Skip to main content

Molecular Pathways of Mitochondrial Dysfunction in Neurodegeneration: the Paradigms of Parkinson's and Huntington's Diseases

  • Chapter
Book cover Interaction Between Neurons and Glia in Aging and Disease

Mitochondria play an important role as ATP producers through the activity of the citric acid cycle and oxidative phosphorylation, as regulators of intracellular calcium homeostasis, and producers of endogenous reactive oxygen species (ROS). Mitochondria also regulate cell death, marking the point of no return in necrosis and apoptosis. Many evidences have been raised implicating mitochondria defects as crucial mechanisms in the pathogenesis of several neurodegenerative diseases, as well as in aging. This chapter resumes some of the findings that provide evidence for the role of mitochondria in neurodegeneration associated with Parkinson’s disease (PD) and Huntington’s disease (HD), two neurodegenerative disorders that cause movement disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Almeida, S., Domingues, A., Rodrigues, L., Oliveira, C.R. and Rego, A.C., 2004, FK506 prevents mitochondrial-dependent apoptotic cell death induced by 3-nitropropionic acid in rat primary cortical cultures. Neurobiol. Dis. 17: 435.

    CAS  PubMed  Google Scholar 

  • Almeida, S., Brett, A.C., Gois, I.N., Oliveira, C.R. and Rego, A.C., 2006, Caspase-dependent and -independent cell death induced by 3-nitropropionic acid in rat cortical neurons. J. Cell Biochem. 98: 93.

    CAS  PubMed  Google Scholar 

  • Alston, T.A., Mela, L. and Bright, H.J., 1977, Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc. Natl. Acad. Sci. USA 74: 3767.

    CAS  PubMed  Google Scholar 

  • Andreassen, O.A., Dedeoglu, A., Ferrante, R.J., Jenkins, B.G., Ferrante, K.L., Thomas, M., Friedlich, A., Browne, S.E., Schilling, G., Borchelt, D.R., Hersch, S.M., Ross, C.A. and Beal, M.F., 2001, Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiol. Dis. 8: 479.

    CAS  PubMed  Google Scholar 

  • Anglade, P., Vyas, S., Javoy-Agid, F., Herrero, M.T., Michel, P.P., Marquez, J., Mouatt-Prigent, A., Ruberg, M., Hirsch, E.C. and Agid, Y., 1997, Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol. Histopathol. 12: 25.

    CAS  PubMed  Google Scholar 

  • Araújo, I.M., Xapelli, S., Gil, J.M., Mohapel, P., Petersen, A., Pinheiro, P.S., Malva, J.O., Bahr, B.A., Brundin, P. and Carvalho, C.M., 2005, Proteolysis of NR2B by calpain in the hippocampus of epileptic rats. Neuroreport 16: 393.

    PubMed  Google Scholar 

  • Atlante, A., Calissano, P., Bobba, A., Azzariti, A., Marra, E. and Passarella, S., 2000, Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J. Biol. Chem. 275: 37159.

    CAS  PubMed  Google Scholar 

  • Atlante, A., Bobba, A., de Bari, L., Fontana, F., Calissano, P., Marra, E. and Passarella, S., 2006, Caspase-dependent alteration of the ADP/ATP translocator triggers the mitochondrial permeability transition which is not required for the low-potassium-dependent apoptosis of cerebellar granule cells. J. Neurochem. 97: 1166.

    CAS  PubMed  Google Scholar 

  • Attardi, G. and Schatz, G., 1988, Biogenesis of mitochondria. Annu. Rev. Cell Biol. 4: 289.

    CAS  PubMed  Google Scholar 

  • Bailey, C.D. and Johnson, G.V., 2006, The protective effects of cystamine in the R6/2 Huntington’s disease mouse involve mechanisms other than the inhibition of tissue transglutaminase. Neurobiol. Aging 27: 871.

    CAS  PubMed  Google Scholar 

  • Barroso, N., Campos, Y., Huertas, R., Esteban, J., Molina, J.A., Alonso, A., Gutierrez-Rivas, E. and Arenas, J., 1993, Respiratory chain enzyme activities in lymphocytes from untreated patients with Parkinson disease. Clin. Chem. 39: 667.

    CAS  PubMed  Google Scholar 

  • Beal, M.F., 2005, Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol. 58: 495.

    CAS  PubMed  Google Scholar 

  • Beal, M.F., Brouillet, E., Jenkins, B.G., Ferrante, R.J., Kowall, N.W., Miller, J.M., Storey, E., Srivastava, R., Rosen, B.R. and Hyman, B.T., 1993, Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13: 4181.

    CAS  PubMed  Google Scholar 

  • Beal, M.F., Matthews, R.T., Tieleman, A. and Shults, C.W., 1998, Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res. 783: 109.

    CAS  PubMed  Google Scholar 

  • Beckman, J.S., 1994, Peroxynitrite versus hydroxyl radical: the role of nitric oxide in superoxide-dependent cerebral injury. Ann. N.Y. Acad. Sci. 738: 69.

    CAS  PubMed  Google Scholar 

  • Benchoua, A., Trioulier, Y., Zala, D., Gaillard, M.C., Lefort, N., Dufour, N., Saudou, F., Elalouf, J.M., Hirsch, E., Hantraye, P., Deglon, N. and Brouillet, E., 2006, Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol. Biol. Cell. 17: 1652.

    CAS  PubMed  Google Scholar 

  • Benecke, R., Strumper, P. and Weiss, H., 1993, Electron transfer complexes I and IV of platelets are abnormal in Parkinson’s disease but normal in Parkinson-plus syndromes. Brain 116: 1451.

    PubMed  Google Scholar 

  • Bezprozvanny, I. and Hayden, M.R., 2004, Deranged neuronal calcium signaling and Huntington disease. Biochem. Biophys. Res. Commun. 322: 1310.

    CAS  PubMed  Google Scholar 

  • Bi, X., Rong, Y., Chen, J., Dang, S., Wang, Z. and Baudry, M., 1998, Calpain-mediated regulation of NMDA receptor structure and function. Brain Res. 790: 245.

    CAS  PubMed  Google Scholar 

  • Bizat, N., Hermel, J. M., Boyer, F., Jacquard, C., Creminon, C., Ouary, S., Escartin, C., Hantraye, P., Kajewski, S. and Brouillet, E., 2003, Calpain is a major cell death effector in selective striatal degeneration induced in vivo by 3-nitropropionate: implications for Huntington’s disease. J. Neurosci. 23: 5020.

    CAS  PubMed  Google Scholar 

  • Blandini, F., Nappi, G. and Greenamyre, J.T., 1998, Quantitative study of mitochondrial complex I in platelets of parkinsonian patients. Mov. Disord. 13: 11.

    CAS  PubMed  Google Scholar 

  • Bossy-Wetzel, E., Schwarzenbacher, R. and Lipton, S.A., 2004, Molecular pathways to neurodegeneration. Nat. Med. 10: S2.

