GDNF: a Key Player in Neuron-Glia Crosstalk and Survival of Nigrostriatal Dopaminergic Neurons

  • Emília P. Duarte
  • Ana Saavedra
  • Graça Baltazar

Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for dopaminergic neurons of the nigrostriatal pathway that degenerate in Parkinson’s disease (PD). In animal models of PD, GDNF delivery has been shown to both protect dopaminergic neurons against toxin-induced injury and to rescue damaged neurons, promoting recovery of the motor deficit. GDNF may act both as a target-derived neurotrophic factor in the striatum, and as a local neurotrophic factor at the level of neuronal cell bodies in the substantia nigra. The neuroprotective and regenerative effects of GDNF are mediated by increases in the activity of antioxidant enzymes and induction of antiapoptotic proteins and cell adhesion molecules.


Neurotrophic Factor Substantia Nigra Dopaminergic Neuron Microglial Cell Nigrostriatal System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. Backman, C.M., Shan, L., Zhang, Y.J., Hoffer, B.J., Leonard, S., Troncoso, J.C., Vonsatel, P. and Tomac, A.C., 2006, Gene expression patterns for GDNF and its receptors in the human putamen affected by Parkinson’s disease: a real-time PCR study. Mol. Cell. Endocrinol. 252: 160.PubMedGoogle Scholar
  2. Barcia, C., Sanchez, B.A., Fernandez-Villalba, E., Bautista, V., Poza, Y.P., Fernandez-Barreiro, A., Hirsch, E.C. and Herrero, M.T., 2004, Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia 46: 402.PubMedGoogle Scholar
  3. Batchelor, P.E., Liberatore, G.T., Wong, J.Y., Porritt, M.J., Frerichs, F., Donnan, G.A. and Howells, D.W., 1999, Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J. Neurosci. 19: 1708.PubMedGoogle Scholar
  4. Batchelor, P.E., Liberatore, G.T., Porritt, M.J., Donnan, G.A. and Howells, D.W., 2000, Inhibition of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression reduces dopaminergic sprouting in the injured striatum. Eur. J. Neurosci. 12: 3462.PubMedGoogle Scholar
  5. Batchelor, P.E., Porritt, M.J., Martinello, P., Parish, C.L., Liberatore, G.T., Donnan, G.A. and Howells, D.W., 2002, Macrophages and microglia produce local trophic gradients that stimulate axonal sprouting toward but not beyond the wound edge. Mol. Cell Neurosci. 21: 436.PubMedGoogle Scholar
  6. Bauer, M., Suppmann, S., Meyer, M., Hesslinger, C., Gasser, T., Widmer, H.R. and Ueffing, M., 2002, Glial cell line-derived neurotrophic factor up-regulates GTP-cyclohydrolase I activity and tetrahydrobiopterin levels in primary dopaminergic neurones. J. Neurochem. 82: 1300.PubMedGoogle Scholar
  7. Benn, S.C. and Woolf, C.J., 2004, Adult neuron survival strategies - slamming on the brakes. Nat. Rev. Neurosci. 5: 686.PubMedGoogle Scholar
  8. Bilang-Bleuel, A., Revah, F., Colin, P., Locquet, I., Robert, J.J., Mallet, J. and Horellou, P., 1997, Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease. Proc. Natl. Acad. Sci. USA 94: 8818.PubMedGoogle Scholar
  9. Bizon, J.L., Lauterborn, J.C. and Gall, C.M., 1999, Subpopulations of striatal interneurons can be distinguished on the basis of neurotrophic factor expression. J. Comp. Neurol. 408: 283.PubMedGoogle Scholar
  10. Bjorklund, A., Kirik, D., Rosenblad, C., Georgievska, B., Lundberg, C. and Mandel, R.J., 2000, Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res. 886: 82.PubMedGoogle Scholar
  11. Block, M.L. and Hong, J.S., 2005, Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76: 77.PubMedGoogle Scholar
  12. Blum, M. and Weickert, C.S., 1995, GDNF mRNA expression in normal postnatal development, aging, and in Weaver mutant mice. Neurobiol. Aging 16: 925.PubMedGoogle Scholar
  13. Bourque, M.J. and Trudeau, L.E., 2000, GDNF enhances the synaptic efficacy of dopaminergic neurons in culture. Eur. J. Neurosci. 12: 3172.PubMedGoogle Scholar
  14. Bowenkamp, K.E., Hoffman, A.F., Gerhardt, G.A., Henry, M.A., Biddle, P.T., Hoffer, B.J. and Granholm, A.C., 1995, Glial cell line-derived neurotrophic factor supports survival of injured midbrain dopaminergic neurons. J. Comp. Neurol. 355: 479.PubMedGoogle Scholar
  15. Bowenkamp, K.E., David, D., Lapchak, P.L., Henry, M.A., Granholm, A.C., Hoffer, B.J. and Mahalik, T.J., 1996, Hydroxydopamine induces the loss of the dopaminergic phenotype in substantia nigra neurons of the rat. A possible mechanism for restoration of the nigrostriatal circuit mediated by glial cell line-derived neurotrophic factor. Exp. Brain Res. 111: 1.PubMedGoogle Scholar
  16. Bozzi, Y. and Borrelli, E., 1999, Absence of the dopamine D2 receptor leads to a decreased expression of GDNF and NT-4 mRNAs in restricted brain areas. Eur. J. Neurosci. 11: 1275.PubMedGoogle Scholar
