMedGoogle Scholar
  125. Ona, V.O., Li, M., Vonsattel, J.-P., Andrews, L.J., Khan, S.Q., Chung, W.M., Frey, A.S., Menon, A.S., Li, X.-J., Stieg, P.E., Yuan, J., Penney, J.B., Young, A.B., Cha, J.-H. and Friedlander, R.M., 1999, Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399: 263.PubMedGoogle Scholar
  126. Orth, M. and Tabrizi, S.J., 2003, Models of Parkinson’s disease. Mov. Disord. 18: 729.PubMedGoogle Scholar
  127. Palacino, J.J., Sagi, D., Goldberg, M.S., Krauss, S., Motz, C., Wacker, M., Klose, J. and Shen, J., 2004, Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 279: 18614.PubMedGoogle Scholar
  128. Panov, A.V., Gutekunst, C.A., Leavitt, B.R., Hayden, M.R., Burke, J.R., Strittmatter, W.J. and Greenamyre, J.T., 2002, Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat. Neurosci. 5: 731.PubMedGoogle Scholar
  129. Pardo, R., Colin, E., Regulier, E., Aebischer, P., Deglon, N., Humbert, S. and Saudou F., 2006, Inhibition of calcineurin by FK506 protects against polyglutamine-huntingtin toxicity through an increase of huntingtin phosphorylation at S421. J. Neurosci. 26: 1635.PubMedGoogle Scholar
  130. Parker, W.D., Jr., Boyson, S.J. and Parks, J.K., 1989, Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann. Neurol. 26: 719.PubMedGoogle Scholar
  131. Parker, W.D., Jr., Boyson, S.J., Luder, A.S. and Parks, J.K., 1990, Evidence for a defect in NADH: ubiquinone oxidoreductase (complex I) in Huntington’s disease. Neurology 40: 1231.PubMedGoogle Scholar
  132. Perier, C., Tieu, K., Guegan, C., Caspersen, C., Jackson-Lewis, V., Carelli, V., Martinuzzi, A., Hirano, M., Przedborski, S. and Vila, M., 2005, Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc. Natl. Acad. Sci. USA. 102: 19126.PubMedGoogle Scholar
  133. Petersen, A., Larsen, K.E., Behr, G.G., Romero, N., Przedborski, S., Brundin, P. and Sulzer, D., 2001, Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum. Mol. Genet. 10: 1243.PubMedGoogle Scholar
  134. Petit, A., Kawarai, T., Paitel, E., Sanjo, N., Maj, M., Scheid, M., Chen, F., Gu, Y., Hasegawa, H., Salehi-Rad, S., Wang, L., Rogaeva, E., Fraser, P., Robinson, B., George-Hyslop, P. and Tandon, A., 2005, Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J. Biol. Chem. 280: 34025.PubMedGoogle Scholar
  135. Petrucelli, L., O’Farrell, C., Lockhart, P.J., Baptista, M., Kehoe, K., Vink, L., Choi, P., Wolozin, B., Farrer, M., Hardy, J. and Cookson, M.R., 2002, Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36: 1007.PubMedGoogle Scholar
  136. Polidori, M.C., Mecocci, P., Browne, S.E., Senin, U. and Beal, M.F., 1999, Oxidative damage to mitochondrial DNA in Huntington’s disease parietal cortex. Neurosci. Lett. 272: 53.PubMedGoogle Scholar
  137. Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E.S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W.G., Lazzarini, A.M., Duvoisin, R.C., Di Iorio, G., Golbe, L.I. and Nussbaum, R.L., 1997, Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045.PubMedGoogle Scholar
  138. Portera-Cailliau, C., Hedreen, J.C., Price, D.L. and Koliatsos, V.E., 1995, Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci. 15: 3775.PubMedGoogle Scholar
  139. Quigley, P.M., Korotkov, K., Baneyx, F. and Hol, W.G., 2003, The 1.6-A crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad. Proc. Natl. Acad. Sci. USA 100: 3137.PubMedGoogle Scholar
  140. Rangone, H., Poizat, G., Troncoso, J., Ross, C.A., MacDonald, M.E., Saudou, F. and Humbert, S., 2004, The serum-and glucocorticoid-induced kinase SGK inhibits mutant huntingtin-induced toxicity by phosphorylating serine 421 of huntingtin. Eur. J. Neurosci. 19: 273.PubMedGoogle Scholar
  141. Read, S.H., Baliga, B.C., Ekert, P.G., Vaux, D.L. and Kumar, S., 2002, A novel apaf-1-independent putative caspase-2 activation complex. J. Cell Biol. 159: 739.PubMedGoogle Scholar