    PubMed  Google Scholar 

  • Brito, O., Almeida, S., Oliveira, C.R. and Rego, A.C., 2003, Bcl-2 prevents loss of cell viability and caspases activation induced by 3-nitropropionic acid in GT1-7 cells. Ann. NY Acad. Sci. 1010: 148.

    CAS  PubMed  Google Scholar 

  • Brouillet, E., Jenkins, B.G., Hyman, B.T., Ferrante, R.J., Kowall, N.W., Srivastava, R., Roy, D.S., Rosen, B.R. and Beal, M.F., 1993, Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J. Neurochem. 60: 356.

    CAS  PubMed  Google Scholar 

  • Brouillet, E., Hantraye, P., Ferrante, R.J., Dolan, R., Leroy-Willig, A., Kowall, N.W. and Beal, M.F., 1995, Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc. Natl. Acad. Sci. USA 92: 7105.

    CAS  PubMed  Google Scholar 

  • Brouillet, E., Jacquard, C., Bizat, N. and Blum, D., 2005, Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease. J. Neurochem. 95: 1521.

    CAS  PubMed  Google Scholar 

  • Brunk, U.T. and Terman, A., 2002, The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 269: 1996.

    CAS  PubMed  Google Scholar 

  • Brustovetsky, N., LaFrance, R., Purl, K.J., Brustovetsky, T., Keene, C.D., Low, W.C. and Dubinsky, J.M. (2005), Age-dependent changes in the calcium sensitivity of striatal mitochondria in mouse models of Huntington’s Disease. J. Neurochem. 93: 1361.

    CAS  PubMed  Google Scholar 

  • Bursch, W., Hochegger, K., Torok, L., Marian, B., Ellinger, A. and Hermann, R.S., 2000, Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J. Cell Sci. 113: 1189.

    CAS  PubMed  Google Scholar 

  • Cardoso, S.M., Santos, S., Swerdlow, R.H. and Oliveira, C.R., 2001, Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB J. 15: 1439.

    CAS  PubMed  Google Scholar 

  • Cassarino, D.S., Fall, C.P., Swerdlow, R.H., Smith, T.S., Halvorsen, E.M., Miller, S.W., Parks, J.P., Parker, W.D., Jr. and Bennett, J.P., Jr., 1997, Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease. Biochim. Biophys. Acta. 1362: 77.

    CAS  PubMed  Google Scholar 

  • Chartier-Harlin, M.C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Larvor, L., Andrieux, J., Hulihan, M., Waucquier, N., Defebvre, L., Amouyel, P., Farrer, M. and Destee, A., 2004, Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364: 1167.

    CAS  PubMed  Google Scholar 

  • Chee, J.L., Guan, X.L., Lee, J.Y., Dong, B., Leong, S.M., Ong, E.H., Liou, A.K. and Lim, T.M., 2005, Compensatory caspase activation in MPP+-induced cell death in dopaminergic neurons. Cell. Mol. Life Sci. 62: 227.

    CAS  PubMed  Google Scholar 

  • Chen, M., Ona, V.O., Li, M., Ferrante, R.J., Fink, K.B., Zhu, S., Bian, J., Guo, L., Farrell, L.A., Hersch, S.M., Hobbs, W., Vonsattel, J.-P., Cha, J.-H. and Friedlander, R.M., 2000, Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. 6: 797.

    CAS  PubMed  Google Scholar 

  • Chiu, K., Lam, T.T., Ying Li, W.W., Caprioli, J. and Kwong Kwong, J.M., 2005, Calpain and N-methyl-D-aspartate (NMDA)-induced excitotoxicity in rat retinas. Brain Res. 1046: 207.

    CAS  PubMed  Google Scholar 

  • Choo, Y.S., Johnson, G.V., MacDonald, M., Detloff, P.J. and Lesort, M., 2004, Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum. Mol. Genet. 13: 1407.

    CAS  PubMed  Google Scholar 

  • Clohessy, J.G., Zhuang, J., de Boer, J., Gil-Gomez, G. and Brady, H.J., 2006, Mcl-1 interacts with truncated Bid and inhibits its induction of cytochrome c release and its role in receptor-mediated apoptosis. J. Biol. Chem. 281: 5750.

    CAS  PubMed  Google Scholar 

  • Coles, C.J., Edmondson, D.E. and Singer, T.P., 1979, Inactivation of succinate dehydrogenase by 3-nitropropionate. J. Biol. Chem. 254: 5161.

    CAS  PubMed  Google Scholar 

  • Cookson, M.R., 2003, Pathways to Parkinsonism. Neuron 37: 7.

    CAS  PubMed  Google Scholar 

  • Darios, F, Corti, O., Lucking, C.B., Hampe, C., Muriel, M.P., Abbas, N., Gu, W.J., Hirsch, E.C., Rooney, T., Ruberg, M. and Brice, A., 2003, Parkin prevents mitochondrial swelling and cytochrome c release in mitochondriadependent cell death. Hum. Mol. Genet. 12: 517.

    CAS  PubMed  Google Scholar 

  • Dauer, W., Kholodilov, N., Vila, M., Trillat, A.C., Goodchild, R., Larsen, K.E, Staal, R., Tieu, K., Schmitz, Y., Yuan, C.A., Rocha, M., Jackson-Lewis, V., Hersch, S., Sulzer, D., Przedborski, S., Burke, R. and Hen, R., 2002, Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc. Natl. Acad. Sci. USA 99: 14524.

    CAS  PubMed  Google Scholar 

  • Dawson, T.M. and Dawson, V.L., 2003, Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302: 819.

    CAS  PubMed  Google Scholar 

  • Du, C., Fang, M., Li, Y., Li, L. and Wang, X., 2000, Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33.

    CAS  PubMed  Google Scholar 

  • Enoksson, M., Robertson, J.D., Gogvadze, V., Bu, P., Kropotov, A., Zhivotovsky, B. and Orrenius, S., 2004, Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts the binding of cytochrome c to anionic phospholipids, J. Biol. Chem. 279: 49575.

    CAS  PubMed  Google Scholar 

  • Eskes, R., Antonsson, B., Osen-Sand, A., Montessuit, S., Richter, C., Sadoul, R., Mazzei, G., Nichols, A. and Martinou, J.-C., 1998, Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J. Cell. Biol. 143: 217.

    CAS  PubMed  Google Scholar 

  • Feany, M.B. and Pallanck, L.J., 2003, Parkin: a multipurpose neuroprotective agent? Neuron 38: 13.

    CAS  PubMed  Google Scholar 

  • Ferrante, R.J., Andreassen, O.A., Jenkins, B.G., Dedeoglu, A., Kuemmerle, S., Kubilus, J.K., Kaddurah-Daouk, R., Hersch, S.M. and Beal, M.F., 2000, Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J. Neurosci. 20: 4389.

    CAS  PubMed  Google Scholar 

  • Ferrante, R.J., Andreassen, O.A., Dedeoglu, A., Ferrante, K.L., Jenkins, B.G., Hersch, S.M. and Beal, M.F., 2002, Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J. Neurosci. 22: 1592.