  17. Breidert, T., Callebert, J., Heneka, M.T., Landreth, G., Launay, J.M. and Hirsch, E.C., 2002, Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J. Neurochem. 82: 615.PubMedGoogle Scholar
  18. Bresjanac, M. and Antauer, G., 2000, Reactive astrocytes of the quinolinic acid-lesioned rat striatum express GFRalpha1 as well as GDNF in vivo. Exp. Neurol. 164: 53.PubMedGoogle Scholar
  19. Brizard, M., Carcenac, C., Bemelmans, A.P., Feuerstein, C., Mallet, J. and Savasta, M., 2006, Functional reinnervation from remaining DA terminals induced by GDNF lentivirus in a rat model of early Parkinson’s disease. Neurobiol. Dis. 21: 90.PubMedGoogle Scholar
  20. Burke, R.E., 2004, Ontogenic cell death in the nigrostriatal system. Cell Tissue Res. 318: 63.PubMedGoogle Scholar
  21. Burke, R.E., Antonelli, M. and Sulzer, D., 1998, Glial cell line-derived neurotrophic growth factor inhibits apoptotic death of postnatal substantia nigra dopamine neurons in primary culture. J. Neurochem. 71: 517.PubMedGoogle Scholar
  22. Chang, Y.P., Fang, K.M., Lee, T.I. and Tzeng, S.F., 2006, Regulation of microglial activities by glial cell line derived neurotrophic factor. J. Cell Biochem. 97: 501.PubMedGoogle Scholar
  23. Chao, C.C. and Lee, E.H., 1999, Neuroprotective mechanism of glial cell line-derived neurotrophic factor on dopamine neurons: role of antioxidation. Neuropharmacology 38: 913.PubMedGoogle Scholar
  24. Chao, C.C., Ma, Y.L., Chu, K.Y. and Lee, E.H., 2003, Integrin alpha and NCAM mediate the effects of GDNF on DA neuron survival, outgrowth, DA turnover and motor activity in rats. Neurobiol. Aging 24: 105.PubMedGoogle Scholar
  25. Chauhan, N.B., Siegel, G.J. and Lee, J.M., 2001, Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson’s disease brain. J. Chem. Neuroanat. 21: 277.PubMedGoogle Scholar
  26. Chen, K., Gunter, K. and Maines, M.D., 2000, Neurons overexpressing heme oxygenase-1 resist oxidative stress-mediated cell death. J. Neurochem. 75: 304.PubMedGoogle Scholar
  27. Cheng, H., Wu, J.P. and Tzeng, S.F. 2002. Neuroprotection of glial cell line-derived neurotrophic factor in damaged spinal cords following contusive injury. J. Neurosci. Res. 69: 397.PubMedGoogle Scholar
  28. Cheng, H., Fu, Y.S. and Guo, J.W., 2004, Ability of GDNF to diminish free radical production leads to protection against kainate-induced excitotoxicity in hippocampus. Hippocampus 14: 77.PubMedGoogle Scholar
  29. Choi-Lundberg, D.L. and Bohn, M.C., 1995, Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Brain Res. Dev. Brain Res. 85: 80.Google Scholar
  30. Choi-Lundberg, D.L., Lin, Q., Chang, Y.N., Chiang, Y.L., Hay, C.M., Mohajeri, H., Davidson, B.L. and Bohn, M.C., 1997, Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275: 838.PubMedGoogle Scholar
  31. Choi-Lundberg, D.L., Lin, Q., Schallert, T., Crippens, D., Davidson, B.L., Chang, Y.N., Chiang, Y.L., Qian, J., Bardwaj, L. and Bohn, M.C., 1998, Behavioral and cellular protection of rat dopaminergic neurons by an adenoviral vector encoding glial cell line-derived neurotrophic factor. Exp. Neurol. 154: 261.PubMedGoogle Scholar
  32. Clarkson, E.D., Zawada, W.M. and Freed, C.R., 1997, GDNF improves survival and reduces apoptosis in human embryonic dopaminergic neurons in vitro. Cell Tissue Res. 289: 207.PubMedGoogle Scholar
  33. Collier, T.J., Dung, L.Z., Carvey, P.M., Fletcher-Turner, A., Yurek, D.M., Sladek, J.R., Jr. and Kordower, J.H., 2005, Striatal trophic factor activity in aging monkeys with unilateral MPTP-induced parkinsonism. Exp. Neurol. 191: S60.PubMedGoogle Scholar
  34. Connor, B., Kozlowski, D.A., Schallert, T., Tillerson, J.L., Davidson, B.L. and Bohn, M.C., 1999, Differential effects of glial cell line-derived neurotrophic factor (GDNF) in the striatum and substantia nigra of the aged Parkinsonian rat. Gene Ther. 6: 1936.PubMedGoogle Scholar
  35. Connor, B., Kozlowski, D.A., Unnerstall, J.R., Elsworth, J.D., Tillerson, J.L., Schallert, T. and Bohn, M.C., 2001, Glial cell line-derived neurotrophic factor (GDNF) gene delivery protects dopaminergic terminals from degeneration. Exp. Neurol. 169: 83.PubMedGoogle Scholar
  36. D’Astous, M., Morissette, M. and Di Paolo, T., 2004, Effect of estrogen receptor agonists treatment in MPTP mice: evidence of neuroprotection by an ER alpha agonist. Neuropharmacology 47: 1180.PubMedGoogle Scholar
  37. Dauer, W. and Przedborski, S., 2003, Parkinson’s disease: mechanisms and models. Neuron 39: 889.PubMedGoogle Scholar
  38. Dehmer, T., Lindenau, J., Haid, S., Dichgans, J. and Schulz, J.B., 2000, Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J. Neurochem. 74: 2213.PubMedGoogle Scholar