  142. Reggiori, F. and Klionsky, D.J., 2002, Autophagy in the eukaryotic cell. Eukaryot. Cell 1: 11.PubMedGoogle Scholar
  143. Rego, A.C. and de Almeida, L.P., 2005, Molecular targets and therapeutic strategies in Huntington’s disease. Curr. Drug Targets CNS Neurol. Disord. 4: 361.PubMedGoogle Scholar
  144. Rego, A.C., Vesce, S. and Nicholls, D.G., 2001a, The mechanism of mitochondrial membrane potential retention following release of cytochrome c in apoptotic GT1-7 neural cells. Cell Death Differ. 8: 995.PubMedGoogle Scholar
  145. Rego, A.C., Ward, M.W. and Nicholls, D.G., 2001b, Mitochondria control AMPA/kainate receptor-induced cytoplasmic calcium deregulation in rat cerebellar granule cells. J. Neurosci. 21: 1893.PubMedGoogle Scholar
  146. Rideout, H.J., Lang-Rollin, I. and Stefanis, L., 2004, Involvement of macroautophagy in the dissolution of neuronal inclusions. Int. J. Biochem. Cell Biol. 36: 2551.PubMedGoogle Scholar
  147. Robertson, J.D., Enoksson, M., Suomela, M., Zhivotovsky, B. and Orrenius, S., 2002, Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J. Biol. Chem. 277: 29803.PubMedGoogle Scholar
  148. Roman, G.C., Zhang, Z.X. and Ellenberg, J.H., 1995, The neuroepidemiology of Parkinson’s disease. In: Etiology of Parkinson’s disease. J.H., Ellenberg, W.C., Koller, J.W., Langston, (eds.) Marcel Dekker, New York, pp. 203.Google Scholar
  149. Sakata, E., Yamaguchi, Y., Kurimoto, E., Kikuchi, J., Yokoyama, S., Yamada, S., Kawahara, H., Yokosawa, H., Hattori, N., Mizuno, Y., Tanaka, K. and Kato, K., 2003, Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep. 4: 301.PubMedGoogle Scholar
  150. Sanchez, I., Xu, C.J., Juo, P., Kakizaka, A., Blenis, J. and Yuan, J., 1999, Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22: 623.PubMedGoogle Scholar
  151. Schapira, A.H., 1994, Evidence for mitochondrial dysfunction in Parkinson’s disease - a critical appraisal. Mov. Disord. 9: 125.PubMedGoogle Scholar
  152. Schapira, A.H., Cooper, J.M., Dexter, D., Jenner, P., Clark, J.B. and Marsden, C.D., 1989, Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1: 1269.PubMedGoogle Scholar
  153. Schapira, A.H., Cooper, J.M., Dexter, D., Clark, J.B., Jenner, P. and Marsden, C.D., 1990a, Mitochondrial complex I deficiency in Parkinson’s disease. J. Neurochem. 54: 823.PubMedGoogle Scholar
  154. Schapira, A.H., Mann, V.M., Cooper, J.M., Dexter, D., Daniel, S.E., Jenner, P., Clark, J.B. and Marsden, C.D., 1990b, Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J. Neurochem. 55: 2142.PubMedGoogle Scholar
  155. Schwartz, L.M., Smith, S.W., Jones, M.E. and Osborne, B.A., 1993, Do all programmed cell deaths occur via apoptosis? Proc. Natl. Acad. Sci. USA 90: 980.PubMedGoogle Scholar
  156. Seo, B.B., Nakamaru-Ogiso, E., Cruz, P., Flotte, T.R., Yagi, T. and Matsuno-Yagi, A., 2004, Functional expression of the single subunit NADH dehydrogenase in mitochondria in vivo: a potential therapy for complex I deficiencies. Hum. Gene Ther. 15: 887.PubMedGoogle Scholar
  157. Seo, B.B., Nakamaru-Ogiso, E., Flotte, T.R., Matsuno-Yagi, A. and Yagi, T., 2006, In vivo complementation of complex I by the yeast Ndi1 enzyme. Possible application for treatment of Parkinson disease. J. Biol. Chem. 281: 14250.PubMedGoogle Scholar
  158. Seong, I.S., Ivanova, E., Lee, J.M., Choo, Y.S., Fossale, E., Anderson, M., Gusella, J.F., Laramie, J.M., Myers, R.H., Lesort, M. and MacDonald, M.E., 2005, HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum. Mol. Genet. 14: 2871.PubMedGoogle Scholar
  159. Sharma, S.K., Carlson, E.C. and Ebadi, M., 2003, Neuroprotective actions of Selegiline in inhibiting 1-methyl, 4-phenyl, pyridinium ion (MPP+)-induced apoptosis in SK-N-SH neurons. J. Neurocytol. 32: 329.PubMedGoogle Scholar