    CAS  PubMed  Google Scholar 

  • Ferrante, R.J., Kubilus, J.K., Lee, J., Ryu, H., Beesen, A., Zucker, B., Smith, K., Kowall, N.W., Ratan, R.R., Luthi-Carter, R. and Hersch, S.M., 2003, Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J. Neurosci. 23: 9418.

    CAS  PubMed  Google Scholar 

  • Flower, T.R., Chesnokova, L.S., Froelich, C.A., Dixon, C. and Witt, S.N., 2005, Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson’s disease. J. Mol. Biol. 351: 1081.

    CAS  PubMed  Google Scholar 

  • Forno, L.S., 1996, Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 55: 259.

    CAS  PubMed  Google Scholar 

  • Gafni, J. and Ellerby, L.M., 2002, Calpain activation in Huntington’s disease. J. Neurosci. 22: 4842.

    CAS  PubMed  Google Scholar 

  • Galas, M.C., Bizat, N., Cuvelier, L., Bantubungi, K., Brouillet, E., Schiffmann, S.N. and Blum, D., 2004, Death of cortical and striatal neurons induced by mitochondrial defect involves differential molecular mechanisms. Neurobiol. Dis. 15: 152.

    CAS  PubMed  Google Scholar 

  • Gardian, G., Browne, S.E., Choi, D.K., Klivenyi, P., Gregorio, J., Kubilus, J.K., Ryu, H., Langley, B., Ratan, R.R., Ferrante, R.J. and Beal, M.F., 2005, Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J. Biol. Chem. 280: 556.

    CAS  PubMed  Google Scholar 

  • Ghafourifar, P. and Richter, C., 1997, Nitric oxide synthase activity in mitochondria. FEBS Lett. 418: 291.

    CAS  PubMed  Google Scholar 

  • Ghafourifar, P., Schenk, U., Klein, S.D. and Richter, C., 1999, Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J. Biol. Chem. 274: 31185.

    CAS  PubMed  Google Scholar 

  • Gines, S., Seong, I.S., Fossale, E., Ivanova, E., Trettel, F., Gusella, J.F., Wheeler, V.C., Persichetti, F. and Macdonald, M.E., 2003, Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington’s disease knock-in mice. Hum. Mol. Genet. 12: 497.

    CAS  PubMed  Google Scholar 

  • Giulivi, C., Poderoso, J.J. and Boveris, A., 1998, Production of nitric oxide by mitochondria. J. Biol. Chem. 273: 11038.

    CAS  PubMed  Google Scholar 

  • Gomez, C., Reiriz, J., Pique, M., Gil, J., Ferrer, I. and Ambrosio, S., 2001, Low concentrations of 1-methyl-4-phenylpyridinium ion induce caspase-mediated apoptosis in human SH-SY5Y neuroblastoma cells. J. Neurosci. Res. 63: 421.

    CAS  PubMed  Google Scholar 

  • Gómez-Santos, C., Ferrer, I., Santidrian, A.F., Barrachina, M., Gil, J. and Ambrosio, S., 2003, Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J. Neurosci. Res. 73: 341.

    PubMed  Google Scholar 

  • Gorman, A.M., Szegezdi, E., Quigney, D.J. and Samali, A., 2005, Hsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC12 cells. Biochem. Biophys. Res. Commun. 327: 801.

    CAS  PubMed  Google Scholar 

  • Green, D.R., 2005, Apoptotic pathways: ten minutes to dead. Cell 121: 671.

    CAS  PubMed  Google Scholar 

  • Greenamyre, J.T. and Hastings, T.G., 2004, Biomedicine. Parkinson’s-divergent causes, convergent mechanisms. Science 304: 1120.

    CAS  PubMed  Google Scholar 

  • Greene, J.C., Whitworth, A.J., Kuo, I., Andrews, L.A., Feany, M.B. and Pallanck, L.J., 2003, Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. USA 100: 4078.

    CAS  PubMed  Google Scholar 

  • Gu, M., Gash, M.T., Mann, V.M., Javoy-Agid, F., Cooper, J.M. and Schapira, A.H., 1996, Mitochondrial defect in Huntington’s disease caudate nucleus. Ann. Neurol. 39: 385.

    CAS  PubMed  Google Scholar 

  • Gu, M., Cooper, J.M., Taanman, J.W. and Schapira, A.H., 1998, Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann. Neurol. 44: 177.

    CAS  PubMed  Google Scholar 

  • Guo, Y., Srinivasula, S.M., Druilhe, A., Fernandes-Alnemri, T. and Alnemri, E.S., 2002, Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J. Biol. Chem. 277: 13430.

    CAS  PubMed  Google Scholar 

  • Haas, R.H., Nasirian, F., Nakano, K., Ward, D., Pay, M., Hill, R. and Shults, C.W., 1995, Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann. Neurol. 37: 714.

    CAS  PubMed  Google Scholar 

  • Hanagasi, H.A., Ayribas, D., Baysal, K. and Emre, M., 2005, Mitochondrial complex I, II/III, and IV activities in familial and sporadic Parkinson’s disease. Int. J. Neurosci. 115: 479.

    CAS  PubMed  Google Scholar 

  • Hanrott, K., Gudmunsen, L., O’neill, M.J. and Wonnacott, S., 2006, A6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase C{delta}. J. Biol. Chem. 281: 5373.

    CAS  PubMed  Google Scholar 

  • Hartmann, A., Hunot, S., Michel, P.P., Muriel, M.P., Vyas, S., Faucheux, B.A., Mouatt-Prigent, A., Turmel, H., Srinivasan, A., Ruberg, M., Evan, G.I., Agid, Y. and Hirsch, E.C., 2000, Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 97: 2875.

    CAS  PubMed  Google Scholar 

  • Hartmann, A., Michel, P.P., Troadec, J.D., Mouatt-Prigent, A., Faucheux, B.A., Ruberg, M., Agid, Y. and Hirsch, E.C., 2001, Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson’s disease? J. Neurochem. 76: 1785.

    CAS  PubMed  Google Scholar 

  • Hattori, N., Tanaka, M., Ozawa, T. and Mizuno, Y., 1991, Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease. Ann. Neurol. 30: 563.

    CAS  PubMed  Google Scholar 

  • HDCRG (The Huntington’s Disease Collaborative Research Group), 1993, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971.

    Google Scholar 

  • Hermel, E., Gafni, J., Propp, S.S., Leavitt, B.R., Wellington, C.L., Young, J.E., Hackam, A.S., Logvinova, A.V., Peel, A.L., Chen, S.F., Hook, V., Singaraja, R., Krajewsk, S., Goldsmith, P.C., Ellerby, H.M., Hayden, M.R., Bredesen, D.E. and Ellerby, L.M., 2004, Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington’s disease. Cell Death Differ. 11: 424.

    CAS  PubMed  Google Scholar 

  • Hersch, S.M., Gevorkian, S., Marder, K., Moskowitz, C., Feigin, A., Cox, M., Como, P., Zimmerman, C., Lin, M., Zhang, L., Ulug, A.M., Beal, M.F., Matson, W., Bogdanov, M., Ebbel, E., Zaleta, A., Kaneko, Y., Jenkins, B., Hevelone, N, Zhang, H., Yu, H., Schoenfeld, D., Ferrante, R. and Rosa, H.D., 2006, Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2’dG. Neurology 66: 250.