  39. Deumens, R., Blokland, A. and Prickaerts, J., 2002, Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp. Neurol. 175: 303.PubMedGoogle Scholar
  40. Ding, Y.M., Jaumotte, J.D., Signore, A.P. and Zigmond, M.J., 2004, Effects of 6-hydroxydopamine on primary cultures of substantia nigra: specific damage to dopamine neurons and the impact of glial cell line-derived neurotrophic factor. J. Neurochem. 89: 776.PubMedGoogle Scholar
  41. Dore, S., Takahashi, M., Ferris, C.D., Zakhary, R., Hester, L.D., Guastella, D. and Snyder, S.H., 1999, Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc. Natl. Acad. Sci. USA 96: 2445.PubMedGoogle Scholar
  42. Du, F., Li, R., Huang, Y., Li, X. and Le, W., 2005, Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons. Eur. J. Neurosci. 22: 2422.PubMedGoogle Scholar
  43. Eslamboli, A., Georgievska, B., Ridley, R.M., Baker, H.F., Muzyczka, N., Burger, C., Mandel, R.J., Annett, L. and Kirik, D., 2005, Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J. Neurosci. 25: 769.PubMedGoogle Scholar
  44. Gash, D.M., Zhang, Z., Ovadia, A., Cass, W.A., Yi, A., Simmerman, L., Russell, D., Martin, D., Lapchak, P.A., Collins, F., Hoffer, B.J. and Gerhardt, G.A., 1996, Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380: 252.PubMedGoogle Scholar
  45. Gash, D.M., Zhang, Z., Ai, Y., Grondin, R., Coffey, R. and Gerhardt, G.A., 2005, Trophic factor distribution predicts functional recovery in parkinsonian monkeys. Ann. Neurol. 58: 224.PubMedGoogle Scholar
  46. Gerhardt, G.A., Cass, W.A., Huettl, P., Brock, S., Zhang, Z. and Gash, D.M., 1999, GDNF improves dopamine function in the substantia nigra but not the putamen of unilateral MPTP-lesioned rhesus monkeys. Brain Res. 817: 163.PubMedGoogle Scholar
  47. Ghribi, O., Herman, M.M., Forbes, M.S., DeWitt, D.A. and Savory, J., 2001, GDNF protects against aluminum-induced apoptosis in rabbits by upregulating Bcl-2 and Bcl-XL and inhibiting mitochondrial Bax translocation. Neurobiol. Dis. 8: 764.PubMedGoogle Scholar
  48. Gill, S.S., Patel, N.K., Hotton, G.R., O’Sullivan, K., McCarter, R., Bunnage, M., Brooks, D.J., Svendsen, C.N. and Heywood, P., 2003, Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 9: 589.PubMedGoogle Scholar
  49. Grondin, R., Zhang, Z., Yi, A., Cass, W.A., Maswood, N., Andersen, A.H., Elsberry, D.D., Klein, M.C., Gerhardt, G.A. and Gash, D.M., 2002, Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 125: 2191.PubMedGoogle Scholar
  50. Grondin, R., Zhang, Z., Ai, Y., Gash, D.M. and Gerhardt, G.A., 2003, Intracranial delivery of proteins and peptides as a therapy for neurodegenerative diseases. Prog. Drug Res. 61: 101.PubMedGoogle Scholar
  51. Grunblatt, E., Mandel, S., Maor, G. and Youdim, M.B., 2001, Gene expression analysis in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson’s disease using cDNA microarray: effect of R-apomorphine. J. Neurochem. 78: 1.PubMedGoogle Scholar
  52. Guo, H., Tang, Z., Yu, Y., Xu, L., Jin, G. and Zhou, J., 2002,. Apomorphine induces trophic factors that support fetal rat mesencephalic dopaminergic neurons in cultures. Eur. J. Neurosci. 16: 1861.PubMedGoogle Scholar
  53. Hashimoto, M., Nitta, A., Fukumitsu, H., Nomoto, H., Shen, L. and Furukawa, S., 2005a, Inflammation-induced GDNF improves locomotor function after spinal cord injury. Neuroreport 16: 99.PubMedGoogle Scholar
  54. Hashimoto, M., Nitta, A., Fukumitsu, H., Nomoto, H., Shen, L. and Furukawa, S., 2005b, Involvement of glial cell line-derived neurotrophic factor in activation processes of rodent macrophages. J. Neurosci. Res. 79: 476.PubMedGoogle Scholar
  55. He, Y., Appel, S. and Le, W., 2001, Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res. 909: 187.PubMedGoogle Scholar
  56. Ho, A. and Blum, M., 1998, Induction of interleukin-1 associated with compensatory dopaminergic sprouting in the denervated striatum of young mice: model of aging and neurodegenerative disease. J. Neurosci. 18: 5614.PubMedGoogle Scholar
  57. Hoffer, B.J., Hoffman, A., Bowenkamp, K., Huettl, P., Hudson, J., Martin, D., Lin, L.F. and Gerhardt, G.A., 1994, Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci. Lett. 182: 107.PubMedGoogle Scholar
  58. Hoffman, A.F., van Horne, C.G., Eken, S., Hoffer, B.J. and Gerhardt, G.A., 1997, In vivo microdialysis studies on somatodendritic dopamine release in the rat substantia nigra: effects of unilateral 6-OHDA lesions and GDNF. Exp. Neurol. 147: 130.PubMedGoogle Scholar
  59. Honda, S., Nakajima, K., Nakamura, Y., Imai, Y. and Kohsaka, S., 1999, Rat primary cultured microglia express glial cell line-derived neurotrophic factor receptors. Neurosci. Lett. 275: 203.PubMedGoogle Scholar
