Neurotrophin Signaling and Cell Survival

  • Bruno J. Manadas
  • Carlos V. Melo
  • João R. Gomes
  • Carlos B. Duarte

Neurotrophins control survival, differentiation and maintenance of neurons and glial cells in the central and peripheral nervous system. Their biological functions are mediated by two distinct families of receptors, the Trk receptor tyrosine kinases (TrkA, TrkB and TrkC) and the p75 neurotrophin receptors (p75NTR with different signaling activity. Both receptor types convey trophic signals, but p75NTR activation may also cause apoptotic cell death. The abundance of neurotrophins and/or their receptors changes in various pathological conditions, contributing to cell death or cell survival, depending also on the receptors activated. This chapter focuses on the changes in the abundance of neurotrophins and neurotrophin receptors in diseases of the nervous system and how these changes affect neuronal survival.


Amyotrophic Lateral Sclerosis Nerve Growth Factor Schwann Cell Cerebellar Granule Neuron Neurotrophin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. Abiru, Y., Katoh-Semba, R., Nishio, C. and Hatanaka, H., 1998, High potassium enhances secretion of neurotrophic factors from cultured astrocytes. Brain Res. 809: 115.PubMedGoogle Scholar
  2. Acheson, A., Barker, P.A., Alderson, R.F., Miller, F.D. and Murphy, R.A., 1991, Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF. Neuron 7: 265.PubMedGoogle Scholar
  3. Adachi, N., Kohara, K. and Tsumoto, T., 2005, Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging. BMC Neurosci. 6: 42.PubMedGoogle Scholar
  4. Aguado, F., Ballabriga, J., Pozas, E. and Ferrer, I., 1998, TrkA immunoreactivity in reactive astrocytes in human neurodegenerative diseases and colchicine-treated rats. Acta Neuropathol. (Berl.) 96: 495.Google Scholar
  5. Alderson, R.F., Curtis, R., Alterman, A.L., Lindsay, R.M. and DiStefano, P.S., 2000, Truncated TrkB mediates the endocytosis and release of BDNF and neurotrophin-4/5 by rat astrocytes and Schwann cells in vitro. Brain Res. 871: 210.PubMedGoogle Scholar
  6. Alexi, T., Borlongan, C.V., Faull, R.L., Williams, C.E., Clark, R.G., Gluckman, P.D. and Hughes, P.E., 2000, Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Prog. Neurobiol. 60: 409.PubMedGoogle Scholar
  7. Allen, S.J., Wilcock, G.K. and Dawbarn, D., 1999, Profound and selective loss of catalytic TrkB immunoreactivity in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 264: 648.PubMedGoogle Scholar
  8. Almeida, R.D., Manadas, B.J., Melo, C.V., Gomes, J.R., Mendes, C.S., Graos, M.M., Carvalho, R.F., Carvalho, A.P. and Duarte, C.B., 2005, Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ. 12: 1329.PubMedGoogle Scholar
  9. Aloyz, R.S., Bamji, S.X., Pozniak, C.D., Toma, J.G., Atwal, J., Kaplan, D.R. and Miller, F.D., 1998, p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophin receptors. J. Cell Biol. 143: 1691.Google Scholar
  10. Altar, C.A., Siuciak, J.A., Wright, P., Ip, N.Y., Lindsay, R.M. and Wiegand, S.J., 1994, In situ hybridization of trkB and trkC receptor mRNA in rat forebrain and association with high-affinity binding of [125I]BDNF, [125I]NT-4/5 and [125I]NT-3. Eur. J. Neurosci. 6: 1389.PubMedGoogle Scholar
  11. Althaus, H.H. and Richter-Landsberg, C., 2000, Glial cells as targets and producers of neurotrophins. Int. Rev. Cytol. 197: 203.PubMedGoogle Scholar
  12. Anderson, C.N. and Tolkovsky, A.M., 1999, A role for MAPK/ERK in sympathetic neuron survival: protection against a p53-dependent, JNK-independent induction of apoptosis by cytosine arabinoside. J. Neurosci. 19: 664.PubMedGoogle Scholar
  13. Ankarcrona, M., Dypbukt, J.M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S.A. and Nicotera, P., 1995, Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15: 961.PubMedGoogle Scholar
  14. Aoki, C., Wu, K., Elste, A., Len, G., Lin, S., McAuliffe, G. and Black, I.B., 2000, Localization of brain-derived neurotrophic factor and TrkB receptors to postsynaptic densities of adult rat cerebral cortex. J. Neurosci. Res. 59: 454.PubMedGoogle Scholar