  160. Sherer, T.B., Betarbet, R., Stout, A.K., Lund, S., Baptista, M., Panov, A.V., Cookson, M.R. and Greenamyre, J.T., 2002, An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J. Neurosci. 22: 7006.PubMedGoogle Scholar
  161. Shimizu, S. and Tsujimoto, Y., 2000, Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc. Natl. Acad. Sci. USA 97: 577.PubMedGoogle Scholar
  162. Shin, J.Y., Fang, Z.H., Yu, Z.X., Wang, C.E., Li, S.H. and Li, X.J., 2005, Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J. Cell Biol. 171: 1001.PubMedGoogle Scholar
  163. Shults, C.W., Haas, R.H., Passov, D. and Beal, M.F., 1997, Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. Ann. Neurol. 42: 621.Google Scholar
  164. Sidhu, A., Wersinger, C., Moussa, C.E. and Vernier, P., 2004, The Role of {alpha}-Synuclein in Both Neuroprotection and Neurodegeneration. Ann. NY Acad. Sci. 1035: 250.PubMedGoogle Scholar
  165. Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M.R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J. and Gwinn-Hardy, K., 2003, Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302: 841.PubMedGoogle Scholar
  166. Spencer, J.P., Jenner, P., Daniel, S.E., Lees, A.J., Marsden, D.C. and Halliwell, B.J., 1998, Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J. Neurochem. 71: 2112.PubMedGoogle Scholar
  167. Spooren, W.P, Gentsch, C. and Wiessner, C., 1998, TUNEL-positive cells in the substantia nigra of C57BL/6 mice after a single bolus of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 85: 649.PubMedGoogle Scholar
  168. Springer, J.E., Azbill, R.D., Nottingham, S.A. and Kennedy, S.E., 2000, Calcineurin-mediated Bad dephosphorylation activates the caspase-3 apoptotic cascade in traumatic spinal cord injury. J. Neurosci. 20: 7246.PubMedGoogle Scholar
  169. Stack, E.C., Smith, K.M., Ryu, H., Cormier, K., Chen, M., Hagerty, S.W., Del Signore, S.J., Cudkowicz, M.E., Friedlander, R.M. and Ferrante, R.J., 2006, Combination therapy using minocycline and coenzyme Q10 in R6/2 transgenic Huntington’s disease mice. Biochim. Biophys. Acta 1762: 373.PubMedGoogle Scholar
  170. Stefanis, L., Larsen, K.E., Rideout, H.J., Sulzer, D. and Greene, L.A., 2001, Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci. 21: 9549.PubMedGoogle Scholar
  171. Sulzer, D., Bogulavsky, J., Larsen, K.E., Behr, G., Karatekin, E., Kleinman, M.H., Turro, N., Krantz, D., Edwards, R.H., Greene, L.A. and Zecca, L., 2000, Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc. Natl. Acad. Sci. USA 97: 11869.PubMedGoogle Scholar
  172. Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D.R., Aebersold, R., Siderovski, D.P., Penninger, J.M. and Kroemer, G., 1999, Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441.PubMedGoogle Scholar
  173. Swerdlow, R.H. and Khan, S.M., 2004, A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med. Hypotheses 63: 8.PubMedGoogle Scholar
  174. Swerdlow, R.H., Parks, J.K., Miller, S.W., Tuttle, J.B., Trimmer, P.A., Sheehan, J.P., Bennett, J.P., Jr., Davis, R.E. and Parker, W.D., Jr., 1996, Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann. Neurol. 40: 663.PubMedGoogle Scholar
  175. Tabrizi, S.J., Orth, M., Wilkinson, J.M., Taanman, J.W., Warner, T.T., Cooper, J.M. and Schapira, A.H., 2000a, Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity. Hum. Mol. Genet. 9: 2683.PubMedGoogle Scholar
  176. Tabrizi, S.J., Workman, J., Hart, P.E., Mangiarini, L., Mahal, A., Bates, G., Cooper, J.M. and Schapira, A.H., 2000b, Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann. Neurol. 47: 80.PubMedGoogle Scholar
  177. Taira, T., Saito, Y., Niki, T., Iguchi-Ariga, S.M., Takahashi, K. and Ariga, H., 2004, DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 5: 213.PubMedGoogle Scholar