  60. Hughes, P.E., Alexi, T., Walton, M., Williams, C.E., Dragunow, M., Clark, R.G. and Gluckman, P.D., 1999, Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosis-related genes within the central nervous system. Prog. Neurobiol. 57: 421.PubMedGoogle Scholar
  61. Hunot, S., Bernard, V., Faucheux, B., Boissiere, F., Leguern, E., Brana, C., Gautris, P.P., Guerin, J., Bloch, B., Agid, Y. and Hirsch, E.C., 1996, Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: a post mortem in situ hybridization study with special reference to Parkinson’s disease. J. Neural. Transm. 103: 1043.PubMedGoogle Scholar
  62. Hurelbrink, C.B. and Barker, R.A., 2004, The potential of GDNF as a treatment for Parkinson’s disease. Exp. Neurol. 185: 1.PubMedGoogle Scholar
  63. Hurley, S.D., O’Banion, M.K., Song, D.D., Arana, F.S., Olschowka, J.A. and Haber, S.N., 2003, Microglial response is poorly correlated with neurodegeneration following chronic, low-dose MPTP administration in monkeys. Exp. Neurol. 184: 659.PubMedGoogle Scholar
  64. Ikeda, T., Koo, H., Xia, Y.X., Ikenoue, T. and Choi, B.H., 2002, Bimodal upregulation of glial cell line-derived neurotrophic factor (GDNF) in the neonatal rat brain following ischemic/hypoxic injury. Int. J. Dev. Neurosci. 20: 555.PubMedGoogle Scholar
  65. Iida, M., Miyazaki, I., Tanaka, K., Kabuto, H., Iwata-Ichikawa, E. and Ogawa, N., 1999, Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist. Brain Res. 838: 51.PubMedGoogle Scholar
  66. Inoue, T., Tsui, J., Wong, N., Wong, S.Y., Suzuki, F. and Kwok, Y.N., 1999, Expression of glial cell line-derived neurotrophic factor and its mRNA in the nigrostriatal pathway following MPTP treatment. Brain Res. 826: 306.PubMedGoogle Scholar
  67. Ivanova, T., Karolczak, M. and Beyer, C., 2002a, Estradiol stimulates GDNF expression in developing hypothalamic neurons. Endocrinology 143: 3175.PubMedGoogle Scholar
  68. Ivanova, T., Mendez, P., Garcia-Segura, L.M. and Beyer, C. (2002b). Rapid stimulation of the PI3-kinase/Akt signaling pathway in developing midbrain neurones by oestrogen. J. Neuroendocrinol. 14: 73.PubMedGoogle Scholar
  69. Kim, W.G., Mohney, R.P., Wilson, B., Jeohn, G.H., Liu, B. and Hong, J.S., 2000, Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci. 20: 6309.PubMedGoogle Scholar
  70. Kirik, D., Rosenblad, C. and Bjorklund, A., 2000a, Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. Eur. J. Neurosci. 12: 3871.PubMedGoogle Scholar
  71. Kirik, D., Rosenblad, C., Bjorklund, A. and Mandel, R.J., 2000b, Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J. Neurosci. 20: 4686.PubMedGoogle Scholar
  72. Kobori, N., Waymire, J.C., Haycock, J.W., Clifton, G.L. and Dash, P.K., 2004, Enhancement of tyrosine hydroxylase phosphorylation and activity by glial cell line-derived neurotrophic factor. J. Biol. Chem. 279: 2182.PubMedGoogle Scholar
  73. Kordower, J.H., Emborg, M.E., Bloch, J., Ma, S.Y., Chu, Y., Leventhal, L., McBride, J., Chen, E.Y., Palfi, S., Roitberg, B.Z., Brown, W.D., Holden, J.E., Pyzalski, R., Taylor, M.D., Carvey, P., Ling, Z., Trono, D., Hantraye, P., Deglon, N. and Aebischer, P., 2000, Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290: 767.PubMedGoogle Scholar
  74. Kozlowski, D.A., Connor, B., Tillerson, J.L., Schallert, T. and Bohn, M.C., 2000, Delivery of a GDNF gene into the substantia nigra after a progressive 6-OHDA lesion maintains functional nigrostriatal connections. Exp. Neurol. 166: 1.PubMedGoogle Scholar
  75. Kozlowski, D.A., Miljan, E.A., Bremer, E.G., Harrod, C.G., Gerin, C., Connor, B., George, D., Larson, B. and Bohn, M.C., 2004, Quantitative analyses of GFRalpha-1 and GFRalpha-2 mRNAs and tyrosine hydroxylase protein in the nigrostriatal system reveal bilateral compensatory changes following unilateral 6-OHDA lesions in the rat. Brain Res. 1016: 170.PubMedGoogle Scholar
  76. Lang, A.E., Gill, S., Patel, N.K., Lozano, A., Nutt, J.G., Penn, R., Brooks, D.J., Hotton, G., Moro, E., Heywood, P., Brodsky, M.A., Burchiel, K., Kelly, P., Dalvi, A., Scott, B., Stacy, M., Turner, D., Wooten, V.G., Elias, W.J., Laws, E.R., Dhawan, V., Stoessl, A.J., Matcham, J., Coffey, R.J. and Traub, M., 2006, Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol. 59: 459.PubMedGoogle Scholar
  77. Langston, J.W., Forno, L.S., Tetrud, J., Reeves, A.G., Kaplan, J.A. and Karluk, D., 1999, Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann. Neurol. 46: 598.PubMedGoogle Scholar