    CAS  PubMed  Google Scholar 

  • Holtz, W.A. and O’Malley, K.L., 2003, Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J. Biol. Chem. 278: 19367.

    CAS  PubMed  Google Scholar 

  • Horton, T.M., Graham, B.H., Corral-Debrinski, M., Shoffner, J.M., Kaufman, A.E., Beal, M.F. and Wallace, D.C., 1995, Marked increase in mitochondrial DNA deletion in the cerebral cortex of Huntington’s disease patients. Neurology 45: 1879.

    CAS  PubMed  Google Scholar 

  • Humbert, S., Bryson, E.A., Cordelieres, F.P., Connors, N.C., Datta, S.R., Finkbeiner, S., Greenberg, M.E. and Saudou, F., 2002, The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves huntingtin phosphorylation by Akt. Dev. Cell. 2: 831.

    CAS  PubMed  Google Scholar 

  • Hyun, D.H., Lee, M., Halliwell, B. and Jenner, P., 2005, Effect of overexpression of wild-type or mutant parkin on the cellular response induced by toxic insults. J. Neurosci. Res. 82: 232.

    CAS  PubMed  Google Scholar 

  • Iwata, A., Christianson, J.C., Bucci, M., Ellerby, L.M., Nukina, N., Forno, L.S. and Kopito, R.R., 2005a, Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc. Natl. Acad. Sci. USA 102: 13135.

    CAS  PubMed  Google Scholar 

  • Iwata, A., Riley, B.E., Johnston, J.A. and Kopito, R.R., 2005b, HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280: 40282.

    CAS  PubMed  Google Scholar 

  • Janetzky, B., Hauck, S., Youdim, M.B., Riederer, P., Jellinger, K., Pantucek, F., Zochling, R., Boissl, K.W. and Reichmann, H., 1994, Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neurosci. Lett. 169: 126.

    CAS  PubMed  Google Scholar 

  • Jenkins, B.G., Koroshetz, W.J., Beal, M.F. and Rosen, B.R., 1993, Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43: 2689.

    CAS  PubMed  Google Scholar 

  • Jiang, S., Cai, J., Wallace, D.C. and Jones, D.P., 1999, Cytochrome c-mediated apoptosis in cells lacking mitochondrial DNA. J. Biol. Chem. 274: 29905.

    CAS  PubMed  Google Scholar 

  • Junn, E., Taniguchi, H., Jeong, B.S., Zhao, X., Ichijo, H. and Mouradian, M.M., 2005, Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc. Natl. Acad. Sci. USA 102: 9691.

    CAS  PubMed  Google Scholar 

  • Keeney, P.M., Xie, J., Capaldi, R.A. and Bennett, J.P., Jr, 2006, Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J. Neurosci. 26: 5256.

    CAS  PubMed  Google Scholar 

  • Kiechle, T., Dedeoglu, A., Kubilus, J., Kowall, N.W., Beal, M.F., Friedlander, R., Hersch, S.M. and Ferrante, R.J., 2002, Cytochrome c and caspase-9 expression in Huntington’s disease. Neuromol. Med. 1: 183.

    CAS  Google Scholar 

  • Kim, J. and Klionsky, D.J., 2000, Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu. Rev. Biochem. 69: 303.

    CAS  PubMed  Google Scholar 

  • King, M.P. and Attardi, G., 1989, Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246: 500.

    CAS  PubMed  Google Scholar 

  • Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y. and Shimizu, N., 1998, Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605.

    CAS  PubMed  Google Scholar 

  • Klionsky, D.J. and Ohsumi, Y., 1999, Vacuolar import of proteins and organelles from the cytoplasm. Annu. Rev. Cell Dev. Biol. 15: 1.

    CAS  PubMed  Google Scholar 

  • Klivenyi, P., Siwek, D., Gardian, G., Yang, L., Starkov, A., Cleren, C., Ferrante, R.J., Kowall, N.W., Abeliovich, A. and Beal, M.F., 2006, Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol. Dis. 21: 541.

    CAS  PubMed  Google Scholar 

  • Koroshetz, W.J., Jenkins, B.G., Rosen, B.R. and Beal, M.F., 1997, Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann. Neurol. 41: 160.

    CAS  PubMed  Google Scholar 

  • Kowaltowski, A.J., Castilho, R.F. and Vercesi, A.E., 1995, Ca2+-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state. Am. J. Physiol. 269: 141.

    Google Scholar 

  • Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J.T., Schols, L. and Riess, O., 1998, Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genet. 18: 106.

    CAS  PubMed  Google Scholar 

  • Langston, J.W., Ballard, P., Tetrud, J.W. and Irwin, I., 1983, Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979.

    CAS  PubMed  Google Scholar 

  • Lashuel, H.A., Hartley, D., Petre, B.M., Walz, T. and Lansbury, P.T., Jr., 2002, Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418: 291.

    CAS  PubMed  Google Scholar 

  • Lassus, P., Opitz-Araya, X. and Lazebnik, Y., 2002, Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297: 1352.

    CAS  PubMed  Google Scholar 

  • Li, L.Y., Luo, X. and Wang, X., 2001, Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412: 95.

    CAS  PubMed  Google Scholar 

  • Li, L., Fan, M., Icton, C.D., Chen, N., Leavitt, B.R., Hayden, M.R., Murphy, T.H. and Raymond, L.A., 2003, Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington disease. Neurobiol. Aging 24: 1113.

    CAS  PubMed  Google Scholar 

  • Lin, D.T., Wu, J., Holstein, D., Upadhyay, G., Rourk, W., Muller, E. and Lechleiter, J.D., 2005, Ca(2+) signaling, mitochondria and sensitivity to oxidative stress in aging astrocytes. Neurobiol. Aging (Epub ahead of print)

    Google Scholar 

  • Liu, X., Zou, H., Slaughter, C. and Wang, X., 1997, DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89: 175.

    CAS  PubMed  Google Scholar 

  • Luetjens, C.M., Bui, N.T., Sengpiel, B., Münstermann, G., Poppe, M., Krohn, A.J., Bauerbach, E., Krieglstein, J. and Prehn, J.H.M., 2000, Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J. Neurosci. 20: 5715.

    CAS  PubMed  Google Scholar 

  • Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X., 1998, Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481.

    CAS  PubMed  Google Scholar 

  • Maciel, E.N., Vercesi, A.E. and Castilho, R.F., 2001, Oxidative stress in Ca(2+)-induced membrane permeability transition in brain mitochondria. J. Neurochem. 79: 1237.

    CAS  PubMed  Google Scholar 

  • Maciel, E.N., Kowaltowski, A.J., Schwalm, F.D., Rodrigues, J.M., Souza, D.O., Vercesi, A.E., Wajner, M. and Castilho, R.F., 2004, Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition. J. Neurochem. 90: 1025.