  15. Arevalo, J.C., Pereira, D.B., Yano, H., Teng, K.K. and Chao, M.V., 2006, Identification of a switch in neurotrophin signaling by selective tyrosine phosphorylation. J. Biol. Chem. 281: 1001.PubMedGoogle Scholar
  16. Aronica, E., Ozbas-Gerceker, F., Redeker, S., Ramkema, M., Spliet, W.G., van Rijen, P.C., Leenstra, S., Gorter, J.A. and Troost, D., 2004, Expression and cellular distribution of high- and low-affinity neurotrophin receptors in malformations of cortical development. Acta Neuropathol. (Berl.) 108: 422.Google Scholar
  17. Arthur, J.S., Fong, A.L., Dwyer, J.M., Davare, M., Reese, E., Obrietan, K. and Impey, S., 2004, Mitogen- and stress-activated protein kinase 1 mediates cAMP response element-binding protein phosphorylation and activation by neurotrophins. J. Neurosci. 24: 4324.PubMedGoogle Scholar
  18. Atwal, J.K., Massie, B., Miller, F.D. and Kaplan, D.R., 2000, The TrkB-Shc site signals neuronal survival and local axon growth via MEK and PI3-kinase. Neuron 27: 265.PubMedGoogle Scholar
  19. Bachis, A. and Mocchetti, I., 2005, Brain-derived neurotrophic factor is neuroprotective against human immunodeficiency virus-1 envelope proteins. Ann. NY Acad. Sci. 1053: 247.PubMedGoogle Scholar
  20. Balkowiec, A. and Katz, D.M., 2002, Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J. Neurosci. 22: 10399.PubMedGoogle Scholar
  21. Barbacid, M., 1994, The Trk family of neurotrophin receptors. J. Neurobiol. 25: 1386.PubMedGoogle Scholar
  22. Barker, P.A., 2004, P75NTR is positively promiscuous: novel partners and new insights. Neuron 42: 529.PubMedGoogle Scholar
  23. Barres, B.A., Hart, I.K., Coles, H.S., Burne, J.F., Voyvodic, J.T., Richardson, W.D. and Raff, M.C., 1992, Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70: 31.PubMedGoogle Scholar
  24. Bartlett, S.E., Reynolds, A.J., Weible, M., Heydon, K. and Hendry, I.A., 1997, In sympathetic but not sensory neurones, phosphoinositide-3 kinase is important for NGF-dependent survival and the retrograde transport of 125I-betaNGF. Brain Res. 761: 257.PubMedGoogle Scholar
  25. Beattie, M.S., Harrington, A.W., Lee, R., Kim, J.Y., Boyce, S.L., Longo, F.M., Bresnahan, J.C., Hempstead, B.L. and Yoon, S.O., 2002, ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron 36: 375.PubMedGoogle Scholar
  26. Beck, T., Lindholm, D., Castren, E. and Wree, A., 1994, Brain-derived neurotrophic factor protects against ischemic cell damage in rat hippocampus. J. Cereb. Blood Flow Metab. 14: 689.PubMedGoogle Scholar
  27. Becker, E.B., Howell, J., Kodama, Y., Barker, P.A. and Bonni, A., 2004, Characterization of the c-Jun N-terminal kinase-BimEL signaling pathway in neuronal apoptosis. J. Neurosci. 24: 8762.PubMedGoogle Scholar
  28. Bemelmans, A.P., Horellou, P., Pradier, L., Brunet, I., Colin, P. and Mallet, J., 1999, Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington’s disease, as demonstrated by adenoviral gene transfer. Hum. Gene Ther. 10: 2987.PubMedGoogle Scholar
  29. Bhakar, A.L., Howell, J.L., Paul, C.E., Salehi, A.H., Becker, E.B., Said, F., Bonni, A. and Barker, P.A., 2003, Apoptosis induced by p75NTR overexpression requires Jun kinase-dependent phosphorylation of Bad. J. Neurosci. 23: 11373.PubMedGoogle Scholar
  30. Bibel, M. and Barde, Y.A., 2000, Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14: 2919.PubMedGoogle Scholar
  31. Bifrare, Y.D., Kummer, J., Joss, P., Tauber, M.G. and Leib, S.L., 2005, Brain-derived neurotrophic factor protects against multiple forms of brain injury in bacterial meningitis. J. Infect. Dis. 191: 40.PubMedGoogle Scholar
  32. Bilderback, T.R., Gazula, V.R. and Dobrowsky, R.T., 2001, Phosphoinositide 3-kinase regulates crosstalk between Trk A tyrosine kinase and p75NTR-dependent sphingolipid signaling pathways. J. Neurochem. 76: 1540.PubMedGoogle Scholar
  33. Biswas, S.C. and Greene, L.A., 2002, Nerve growth factor (NGF) down-regulates the Bcl-2 homology 3 (BH3) domain-only protein Bim and suppresses its proapoptotic activity by phosphorylation. J. Biol. Chem. 277: 49511.PubMedGoogle Scholar