  78. Lapchak, P.A., Araujo, D.M., Hilt, D.C., Sheng, J. and Jiao, S., 1997, Adenoviral vector-mediated GDNF gene therapy in a rodent lesion model of late stage Parkinson’s disease. Brain Res. 777: 153.PubMedGoogle Scholar
  79. Lawson, L.J., Perry, V.H., Dri, P. and Gordon, S., 1990, Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39: 151.PubMedGoogle Scholar
  80. Le, W.D., Xie, W.J. and Appel, S.H., 1999, Protective role of heme oxygenase-1 in oxidative stress-induced neuronal injury. J. Neurosci. Res. 56: 652.PubMedGoogle Scholar
  81. Ledda, F., Paratcha, G. and Ibanez, C.F., 2002, Target-derived GFRalpha1 as an attractive guidance signal for developing sensory and sympathetic axons via activation of Cdk5. Neuron 36: 387.PubMedGoogle Scholar
  82. Liberatore, G.T., Wong, J.Y., Porritt, M.J., Donnan, G.A. and Howells, D.W., 1997, Expression of glial cell line-derived neurotrophic factor (GDNF) mRNA following mechanical injury to mouse striatum. Neuroreport 8: 3097.PubMedGoogle Scholar
  83. Liberatore, G.T., Jackson-Lewis, V., Vukosavic, S., Mandir, A.S., Vila, M., McAuliffe, W.G., Dawson, V.L., Dawson, T.M. and Przedborski, S., 1999, Inducible nitric oxide synthase stimulates dopaminergic neuro-degeneration in the MPTP model of Parkinson disease. Nat. Med. 5: 1403.PubMedGoogle Scholar
  84. Liberto, C.M., Albrecht, P.J., Herx, L.M., Yong, V.W. and Levison, S.W., 2004, Pro-regenerative properties of cytokine-activated astrocytes. J. Neurochem. 89: 1092.PubMedGoogle Scholar
  85. Lin, L.F., Doherty, D.H., Lile, J.D., Bektesh, S. and Collins, F., 1993, GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260: 1130.PubMedGoogle Scholar
  86. Lin, L.F., Zhang, T.J., Collins, F. and Armes, L.G., 1994, Purification and initial characterization of rat B49 glial cell line-derived neurotrophic factor. J. Neurochem. 63: 758.PubMedCrossRefGoogle Scholar
  87. Love, S., Plaha, P., Patel, N.K., Hotton, G.R., Brooks, D.J. and Gill, S.S., 2005, Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat. Med. 11: 703.PubMedGoogle Scholar
  88. Mandel, R.J., Spratt, S.K., Snyder, R.O. and Leff, S.E., 1997, Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson’s disease in rats. Proc. Natl. Acad. Sci. USA 94: 14083.PubMedGoogle Scholar
  89. Mandel, R.J., Snyder, R.O. and Leff, S.E., 1999, Recombinant adeno-associated viral vector-mediated glial cell line-derived neurotrophic factor gene transfer protects nigral dopamine neurons after onset of progressive degeneration in a rat model of Parkinson’s disease. Exp. Neurol. 160: 205.PubMedGoogle Scholar
  90. Mandel, S., Grunblatt, E., Maor, G. and Youdim, M.B., 2002, Early and late gene changes in MPTP mice model of Parkinson’s disease employing cDNA microarray. Neurochem. Res. 27: 1231.PubMedGoogle Scholar
  91. Marco, S., Saura, J., Perez-Navarro, E., Jose, M.M., Tolosa, E. and Alberch, J., 2002, Regulation of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta in a rat model of Parkinson’s disease. J. Neurobiol. 52: 343.PubMedGoogle Scholar
  92. Martino, G., 2004, How the brain repairs itself: new therapeutic strategies in inflammatory and degenerative CNS disorders. Lancet Neurol. 3: 372.PubMedGoogle Scholar
  93. McGeer, P.L., Itagaki, S., Boyes, B.E. and McGeer, E.G., 1988, Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38: 1285.PubMedGoogle Scholar
  94. McGeer, P.L., Schwab, C., Parent, A. and Doudet, D., 2003, Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann. Neurol. 54: 599.PubMedGoogle Scholar
  95. Mirza, B., Hadberg, H., Thomsen, P. and Moos, T., 2000, The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95: 425.PubMedGoogle Scholar
  96. Miyazaki, H., Nagashima, K., Okuma, Y. and Nomura, Y., 2001, Expression of glial cell line-derived neurotrophic factor induced by transient forebrain ischemia in rats. Brain Res. 922: 165.PubMedGoogle Scholar
  97. Mogi, M., Togari, A., Kondo, T., Mizuno, Y., Kogure, O., Kuno, S., Ichinose, H. and Nagatsu, T., 2001, Glial cell line-derived neurotrophic factor in the substantia nigra from control and parkinsonian brains. Neurosci. Lett. 300: 179.PubMedGoogle Scholar
  98. Morale, M.C., Serra, P.A., L’Episcopo, F., Tirolo, C., Caniglia, S., Testa, N., Gennuso, F., Giaquinta, G., Rocchitta, G., Desole, M.S., Miele, E. and Marchetti, B., 2006, Estrogen, neuroinflammation and neuroprotection in Parkinson’s disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 138: 869.PubMedGoogle Scholar
  99. Murray, H.E., Pillai, A.V., McArthur, S.R., Razvi, N., Datla, K.P., Dexter, D.T. and Gillies, G.E., 2003, Dose- and sex-dependent effects of the neurotoxin 6-hydroxydopamine on the nigrostriatal dopaminergic pathway of adult rats: differential actions of estrogen in males and females. Neuroscience 116: 213.PubMedGoogle Scholar