    CAS  PubMed  Google Scholar 

  • Mann, V.M., Cooper, J.M., Krige, D., Daniel, S.E., Schapira, A.H. and Marsden, C.D., 1992, Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 115: 333.

    PubMed  Google Scholar 

  • Manyam, B.V., Dhanasekaran, M. and Hare, T.A., 2004, Neuroprotective effects of the antiparkinson drug Mucuna pruriens. Phytother. Res. 18: 706.

    PubMed  Google Scholar 

  • Mao, Z., Choo, Y.S. and Lesort, M., 2006, Cystamine and cysteamine prevent 3-NP-induced mitochondrial depolarization of Huntington’s disease knock-in striatal cells. Eur. J. Neurosci. 23: 1701.

    PubMed  Google Scholar 

  • Martin, L.J., Pan, Y., Price, A.C., Sterling, W., Copeland, N.G., Jenkins, N.A., Price, D.L. and Lee, M.K., 2006, Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 26: 41.

    CAS  PubMed  Google Scholar 

  • Milakovic, T. and Johnson, G.V., 2005, Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. J. Biol. Chem. 280: 30773.

    CAS  PubMed  Google Scholar 

  • Mizuno, Y., Ohta, S., Tanaka, M., Takamiya, S., Suzuki, K., Sato, T., Oya, H., Ozawa, T. and Kagawa, Y., 1989, Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem. Biophys. Res. Commun. 163: 1450.

    CAS  PubMed  Google Scholar 

  • Mochizuki, H., Goto, K., Mori, H. and Mizuno, Y., 1996, Histochemical detection of apoptosis in Parkinson’s disease. J. Neurol. Sci. 137: 120.

    CAS  PubMed  Google Scholar 

  • Muftuoglu, M., Elibol, B., Dalmizrak, O., Ercan, A., Kulaksiz, G., Ogus, H., Dalkara, T. and Ozer, N., 2004, Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov. Disord. 19: 544.

    PubMed  Google Scholar 

  • Muller, T., Buttner, T., Gholipour, A.F. and Kuhn, W., 2003, Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson’s disease. Neurosci. Lett. 341: 201.

    CAS  PubMed  Google Scholar 

  • Myers, R.H., Vonsattel, J.P., Paskevich, P.A., Kiely, D.K., Stevens, T.J., Cupples, L.A., Richardson, E.P., Jr. and Bird, E.D., 1991, Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus. J. Neuropathol. Exp. Neurol. 50: 729.

    CAS  PubMed  Google Scholar 

  • Neumar, R.W., Xu, Y.A., Gada, H., Guttmann, R.P. and Siman, R., 2003, Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J. Biol. Chem. 278: 14162.

    CAS  PubMed  Google Scholar 

  • Nicholls, D.G. and Ferguson, S.J., 1992, Bioenergetics 2. Academic, London, UK.

    Google Scholar 

  • Nicholls, D.G. and Budd, S.L., 2000, Mitochondria and neuronal survival. Physiol. Rev. 80: 315.

    CAS  PubMed  Google Scholar 

  • Nicholls, D.G. and Ward, M.W., 2000, Mitochondrial membrane potential and cell death: mortality and millivolts. Trends Neurosci. 23: 166.

    CAS  PubMed  Google Scholar 

  • Nijlmans, L.G.J., Spelbrink, J.N., Van Galen, M.J.M., Zwaan, M., Klement, P. and Van den Bogert, C., 1995, Expression and fate of the nuclearly encoded subunits of cytochrome c oxidase in cultured human cells depleted of mitochondrial gene products. Biochem. Biophys. Acta 1265: 117.

    Google Scholar 

  • Oliveira, J.M.A., Jekabsons, M.B., Chen, S., Lin, A., Rego, A.C., Gonçalves, J., Ellerby, L.M. and Nicholls, D.G., 2006a, Mitochondrial dysfunction in Huntington’s disease: the bioenergetics of isolated and in situ mitochondria from transgenic mice. J. Neurochem. (in press) doi: 10.1111/j.1471-4159.2006.04361.x.

    Google Scholar 

  • Oliveira, J.M.A., Chen, S., Almeida, S., Riley, R., Gonçalves, J., Oliveira, C.R., Hayden, M.R., Nicholls, D.G., Ellerby, L.M. and Rego, A.C., 2006b, Mitochondrial-dependent Ca2+ handling in Huntington’s disease striatal cells: effect of histone deacetylase inhibitors. J. Neurosci. 26: 11174.

    CAS  PubMed  Google Scholar 

  • Ona, V.O., Li, M., Vonsattel, J.-P., Andrews, L.J., Khan, S.Q., Chung, W.M., Frey, A.S., Menon, A.S., Li, X.-J., Stieg, P.E., Yuan, J., Penney, J.B., Young, A.B., Cha, J.-H. and Friedlander, R.M., 1999, Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399: 263.

    CAS  PubMed  Google Scholar 

  • Orth, M. and Tabrizi, S.J., 2003, Models of Parkinson’s disease. Mov. Disord. 18: 729.

    PubMed  Google Scholar 

  • Palacino, J.J., Sagi, D., Goldberg, M.S., Krauss, S., Motz, C., Wacker, M., Klose, J. and Shen, J., 2004, Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 279: 18614.

    CAS  PubMed  Google Scholar 

  • Panov, A.V., Gutekunst, C.A., Leavitt, B.R., Hayden, M.R., Burke, J.R., Strittmatter, W.J. and Greenamyre, J.T., 2002, Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat. Neurosci. 5: 731.

    CAS  PubMed  Google Scholar 

  • Pardo, R., Colin, E., Regulier, E., Aebischer, P., Deglon, N., Humbert, S. and Saudou F., 2006, Inhibition of calcineurin by FK506 protects against polyglutamine-huntingtin toxicity through an increase of huntingtin phosphorylation at S421. J. Neurosci. 26: 1635.

    CAS  PubMed  Google Scholar 

  • Parker, W.D., Jr., Boyson, S.J. and Parks, J.K., 1989, Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann. Neurol. 26: 719.

    PubMed  Google Scholar 

  • Parker, W.D., Jr., Boyson, S.J., Luder, A.S. and Parks, J.K., 1990, Evidence for a defect in NADH: ubiquinone oxidoreductase (complex I) in Huntington’s disease. Neurology 40: 1231.

    PubMed  Google Scholar 

  • Perier, C., Tieu, K., Guegan, C., Caspersen, C., Jackson-Lewis, V., Carelli, V., Martinuzzi, A., Hirano, M., Przedborski, S. and Vila, M., 2005, Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc. Natl. Acad. Sci. USA. 102: 19126.

    CAS  PubMed  Google Scholar 

  • Petersen, A., Larsen, K.E., Behr, G.G., Romero, N., Przedborski, S., Brundin, P. and Sulzer, D., 2001, Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum. Mol. Genet. 10: 1243.