  34. Blum, R., Kafitz, K.W. and Konnerth, A., 2002, Neurotrophin-evoked depolarization requires the sodium channel NaV1.9. Nature 419: 687.PubMedGoogle Scholar
  35. Bonni, A., Brunet, A., West, A.E., Datta, S.R., Takasu, M.A. and Greenberg, M.E., 1999, Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286: 1358.PubMedGoogle Scholar
  36. Boyle, K., Azari, M.F., Cheema, S.S. and Petratos, S., 2005, TNFalpha mediates Schwann cell death by upregulating p75NTR expression without sustained activation of NFkappaB. Neurobiol. Dis. 20: 412.PubMedGoogle Scholar
  37. Bruck, W., 2005, The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J. Neurol. 252(Suppl 5): v3.Google Scholar
  38. Brunet, A., Datta, S.R. and Greenberg, M.E., 2001, Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 11: 297.PubMedGoogle Scholar
  39. Brunet, A., Kanai, F., Stehn, J., Xu, J., Sarbassova, D., Frangioni, J.V., Dalal, S.N., DeCaprio, J.A., Greenberg, M.E. and Yaffe, M.B., 2002, A14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol. 156: 817.PubMedGoogle Scholar
  40. Canals, J.M., Pineda, J.R., Torres-Peraza, J.F., Bosch, M., Martin-Ibanez, R., Munoz, M.T., Mengod, G., Ernfors, P. and Alberch, J., 2004, Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J. Neurosci. 24: 7727.PubMedGoogle Scholar
  41. Casaccia-Bonnefil, P., Carter, B.D., Dobrowsky, R.T. and Chao, M.V., 1996, Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383: 716.PubMedGoogle Scholar
  42. Cassina, P., Pehar, M., Vargas, M.R., Castellanos, R., Barbeito, A.G., Estevez, A.G., Thompson, J.A., Beckman, J.S. and Barbeito, L., 2005, Astrocyte activation by fibroblast growth factor-1 and motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J. Neurochem. 93: 38.PubMedGoogle Scholar
  43. Chan, K.M., Lam, D.T., Pong, K., Widmer, H.R. and Hefti, F., 1996, Neurotrophin-4/5 treatment reduces infarct size in rats with middle cerebral artery occlusion. Neurochem. Res. 21: 763.PubMedGoogle Scholar
  44. Chan, J.R., Watkins, T.A., Cosgaya, J.M., Zhang, C., Chen, L., Reichardt, L.F., Shooter, E.M. and Barres, B.A., 2004, NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 43: 183.PubMedGoogle Scholar
  45. Chang, A., Nishiyama, A., Peterson, J., Prineas, J. and Trapp, B.D., 2000, NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J. Neurosci. 20: 6404.PubMedGoogle Scholar
  46. Chao, M.V., 1992, Growth factor signaling: where is the specificity? Cell 68: 995.PubMedGoogle Scholar
  47. Chao, M.V., 2003, Neurotrophins and their receptors: a convergence point for many signaling pathways. Nat. Rev. Neurosci. 4: 299.PubMedGoogle Scholar
  48. Chao, M.V. and Hempstead, B.L., 1995, P75 and Trk: a two-receptor system. Trends Neurosci. 18: 321.PubMedGoogle Scholar
  49. Chen, X. and Wang, Z., 2001, Regulation of intracellular trafficking of the EGF receptor by Rab5 in the absence of phosphatidylinositol 3-kinase activity. EMBO Rep. 2: 68.PubMedGoogle Scholar
  50. Chen, W.G., Chang, Q., Lin, Y., Meissner, A., West, A.E., Griffith, E.C., Jaenisch, R. and Greenberg, M.E., 2003, Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302: 885.PubMedGoogle Scholar
  51. Chen, Z.Y., Patel, P.D., Sant, G., Meng, C.X., Teng, K.K., Hempstead, B.L. and Lee, F.S., 2004, Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J. Neurosci. 24: 4401.PubMedGoogle Scholar
  52. Chen, Z.Y., Ieraci, A., Teng, H., Dall, H., Meng, C.X., Herrera, D.G., Nykjaer, A., Hempstead, B.L. and Lee, F.S., 2005, Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J. Neurosci. 25: 6156.PubMedGoogle Scholar
  53. Cheng, B. and Mattson, M.P., 1991, NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron 7: 1031.PubMedGoogle Scholar
  54. Cheng, B. and Mattson, M.P., 1994, NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res. 640: 56.PubMedGoogle Scholar
  55. Cheng, L., Sapieha, P., Kittlerova, P., Hauswirth, W.W. and Di Polo, A., 2002, TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J. Neurosci. 22: 3977.PubMedGoogle Scholar