  100. Nakagawa, T. and Schwartz, J.P., 2004a, Gene expression patterns in in vivo normal adult astrocytes compared with cultured neonatal and normal adult astrocytes. Neurochem. Int. 45: 203.PubMedGoogle Scholar
  101. Nakagawa, T. and Schwartz, J.P., 2004b, Gene expression profiles of reactive astrocytes in dopamine-depleted striatum. Brain Pathol. 14: 275.PubMedGoogle Scholar
  102. Nakagawa, T., Yabe, T. and Schwartz, J.P., 2005, Gene expression profiles of reactive astrocytes cultured from dopamine-depleted striatum. Neurobiol. Dis. 20: 275.PubMedGoogle Scholar
  103. Nakajima, K., Kikuchi, Y., Ikoma, E., Honda, S., Ishikawa, M., Liu, Y. and Kohsaka, S., 1998, Neurotrophins regulate the function of cultured microglia. Glia 24: 272.PubMedGoogle Scholar
  104. Nakajima, K., Hida, H., Shimano, Y., Fujimoto, I., Hashitani, T., Kumazaki, M., Sakurai, T. and Nishino, H., 2001, GDNF is a major component of trophic activity in DA-depleted striatum for survival and neurite extension of DAergic neurons. Brain Res. 916: 76.PubMedGoogle Scholar
  105. Ohta, K., Fujinami, A., Kuno, S., Sakakimoto, A., Matsui, H., Kawahara, Y. and Ohta, M., 2004, Cabergoline stimulates synthesis and secretion of nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor by mouse astrocytes in primary culture. Pharmacology 71: 162.PubMedGoogle Scholar
  106. Onyango, I.G., Tuttle, J.B. and Bennett, J.P., Jr., 2005, Brain-derived growth factor and glial cell line-derived growth factor use distinct intracellular signaling pathways to protect PD cybrids from H2O2-induced neuronal death. Neurobiol. Dis. 20: 141.PubMedGoogle Scholar
  107. Oo, T.F., Ries, V., Cho, J., Kholodilov, N. and Burke, R.E., 2005, Anatomical basis of glial cell line-derived neurotrophic factor expression in the striatum and related basal ganglia during postnatal development of the rat. J. Comp. Neurol. 484: 57.PubMedGoogle Scholar
  108. Oppenheim, R.W., 1991, Cell death during development of the nervous system. Ann. Rev. Neurosci. 14: 453.PubMedGoogle Scholar
  109. Paratcha, G., Ledda, F. and Ibanez, C.F., 2003, The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113: 867.PubMedGoogle Scholar
  110. Paratcha, G., Ibanez, C.F. and Ledda, F., 2006, GDNF is a chemoattractant factor for neuronal precursor cells in the rostral migratory stream. Mol. Cell Neurosci. 31: 505.PubMedGoogle Scholar
  111. Parish, C.L., Finkelstein, D.I., Tripanichkul, W., Satoskar, A.R., Drago, J. and Horne, M.K., 2002, The role of interleukin-1, interleukin-6, and glia in inducing growth of neuronal terminal arbors in mice. J. Neurosci. 22: 8034.PubMedGoogle Scholar
  112. Patel, N.K., Bunnage, M., Plaha, P., Svendsen, C.N., Heywood, P. and Gill, S.S., 2005, Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann. Neurol. 57: 298.PubMedGoogle Scholar
  113. Perrelet, D., Ferri, A., Liston, P., Muzzin, P., Korneluk, R.G. and Kato, A.C., 2002, IAPs are essential for GDNF-mediated neuroprotective effects in injured motor neurons in vivo. Nat. Cell Biol. 4: 175.PubMedGoogle Scholar
  114. Platania, P., Seminara, G., Aronica, E., Troost, D., Catania, V. and Sortino, A., 2005, A17beta-estradiol rescues spinal motoneurons from AMPA-induced toxicity: a role for glial cells. Neurobiol. Dis. 20: 461.PubMedGoogle Scholar
  115. Pochon, N.A., Menoud, A., Tseng, J.L., Zurn, A.D. and Aebischer, P., 1997, Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization. Eur. J. Neurosci. 9: 463.PubMedGoogle Scholar
  116. Pothos, E.N., Davila, V. and Sulzer, D., 1998, Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J. Neurosci. 18: 4106.PubMedGoogle Scholar
  117. Presgraves, S.P., Borwege, S., Millan, M.J. and Joyce, J.N., 2004, Involvement of dopamine D(2)/D(3) receptors and BDNF in the neuroprotective effects of S32504 and pramipexole against 1-methyl-4-phenylpyridinium in terminally differentiated SH-SY5Y cells. Exp. Neurol. 190: 157.PubMedGoogle Scholar
  118. Purves, D., 1986, The trophic theory of neural connections. Trends Neurosci. 9: 486.Google Scholar
  119. Rosenblad, C., Martinez-Serrano, A. and Bjorklund, A., 1998, Intrastriatal glial cell line-derived neurotrophic factor promotes sprouting of spared nigrostriatal dopaminergic afferents and induces recovery of function in a rat model of Parkinson’s disease. Neuroscience 82: 129.PubMedGoogle Scholar
  120. Saavedra, A., Baltazar, G., Carvalho, C.M. and Duarte, E.P., 2005. GDNF modulates HO-1 expression in substantia nigra postnatal cell cultures. Free Radic. Biol. Med. 39: 1611Google Scholar