    CAS  PubMed  Google Scholar 

  • Petit, A., Kawarai, T., Paitel, E., Sanjo, N., Maj, M., Scheid, M., Chen, F., Gu, Y., Hasegawa, H., Salehi-Rad, S., Wang, L., Rogaeva, E., Fraser, P., Robinson, B., George-Hyslop, P. and Tandon, A., 2005, Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J. Biol. Chem. 280: 34025.

    CAS  PubMed  Google Scholar 

  • Petrucelli, L., O’Farrell, C., Lockhart, P.J., Baptista, M., Kehoe, K., Vink, L., Choi, P., Wolozin, B., Farrer, M., Hardy, J. and Cookson, M.R., 2002, Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36: 1007.

    CAS  PubMed  Google Scholar 

  • Polidori, M.C., Mecocci, P., Browne, S.E., Senin, U. and Beal, M.F., 1999, Oxidative damage to mitochondrial DNA in Huntington’s disease parietal cortex. Neurosci. Lett. 272: 53.

    CAS  PubMed  Google Scholar 

  • Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E.S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W.G., Lazzarini, A.M., Duvoisin, R.C., Di Iorio, G., Golbe, L.I. and Nussbaum, R.L., 1997, Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045.

    CAS  PubMed  Google Scholar 

  • Portera-Cailliau, C., Hedreen, J.C., Price, D.L. and Koliatsos, V.E., 1995, Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. J. Neurosci. 15: 3775.

    CAS  PubMed  Google Scholar 

  • Quigley, P.M., Korotkov, K., Baneyx, F. and Hol, W.G., 2003, The 1.6-A crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad. Proc. Natl. Acad. Sci. USA 100: 3137.

    CAS  PubMed  Google Scholar 

  • Rangone, H., Poizat, G., Troncoso, J., Ross, C.A., MacDonald, M.E., Saudou, F. and Humbert, S., 2004, The serum-and glucocorticoid-induced kinase SGK inhibits mutant huntingtin-induced toxicity by phosphorylating serine 421 of huntingtin. Eur. J. Neurosci. 19: 273.

    PubMed  Google Scholar 

  • Read, S.H., Baliga, B.C., Ekert, P.G., Vaux, D.L. and Kumar, S., 2002, A novel apaf-1-independent putative caspase-2 activation complex. J. Cell Biol. 159: 739.

    CAS  PubMed  Google Scholar 

  • Reggiori, F. and Klionsky, D.J., 2002, Autophagy in the eukaryotic cell. Eukaryot. Cell 1: 11.

    CAS  PubMed  Google Scholar 

  • Rego, A.C. and de Almeida, L.P., 2005, Molecular targets and therapeutic strategies in Huntington’s disease. Curr. Drug Targets CNS Neurol. Disord. 4: 361.

    CAS  PubMed  Google Scholar 

  • Rego, A.C., Vesce, S. and Nicholls, D.G., 2001a, The mechanism of mitochondrial membrane potential retention following release of cytochrome c in apoptotic GT1-7 neural cells. Cell Death Differ. 8: 995.

    CAS  PubMed  Google Scholar 

  • Rego, A.C., Ward, M.W. and Nicholls, D.G., 2001b, Mitochondria control AMPA/kainate receptor-induced cytoplasmic calcium deregulation in rat cerebellar granule cells. J. Neurosci. 21: 1893.

    CAS  PubMed  Google Scholar 

  • Rideout, H.J., Lang-Rollin, I. and Stefanis, L., 2004, Involvement of macroautophagy in the dissolution of neuronal inclusions. Int. J. Biochem. Cell Biol. 36: 2551.

    CAS  PubMed  Google Scholar 

  • Robertson, J.D., Enoksson, M., Suomela, M., Zhivotovsky, B. and Orrenius, S., 2002, Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J. Biol. Chem. 277: 29803.

    CAS  PubMed  Google Scholar 

  • Roman, G.C., Zhang, Z.X. and Ellenberg, J.H., 1995, The neuroepidemiology of Parkinson’s disease. In: Etiology of Parkinson’s disease. J.H., Ellenberg, W.C., Koller, J.W., Langston, (eds.) Marcel Dekker, New York, pp. 203.

    Google Scholar 

  • Sakata, E., Yamaguchi, Y., Kurimoto, E., Kikuchi, J., Yokoyama, S., Yamada, S., Kawahara, H., Yokosawa, H., Hattori, N., Mizuno, Y., Tanaka, K. and Kato, K., 2003, Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep. 4: 301.

    CAS  PubMed  Google Scholar 

  • Sanchez, I., Xu, C.J., Juo, P., Kakizaka, A., Blenis, J. and Yuan, J., 1999, Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22: 623.

    CAS  PubMed  Google Scholar 

  • Schapira, A.H., 1994, Evidence for mitochondrial dysfunction in Parkinson’s disease - a critical appraisal. Mov. Disord. 9: 125.

    CAS  PubMed  Google Scholar 

  • Schapira, A.H., Cooper, J.M., Dexter, D., Jenner, P., Clark, J.B. and Marsden, C.D., 1989, Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1: 1269.

    CAS  PubMed  Google Scholar 

  • Schapira, A.H., Cooper, J.M., Dexter, D., Clark, J.B., Jenner, P. and Marsden, C.D., 1990a, Mitochondrial complex I deficiency in Parkinson’s disease. J. Neurochem. 54: 823.

    CAS  PubMed  Google Scholar 

  • Schapira, A.H., Mann, V.M., Cooper, J.M., Dexter, D., Daniel, S.E., Jenner, P., Clark, J.B. and Marsden, C.D., 1990b, Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J. Neurochem. 55: 2142.

    CAS  PubMed  Google Scholar 

  • Schwartz, L.M., Smith, S.W., Jones, M.E. and Osborne, B.A., 1993, Do all programmed cell deaths occur via apoptosis? Proc. Natl. Acad. Sci. USA 90: 980.

    CAS  PubMed  Google Scholar 

  • Seo, B.B., Nakamaru-Ogiso, E., Cruz, P., Flotte, T.R., Yagi, T. and Matsuno-Yagi, A., 2004, Functional expression of the single subunit NADH dehydrogenase in mitochondria in vivo: a potential therapy for complex I deficiencies. Hum. Gene Ther. 15: 887.

    CAS  PubMed  Google Scholar 

  • Seo, B.B., Nakamaru-Ogiso, E., Flotte, T.R., Matsuno-Yagi, A. and Yagi, T., 2006, In vivo complementation of complex I by the yeast Ndi1 enzyme. Possible application for treatment of Parkinson disease. J. Biol. Chem. 281: 14250.

    CAS  PubMed  Google Scholar 

  • Seong, I.S., Ivanova, E., Lee, J.M., Choo, Y.S., Fossale, E., Anderson, M., Gusella, J.F., Laramie, J.M., Myers, R.H., Lesort, M. and MacDonald, M.E., 2005, HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum. Mol. Genet. 14: 2871.

    CAS  PubMed  Google Scholar 

  • Sharma, S.K., Carlson, E.C. and Ebadi, M., 2003, Neuroprotective actions of Selegiline in inhibiting 1-methyl, 4-phenyl, pyridinium ion (MPP+)-induced apoptosis in SK-N-SH neurons. J. Neurocytol. 32: 329.