  178. Tatton, N.A., 2000, Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp. Neurol. 166: 29.PubMedGoogle Scholar
  179. Tatton, N.A. and Kish, S.J., 1997, In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labeling and acridine orange staining. Neuroscience 77: 1037.PubMedGoogle Scholar
  180. Tatton, N.A., Maclean-Fraser, A., Tatton, W.G., Perl, D.P. and Olanow, C.W., 1998, A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann. Neurol. 44: 142.Google Scholar
  181. Tenneti, L. and Lipton, S.A., 2000, Involvement of activated caspase-3-like proteases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. J. Neurochem. 74: 134.PubMedGoogle Scholar
  182. Tompkins, M.M., Basgall, E.J., Zamrini, E. and Hill, W.D., 1997, Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am. J. Pathol. 150: 119.PubMedGoogle Scholar
  183. Trettel, F., Rigamonti, D., Hilditch-Maguire, P., Wheeler, V.C., Sharp, A.H., Persichetti, F., Cattaneo, E. and Macdonald, M.E., 2000, Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum. Mol. Genet. 9: 2799.PubMedGoogle Scholar
  184. Trimmer, P.A., Swerdlow, R.H., Parks, J.K., Keeney, P., Bennett, J.P., Jr., Miller, S.W., Davis, R.E. and Parker, W.D., Jr., 2000, Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp. Neurol. 162: 37.PubMedGoogle Scholar
  185. Trimmer, P.A., Borland, M.K., Keeney, P.M., Bennett, J.P., Jr. and Parker, W.D., Jr., 2004, Parkinson’s disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J. Neurochem. 88: 800.PubMedCrossRefGoogle Scholar
  186. Turrens, J.F., Alexandre, A. and Lehninger, A.L., 1985, Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237: 408.PubMedGoogle Scholar
  187. Uchiyama, Y., 2001, Autophagy cell death and its execution by lysosomal cathepsins. Arch. Histol. Cytol. 64: 233.PubMedGoogle Scholar
  188. Uren, R.T., Dewson, G., Bonzon, C., Lithgow, T., Newmeyer, D.D. and Kluck, R.M., 2005, Mitochondrial release of proapoptotic proteins. J. Biol. Chem. 280: 2266.PubMedGoogle Scholar
  189. Valdez, L.B., Zaobornyj, T. and Boveris, A., 2006, Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochim. Biophys. Acta 1757: 166.PubMedGoogle Scholar
  190. Valente, E.M., Abou-Sleiman, P.M., Caputo, V., Muqit, M.M., Harvey, K., Gispert, S., Ali, Z., Del Turco, D., Bentivoglio, A.R., Healy, D.G., Albanese, A., Nussbaum, R., Gonzalez-Maldonado, R., Deller, T., Salvi, S., Cortelli, P., Gilks, W.P., Latchman, D.S., Harvey, R.J., Dallapiccola, B., Auburger, G. and Wood, N.W., 2004, Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304: 1158.PubMedGoogle Scholar
  191. Van Raamsdonk, J.M., Pearson, J., Bailey, C.D., Rogers, D.A., Johnson, G.V., Hayden, M.R. and Leavitt, B.R., 2005, Cystamine treatment is neuroprotective in the YAC128 mouse model of Huntington disease. J. Neurochem. 95: 210.PubMedGoogle Scholar
  192. Vanitallie, T.B. and Nufert, T.H., 2003, Ketones: metabolism’s ugly duckling. Nutr. Rev. 61: 327.PubMedGoogle Scholar
  193. Vanitallie, T.B., Nonas, C., Di Rocco, A., Boyar, K., Hyams, K. and Heymsfield, S.B., 2005, Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study. Neurology 64: 728.PubMedGoogle Scholar
  194. Verhagen, A.M., Ekert, P.G., Pakusch, M., Silke, J., Connolly, L.M., Reid, G.E., Moritz, R.L., Simpson, R.J. and Vaux, D.L., 2000, Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43.PubMedGoogle Scholar
  195. Viswanath, V., Wu, Y., Boonplueang, R., Chen, S., Stevenson, F.F., Yantiri, F., Yang, L., Beal, M. F. and Andersen, J.K., 2001, Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease. J. Neurosci. 21: 9519.PubMedGoogle Scholar
  196. Vonsattel, J.P. and DiFiglia, M., 1998, Huntington disease. J. Neuropathol. Exp. Neurol. 57: 369.PubMedGoogle Scholar