  121. Saavedra, A., Baltazar, G., Santos, P., Carvalho, C. and Duarte, E.P., 2006a, Selective injury to dopaminergic neurons up-regulates GDNF in substantia nigra postnatal cell cultures: role of neuron-glia crosstalk. Neurobiol. Dis. 23: 533.PubMedGoogle Scholar
  122. Saavedra, A., Baltazar, G. and Duarte, E.P., 2006b, Interleukin-1β mediates GDNF up-regulation upon dopaminergic injury in substantia nigra cell cultures. Neurobiol. Dis. DOI 10.1016/j.nbd.2006.08.019.Google Scholar
  123. Salimi, K., Moser, K.V., Marksteiner, J., Reindl, M. and Humpel, C., 2003, GDNF and TGF-beta1 promote cell survival in serum-free cultures of primary rat microglia. Cell Tissue Res. 312: 135.PubMedGoogle Scholar
  124. Salvatore, M.F., Zhang, J.L., Large, D.M., Wilson, P.E., Gash, C.R., Thomas, T.C., Haycock, J.W., Bing, G., Stanford, J.A., Gash, D.M. and Gerhardt, G.A., 2004, Striatal GDNF administration increases tyrosine hydroxylase phosphorylation in the rat striatum and substantia nigra. J. Neurochem. 90: 245.PubMedGoogle Scholar
  125. Sarabi, A., Hoffer, B.J., Olson, L. and Morales, M., 2001, GFRalpha-1 mRNA in dopaminergic and nondopaminergic neurons in the substantia nigra and ventral tegmental area. J. Comp. Neurol. 441: 106.PubMedGoogle Scholar
  126. Sariola, H. and Saarma, M., 2003, Novel functions and signaling pathways for GDNF. J. Cell Sci. 116: 3855.PubMedGoogle Scholar
  127. Satake, K., Matsuyama, Y., Kamiya, M., Kawakami, H., Iwata, H., Adachi, K. and Kiuchi, K., 2000, Up-regulation of glial cell line-derived neurotrophic factor (GDNF) following traumatic spinal cord injur. Neuroreport 11: 3877.PubMedGoogle Scholar
  128. Saura, J., Pares, M., Bove, J., Pezzi, S., Alberch, J., Marin, C., Tolosa, E. and Marti, M.J., 2003, Intranigral infusion of interleukin-1beta activates astrocytes and protects from subsequent 6-hydroxydopamine neurotoxicity. J. Neurochem. 85: 651.PubMedGoogle Scholar
  129. Sawada, H., Ibi, M., Kihara, T., Urushitani, M., Akaike, A. and Shimohama, S., 1998, Estradiol protects mesencephalic dopaminergic neurons from oxidative stress-induced neuronal death. J. Neurosci. Res. 54: 707.PubMedGoogle Scholar
  130. Sawada, H., Ibi, M., Kihara, T., Urushitani, M., Nakanishi, M., Akaike, A. and Shimohama, S., 2000, Neuroprotective mechanism of glial cell line-derived neurotrophic factor in mesencephalic neurons. J. Neurochem. 74: 1175PubMedGoogle Scholar
  131. Sherer, T.B., Fiske, B.K., Svendsen, C.N., Lang, A.E. and Langston, J.W., 2006, Crossroads in GDNF therapy for Parkinson’s disease. Mov. Disord. 21: 136.PubMedGoogle Scholar
  132. Siegel, G.J. and Chauhan, N.B., 2000, Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res. Brain Res. Rev. 33: 199.PubMedGoogle Scholar
  133. Slevin, J.T., Gerhardt, G.A., Smith, C.D., Gash, D.M., Kryscio, R. and Young, B., 2005, Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J. Neurosurg. 102: 216.PubMedGoogle Scholar
  134. Smith, A.D., Antion, M., Zigmond, M.J. and Austin, M.C., 2003, Effect of 6-hydroxydopamine on striatal GDNF and nigral GFRalpha1 and RET mRNAs in the adult rat. Brain Res. Mol. Brain Res. 117: 129.PubMedGoogle Scholar
  135. Smith, A.D., Kozlowski, D.A., Bohn, M.C. and Zigmond, M.J., 2005, Effect of AdGDNF on dopaminergic neurotransmission in the striatum of 6-OHDA-treated rats. Exp. Neurol. 193: 420.PubMedGoogle Scholar
  136. Stanic, D., Finkelstein, D.I., Bourke, D.W., Drago, J. and Horne, M.K., 2003, Timecourse of striatal re-innervation following lesions of dopaminergic SNpc neurons of the rat. Eur. J. Neurosci. 18: 1175.PubMedGoogle Scholar
  137. Stanic, D., Tripanichkul, W., Drago, J., Finkelstein, D.I. and Horne, M.K., 2004, Glial responses associated with dopaminergic striatal reinnervation following lesions of the rat substantia nigra. Brain Res. 1023: 83.PubMedGoogle Scholar
  138. Stromberg, I., Bjorklund, L., Johansson, M., Tomac, A., Collins, F., Olson, L., Hoffer, B. and Humpel, C., 1993, Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp. Neurol. 124: 401.PubMedGoogle Scholar
  139. Suttner, D.M. and Dennery, P.A., 1999, Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. FASEB J. 13: 1800.PubMedGoogle Scholar
  140. Tang, Y.P., Ma, Y.L., Chao, C.C., Chen, K.Y. and Lee, E.H., 1998, Enhanced glial cell line-derived neurotrophic factor mRNA expression upon (-)-deprenyl and melatonin treatments. J. Neurosci. Res. 53: 593.PubMedGoogle Scholar
  141. Tomac, A., Lindqvist, E., Lin, L.F., Ogren, S.O., Young, D., Hoffer, B.J. and Olson, L., 1995a, Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373: 335.PubMedGoogle Scholar