    CAS  PubMed  Google Scholar 

  • Sherer, T.B., Betarbet, R., Stout, A.K., Lund, S., Baptista, M., Panov, A.V., Cookson, M.R. and Greenamyre, J.T., 2002, An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J. Neurosci. 22: 7006.

    CAS  PubMed  Google Scholar 

  • Shimizu, S. and Tsujimoto, Y., 2000, Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc. Natl. Acad. Sci. USA 97: 577.

    CAS  PubMed  Google Scholar 

  • Shin, J.Y., Fang, Z.H., Yu, Z.X., Wang, C.E., Li, S.H. and Li, X.J., 2005, Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J. Cell Biol. 171: 1001.

    CAS  PubMed  Google Scholar 

  • Shults, C.W., Haas, R.H., Passov, D. and Beal, M.F., 1997, Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. Ann. Neurol. 42: 621.

    Google Scholar 

  • Sidhu, A., Wersinger, C., Moussa, C.E. and Vernier, P., 2004, The Role of {alpha}-Synuclein in Both Neuroprotection and Neurodegeneration. Ann. NY Acad. Sci. 1035: 250.

    CAS  PubMed  Google Scholar 

  • Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M.R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J. and Gwinn-Hardy, K., 2003, Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302: 841.

    CAS  PubMed  Google Scholar 

  • Spencer, J.P., Jenner, P., Daniel, S.E., Lees, A.J., Marsden, D.C. and Halliwell, B.J., 1998, Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J. Neurochem. 71: 2112.

    CAS  PubMed  Google Scholar 

  • Spooren, W.P, Gentsch, C. and Wiessner, C., 1998, TUNEL-positive cells in the substantia nigra of C57BL/6 mice after a single bolus of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 85: 649.

    CAS  PubMed  Google Scholar 

  • Springer, J.E., Azbill, R.D., Nottingham, S.A. and Kennedy, S.E., 2000, Calcineurin-mediated Bad dephosphorylation activates the caspase-3 apoptotic cascade in traumatic spinal cord injury. J. Neurosci. 20: 7246.

    CAS  PubMed  Google Scholar 

  • Stack, E.C., Smith, K.M., Ryu, H., Cormier, K., Chen, M., Hagerty, S.W., Del Signore, S.J., Cudkowicz, M.E., Friedlander, R.M. and Ferrante, R.J., 2006, Combination therapy using minocycline and coenzyme Q10 in R6/2 transgenic Huntington’s disease mice. Biochim. Biophys. Acta 1762: 373.

    CAS  PubMed  Google Scholar 

  • Stefanis, L., Larsen, K.E., Rideout, H.J., Sulzer, D. and Greene, L.A., 2001, Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J. Neurosci. 21: 9549.

    CAS  PubMed  Google Scholar 

  • Sulzer, D., Bogulavsky, J., Larsen, K.E., Behr, G., Karatekin, E., Kleinman, M.H., Turro, N., Krantz, D., Edwards, R.H., Greene, L.A. and Zecca, L., 2000, Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc. Natl. Acad. Sci. USA 97: 11869.

    CAS  PubMed  Google Scholar 

  • Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D.R., Aebersold, R., Siderovski, D.P., Penninger, J.M. and Kroemer, G., 1999, Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441.

    CAS  PubMed  Google Scholar 

  • Swerdlow, R.H. and Khan, S.M., 2004, A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med. Hypotheses 63: 8.

    CAS  PubMed  Google Scholar 

  • Swerdlow, R.H., Parks, J.K., Miller, S.W., Tuttle, J.B., Trimmer, P.A., Sheehan, J.P., Bennett, J.P., Jr., Davis, R.E. and Parker, W.D., Jr., 1996, Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann. Neurol. 40: 663.

    CAS  PubMed  Google Scholar 

  • Tabrizi, S.J., Orth, M., Wilkinson, J.M., Taanman, J.W., Warner, T.T., Cooper, J.M. and Schapira, A.H., 2000a, Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity. Hum. Mol. Genet. 9: 2683.

    CAS  PubMed  Google Scholar 

  • Tabrizi, S.J., Workman, J., Hart, P.E., Mangiarini, L., Mahal, A., Bates, G., Cooper, J.M. and Schapira, A.H., 2000b, Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann. Neurol. 47: 80.

    CAS  PubMed  Google Scholar 

  • Taira, T., Saito, Y., Niki, T., Iguchi-Ariga, S.M., Takahashi, K. and Ariga, H., 2004, DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 5: 213.

    CAS  PubMed  Google Scholar 

  • Tatton, N.A., 2000, Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp. Neurol. 166: 29.

    CAS  PubMed  Google Scholar 

  • Tatton, N.A. and Kish, S.J., 1997, In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labeling and acridine orange staining. Neuroscience 77: 1037.

    CAS  PubMed  Google Scholar 

  • Tatton, N.A., Maclean-Fraser, A., Tatton, W.G., Perl, D.P. and Olanow, C.W., 1998, A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann. Neurol. 44: 142.

    Google Scholar 

  • Tenneti, L. and Lipton, S.A., 2000, Involvement of activated caspase-3-like proteases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. J. Neurochem. 74: 134.

    CAS  PubMed  Google Scholar 

  • Tompkins, M.M., Basgall, E.J., Zamrini, E. and Hill, W.D., 1997, Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am. J. Pathol. 150: 119.

    CAS  PubMed  Google Scholar 

  • Trettel, F., Rigamonti, D., Hilditch-Maguire, P., Wheeler, V.C., Sharp, A.H., Persichetti, F., Cattaneo, E. and Macdonald, M.E., 2000, Dominant phenotypes produced by the HD mutation in STHdh(Q111) striatal cells. Hum. Mol. Genet. 9: 2799.

    CAS  PubMed  Google Scholar 

  • Trimmer, P.A., Swerdlow, R.H., Parks, J.K., Keeney, P., Bennett, J.P., Jr., Miller, S.W., Davis, R.E. and Parker, W.D., Jr., 2000, Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp. Neurol. 162: 37.

    CAS  PubMed  Google Scholar 

  • Trimmer, P.A., Borland, M.K., Keeney, P.M., Bennett, J.P., Jr. and Parker, W.D., Jr., 2004, Parkinson’s disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J. Neurochem. 88: 800.

    Article  CAS  PubMed  Google Scholar 

  • Turrens, J.F., Alexandre, A. and Lehninger, A.L., 1985, Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237: 408.

    CAS  PubMed  Google Scholar 

  • Uchiyama, Y., 2001, Autophagy cell death and its execution by lysosomal cathepsins. Arch. Histol. Cytol. 64: 233.

    CAS  PubMed  Google Scholar 

  • Uren, R.T., Dewson, G., Bonzon, C., Lithgow, T., Newmeyer, D.D. and Kluck, R.M., 2005, Mitochondrial release of proapoptotic proteins. J. Biol. Chem. 280: 2266.