  197. Wallace, D.C., 1994, Mitochondrial DNA mutations in disease of energy metabolism. J. Bioenerg. Biomem. 26: 241.Google Scholar
  198. Wang, X., Zhu, S., Drozda, M., Zhang, W., Stavrovskaya, I.G., Cattaneo, E., Ferrante, R.J., Kristal, B.S. and Friedlander, R.M., 2003, Minocycline inhibits caspase-independent and dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc. Natl. Acad. Sci. USA 100: 10483.PubMedGoogle Scholar
  199. Ward, M.W., Rego, A.C., Frenguelli, B.G. and Nicholls, D.G., 2000, Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurosci. 20: 7208.PubMedGoogle Scholar
  200. Ward, M.W., Rehm, M., Duessmann, H., Kacmar, S., Concannon, C.G. and Prehn, J.H., 2006, Real time single cell analysis of Bid cleavage and Bid translocation during caspase-dependent and neuronal caspase-independent apoptosis. J. Biol. Chem. 281: 5837.PubMedGoogle Scholar
  201. Watabe, M. and Nakaki, T., 2004, Rotenone induces apoptosis via activation of bad in human dopaminergic SH-SY5Y cells. J. Pharmacol. Exp. Ther. 311: 948.PubMedGoogle Scholar
  202. Wellington, C.L., Ellerby, L.M., Gutekunst, C.A., Rogers, D., Warby, S., Graham, R.K., Loubser, O., van Raamsdonk, J., Singaraja, R., Yang, Y.Z., Gafni, J., Bredesen, D., Hersch, S.M., Leavitt, B.R., Roy, S., Nicholson, D.W. and Hayden, M.R., 2002, Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J. Neurosci. 22: 7862.PubMedGoogle Scholar
  203. Winkler-Stuck, K., Wiedemann, F.R., Wallesch, C.W. and Kunz, W.S., 2004, Effect of coenzyme Q10 on the mitochondrial function of skin fibroblasts from Parkinson patients. J. Neurol. Sci. 220: 41.PubMedGoogle Scholar
  204. Xue, L., Fletcher, G.C. and Tolkovsky, A.M., 1999, Autophagy is activated by apoptotic signaling in sympathetic neurons: an alternative mechanism of death execution. Mol. Cell. Neurosci. 14: 180.PubMedGoogle Scholar
  205. Yamada, M., Iwatsubo, T., Mizuno, Y. and Mochizuki, H., 2004, Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson’s disease. J. Neurochem. 91: 451.PubMedGoogle Scholar
  206. Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M., Cai, J., Peng, T.-I., Jones, D.P. and Wang, X., 1997, Prevention of apoptosis by bcl-2: release of cytochrome c from mitochondria blocked. Science 275: 1129.PubMedGoogle Scholar
  207. Yang, Y., Gehrke, S., Haque, M.E., Imai, Y., Kosek, J., Yang, L., Beal, M.F., Nishimura, I., Wakamatsu, K., Ito, S., Takahashi, R. and Lu, B., 2005, Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc. Natl. Acad. Sci. USA 102: 13670.PubMedGoogle Scholar
  208. Yoshino, H., Nakagawa-Hattori, Y., Kondo, T. and Mizuno, Y., 1992, Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. J. Neural Transm. Park. Dis. Dement. Sect. 4: 27.PubMedGoogle Scholar
  209. Young, D.R., Pelligra, R., Shapira, J., Adachi, R.R. and Skrettingland, K., 1967, Glucose oxidation and replacement during prolonged exercise in man. J. Appl. Physiol. 23: 734.PubMedGoogle Scholar
  210. Yu, S.W., Wang, H., Poitras, M.F., Coombs, C., Bowers, W.J., Federoff, H.J., Poirier, G.G., Dawson, T.M. and Dawson, V.L., 2002, Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297: 259.PubMedGoogle Scholar
  211. Zhang, Y., Ona, V.O., Li, M., Drozda, M., Dubois-Dauphin, M., Przedborski, S., Ferrante, R.J. and Friedlander, R.M., 2003, Sequential activation of individual caspases, and of alterations in Bcl-2 proapoptotic signals in a mouse model of Huntington’s disease. J. Neurochem. 87: 1184.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ana Cristina Rego
    • 1
  • Sandra Morais Cardoso
    • 2
  • Catarina R. Oliveira
    • 1
  1. 1.Center for Neuroscience and Cell Biology, Institute of BiochemistryUniversity of CoimbraPortugal
  2. 2.Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of MedicineUniversity of CoimbraPortugal

Personalised recommendations