  142. Tomac, A., Widenfalk, J., Lin, L.F., Kohno, T., Ebendal, T., Hoffer, B.J. and Olson, L., 1995b, Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proc. Natl. Acad. Sci. USA 92: 8274.PubMedGoogle Scholar
  143. Treanor, J., Goodman, L., Desauvage, F., Stone, D.M., Poulsen, K.T., Beck, C.D., Gray, C., Armanini, M.P., Pollock, R.A., Hefti, F., Phillips, H.S., Goddard, A., Moore, M.W., Bujbello, A., Davies, A.M., Asai, N., Takahashi, M., Vandlen, R., Henderson, C.E. and Rosenthal, A., 1996, Characterization of a multicomponent receptor for GDNF. Nature 382: 80.PubMedGoogle Scholar
  144. Tripanichkul, W., Sripanichkulchai, K. and Finkelstein, D.I., 2006, Estrogen down-regulates glial activation in male mice following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. Brain Res. 108: 28.Google Scholar
  145. Trupp, M., Arenas, E., Fainzilber, M., Nilsson, A.S., Sieber, B.A., Grigoriou, M., Kilkenny, C., Salazar-Grueso, E., Pachnis, V. and Arumae, U., 1996, Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381: 785.PubMedGoogle Scholar
  146. Trupp, M., Belluardo, N., Funakoshi, H. and Ibanez, C.F., 1997, Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-alpha indicates multiple mechanisms of trophic actions in the adult rat CNS. J. Neurosci. 17: 3554.PubMedGoogle Scholar
  147. Vegeto, E., Bonincontro, C., Pollio, G., Sala, A., Viappiani, S., Nardi, F., Brusadelli, A., Viviani, B., Ciana, P. and Maggi, A., 2001, Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia. J. Neurosci. 21: 1809.PubMedGoogle Scholar
  148. Walker, D.G., Beach, T.G., Xu, R., Lile, J., Beck, K.D., McGeer, E.G. and McGeer, P.L., 1998, Expression of the proto-oncogene Ret, a component of the GDNF receptor complex, persists in human substantia nigra neurons in Parkinson’s disease. Brain Res. 792: 207.PubMedGoogle Scholar
  149. Wang, L., Muramatsu, S., Lu, Y., Ikeguchi, K., Fujimoto, K., Okada, T, Mizukami, H., Hanazono, Y., Kume, A., Urano, F, Ichinose, H., Nagatsu, T., Nakano, I. and Ozawa, K., 2002, Delayed delivery of AAV-GDNF prevents nigral neurodegeneration and promotes functional recovery in a rat model of Parkinson’s disease. Gene Ther. 9: 381.PubMedGoogle Scholar
  150. Wang, J., Chen, G., Lu, B. and Wu, C.P., 2003, GDNF acutely potentiates Ca2+ channels and excitatory synaptic transmission in midbrain dopaminergic neurons. Neurosignals 12: 78.PubMedGoogle Scholar
  151. Wei, G., Wu, G. and Cao, X., 2000, Dynamic expression of glial cell line-derived neurotrophic factor after cerebral ischemia. Neuroreport 11: 1177.PubMedGoogle Scholar
  152. Widenfalk, J., Lundstromer, K., Jubran, M., Brene, S. and Olson, L., 2001, Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J. Neurosci. 21: 3457.PubMedGoogle Scholar
  153. Wu, D.C., Jackson-Lewis, V., Vila, M., Tieu, K., Teismann, P., Vadseth, C., Choi, D.K., Ischiropoulos, H. and Przedborski, S., 2002, Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci. 22: 1763.PubMedGoogle Scholar
  154. Yang, F., Feng, L., Zheng, F., Johnson, S.W., Du, J., Shen, L., Wu, C.P. and Lu, B., 2001, GDNF acutely modulates excitability and A-type K+ channels in midbrain dopaminergic neurons. Nat. Neurosci. 4: 1071.PubMedGoogle Scholar
  155. Yoo, M.S., Chun, H.S., Son, J.J., DeGiorgio, L.A., Kim, D.J., Peng, C. and Son, J.H., 2003, Oxidative stress regulated genes in nigral dopaminergic neuronal cells: correlation with the known pathology in Parkinson’s disease. Brain Res. Mol. Brain Res. 110: 76.PubMedGoogle Scholar
  156. Yurek, D.M. and Fletcher-Turner, A., 2001, Differential expression of GDNF, BDNF, and NT-3 in the aging nigrostriatal system following a neurotoxic lesion. Brain Res. 891: 228.PubMedGoogle Scholar
  157. Yurek, D.M. and Fletcher-Turner, A., 2002, Temporal changes in the neurotrophic environment of the denervated striatum as determined by the survival and outgrowth of grafted fetal dopamine neurons. Brain Res. 931: 126.PubMedGoogle Scholar
  158. Zheng, J.S., Tang, L.L., Zheng, S.S., Zhan, R.Y., Zhou, Y.Q., Goudreau, J., Kaufman, D. and Chen, A.F., 2005, Delayed gene therapy of glial cell line-derived neurotrophic factor is efficacious in a rat model of Parkinson’s disease. Mol. Brain Res. 134: 155.PubMedGoogle Scholar
  159. Zhou, J., Yu, Y., Tang, Z., Shen, Y. and Xu, L., 2000, Differential expression of mRNAs of GDNF family in the striatum following 6-OHDA-induced lesion. Neuroreport 11: 3289.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Emília P. Duarte
    • 1
  • Ana Saavedra
    • 1
  • Graça Baltazar
    • 2
  1. 1.Center for Neuroscience and Cell Biology and Department of ZoologyUniversity of CoimbraPortugal
  2. 2.Health Sciences Research CenterUniversity of Beira InteriorPortugal

Personalised recommendations