    CAS  PubMed  Google Scholar 

  • Valdez, L.B., Zaobornyj, T. and Boveris, A., 2006, Mitochondrial metabolic states and membrane potential modulate mtNOS activity. Biochim. Biophys. Acta 1757: 166.

    CAS  PubMed  Google Scholar 

  • Valente, E.M., Abou-Sleiman, P.M., Caputo, V., Muqit, M.M., Harvey, K., Gispert, S., Ali, Z., Del Turco, D., Bentivoglio, A.R., Healy, D.G., Albanese, A., Nussbaum, R., Gonzalez-Maldonado, R., Deller, T., Salvi, S., Cortelli, P., Gilks, W.P., Latchman, D.S., Harvey, R.J., Dallapiccola, B., Auburger, G. and Wood, N.W., 2004, Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304: 1158.

    CAS  PubMed  Google Scholar 

  • Van Raamsdonk, J.M., Pearson, J., Bailey, C.D., Rogers, D.A., Johnson, G.V., Hayden, M.R. and Leavitt, B.R., 2005, Cystamine treatment is neuroprotective in the YAC128 mouse model of Huntington disease. J. Neurochem. 95: 210.

    PubMed  Google Scholar 

  • Vanitallie, T.B. and Nufert, T.H., 2003, Ketones: metabolism’s ugly duckling. Nutr. Rev. 61: 327.

    PubMed  Google Scholar 

  • Vanitallie, T.B., Nonas, C., Di Rocco, A., Boyar, K., Hyams, K. and Heymsfield, S.B., 2005, Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study. Neurology 64: 728.

    CAS  PubMed  Google Scholar 

  • Verhagen, A.M., Ekert, P.G., Pakusch, M., Silke, J., Connolly, L.M., Reid, G.E., Moritz, R.L., Simpson, R.J. and Vaux, D.L., 2000, Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43.

    CAS  PubMed  Google Scholar 

  • Viswanath, V., Wu, Y., Boonplueang, R., Chen, S., Stevenson, F.F., Yantiri, F., Yang, L., Beal, M. F. and Andersen, J.K., 2001, Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease. J. Neurosci. 21: 9519.

    CAS  PubMed  Google Scholar 

  • Vonsattel, J.P. and DiFiglia, M., 1998, Huntington disease. J. Neuropathol. Exp. Neurol. 57: 369.

    CAS  PubMed  Google Scholar 

  • Wallace, D.C., 1994, Mitochondrial DNA mutations in disease of energy metabolism. J. Bioenerg. Biomem. 26: 241.

    CAS  Google Scholar 

  • Wang, X., Zhu, S., Drozda, M., Zhang, W., Stavrovskaya, I.G., Cattaneo, E., Ferrante, R.J., Kristal, B.S. and Friedlander, R.M., 2003, Minocycline inhibits caspase-independent and dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc. Natl. Acad. Sci. USA 100: 10483.

    CAS  PubMed  Google Scholar 

  • Ward, M.W., Rego, A.C., Frenguelli, B.G. and Nicholls, D.G., 2000, Mitochondrial membrane potential and glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurosci. 20: 7208.

    CAS  PubMed  Google Scholar 

  • Ward, M.W., Rehm, M., Duessmann, H., Kacmar, S., Concannon, C.G. and Prehn, J.H., 2006, Real time single cell analysis of Bid cleavage and Bid translocation during caspase-dependent and neuronal caspase-independent apoptosis. J. Biol. Chem. 281: 5837.

    CAS  PubMed  Google Scholar 

  • Watabe, M. and Nakaki, T., 2004, Rotenone induces apoptosis via activation of bad in human dopaminergic SH-SY5Y cells. J. Pharmacol. Exp. Ther. 311: 948.

    CAS  PubMed  Google Scholar 

  • Wellington, C.L., Ellerby, L.M., Gutekunst, C.A., Rogers, D., Warby, S., Graham, R.K., Loubser, O., van Raamsdonk, J., Singaraja, R., Yang, Y.Z., Gafni, J., Bredesen, D., Hersch, S.M., Leavitt, B.R., Roy, S., Nicholson, D.W. and Hayden, M.R., 2002, Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington’s disease. J. Neurosci. 22: 7862.

    CAS  PubMed  Google Scholar 

  • Winkler-Stuck, K., Wiedemann, F.R., Wallesch, C.W. and Kunz, W.S., 2004, Effect of coenzyme Q10 on the mitochondrial function of skin fibroblasts from Parkinson patients. J. Neurol. Sci. 220: 41.

    CAS  PubMed  Google Scholar 

  • Xue, L., Fletcher, G.C. and Tolkovsky, A.M., 1999, Autophagy is activated by apoptotic signaling in sympathetic neurons: an alternative mechanism of death execution. Mol. Cell. Neurosci. 14: 180.

    CAS  PubMed  Google Scholar 

  • Yamada, M., Iwatsubo, T., Mizuno, Y. and Mochizuki, H., 2004, Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson’s disease. J. Neurochem. 91: 451.

    CAS  PubMed  Google Scholar 

  • Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M., Cai, J., Peng, T.-I., Jones, D.P. and Wang, X., 1997, Prevention of apoptosis by bcl-2: release of cytochrome c from mitochondria blocked. Science 275: 1129.

    CAS  PubMed  Google Scholar 

  • Yang, Y., Gehrke, S., Haque, M.E., Imai, Y., Kosek, J., Yang, L., Beal, M.F., Nishimura, I., Wakamatsu, K., Ito, S., Takahashi, R. and Lu, B., 2005, Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc. Natl. Acad. Sci. USA 102: 13670.

    CAS  PubMed  Google Scholar 

  • Yoshino, H., Nakagawa-Hattori, Y., Kondo, T. and Mizuno, Y., 1992, Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. J. Neural Transm. Park. Dis. Dement. Sect. 4: 27.

    CAS  PubMed  Google Scholar 

  • Young, D.R., Pelligra, R., Shapira, J., Adachi, R.R. and Skrettingland, K., 1967, Glucose oxidation and replacement during prolonged exercise in man. J. Appl. Physiol. 23: 734.

    CAS  PubMed  Google Scholar 

  • Yu, S.W., Wang, H., Poitras, M.F., Coombs, C., Bowers, W.J., Federoff, H.J., Poirier, G.G., Dawson, T.M. and Dawson, V.L., 2002, Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297: 259.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Ona, V.O., Li, M., Drozda, M., Dubois-Dauphin, M., Przedborski, S., Ferrante, R.J. and Friedlander, R.M., 2003, Sequential activation of individual caspases, and of alterations in Bcl-2 proapoptotic signals in a mouse model of Huntington’s disease. J. Neurochem. 87: 1184.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rego, A.C., Cardoso, S.M., Oliveira, C.R. (2007). Molecular Pathways of Mitochondrial Dysfunction in Neurodegeneration: the Paradigms of Parkinson's and Huntington's Diseases. In: Malva, J.O., Rego, A.C., Cunha, R.A., Oliveira, C.R. (eds) Interaction Between Neurons and Glia in Aging and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-70830-0_9

Download citation

Publish with us

Policies and ethics