  56. Cheng, A., Wang, S., Yang, D., Xiao, R. and Mattson, M.P., 2003, Calmodulin mediates brain-derived neurotrophic factor cell survival signaling upstream of Akt kinase in embryonic neocortical neurons. J. Biol. Chem. 278: 7591.PubMedGoogle Scholar
  57. Choi, D.W., 1988, Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623.PubMedGoogle Scholar
  58. Choi, S.Y., Hwang, J.J. and Koh, J.Y., 2004, NR2A induction and NMDA receptor-dependent neuronal death by neurotrophin-4/5 in cortical cell culture. J. Neurochem. 88: 708.PubMedGoogle Scholar
  59. Christopherson, K.S., Ullian, E.M., Stokes, C.C., Mullowney, C.E., Hell, J.W., Agah, A., Lawler, J., Mosher, D.F., Bornstein, P. and Barres, B.A., 2005, Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120: 421.PubMedGoogle Scholar
  60. Cohen, R.I., Marmur, R., Norton, W.T., Mehler, M.F. and Kessler, J.A., 1996, Nerve growth factor and neurotrophin-3 differentially regulate the proliferation and survival of developing rat brain oligodendrocytes. J. Neurosci. 16: 6433.PubMedGoogle Scholar
  61. Connor, B., Young, D., Lawlor, P., Gai, W., Waldvogel, H., Faull, R.L. and Dragunow, M., 1996, Trk receptor alterations in Alzheimer’s disease. Brain. Res. Mol. Brain Res. 42: 1.PubMedGoogle Scholar
  62. Conti, L., Sipione, S., Magrassi, L., Bonfanti, L., Rigamonti, D., Pettirossi, V., Peschanski, M., Haddad, B., Pelicci, P., Milanesi, G., Pelicci, G. and Cattaneo, E., 2001, Shc signaling in differentiating neural progenitor cells. Nat. Neurosci. 4: 579.PubMedGoogle Scholar
  63. Costantini, C., Rossi, F., Formaggio, E., Bernardoni, R., Cecconi, D. and Della-Bianca, V., 2005, Characterization of the signaling pathway downstream p75 neurotrophin receptor involved in beta-amyloid peptide-dependent cell death. J. Mol. Neurosci. 25: 141.PubMedGoogle Scholar
  64. Coull, J.A., Beggs, S., Boudreau, D., Boivin, D., Tsuda, M., Inoue, K., Gravel, C., Salter, M.W. and De Koninck, Y., 2005, BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438: 1017.PubMedGoogle Scholar
  65. Crowder, R.J. and Freeman, R.S., 1998, Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J. Neurosci. 18: 2933.PubMedGoogle Scholar
  66. Crowley, C., Spencer, S.D., Nishimura, M.C., Chen, K.S., Pitts-Meek, S., Armanini, M.P., Ling, L.H., McMahon, S.B., Shelton, D.L., Levinson, A.D. et al., 1994, Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76: 1001.PubMedGoogle Scholar
  67. Dai, X., Lercher, L.D., Yang, L., Shen, M., Black, I.B. and Dreyfus, C.F., 1997, Expression of neurotrophins by basal forebrain (BF) oligodendrocytes. Soc. Neurosci. Abstr. 23: 331.Google Scholar
  68. Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. and Greenberg, M.E., 1997, Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231.PubMedGoogle Scholar
  69. Dobrowsky, R.T., Jenkins, G.M. and Hannun, Y.A., 1995, Neurotrophins induce sphingomyelin hydrolysis. Modulation by co-expression of p75NTRwith Trk receptors. J. Biol. Chem. 270: 22135.PubMedGoogle Scholar
  70. Dolcet, X., Egea, J., Soler, R.M., Martin-Zanca, D. and Comella, J.X., 1999, Activation of phosphatidylinositol 3-kinase, but not extracellular-regulated kinases, is necessary to mediate brain-derived neurotrophic factor-induced motoneuron survival. J. Neurochem. 73: 521.PubMedGoogle Scholar
  71. Dowling, P., Ming, X., Raval, S., Husar, W., Casaccia-Bonnefil, P., Chao, M., Cook, S. and Blumberg, B., 1999, Up-regulated p75NTRneurotrophin receptor on glial cells in MS plaques. Neurology 53: 1676.PubMedGoogle Scholar
  72. Downward, J., 2004, PI 3-kinase, Akt and cell survival. Semin. Cell Dev. Biol. 15: 177.PubMedGoogle Scholar
  73. Drake, C.T., Milner, T.A. and Patterson, S.L., 1999, Ultrastructural localization of full-length trkB immunoreactivity in rat hippocampus suggests multiple roles in modulating activity-dependent synaptic plasticity. J. Neurosci. 19: 8009.PubMedGoogle Scholar
  74. Du, J., Feng, L., Yang, F. and Lu, B., 2000, Activity- and Ca2+-dependent modulation of surface expression of brain-derived neurotrophic factor receptors in hippocampal neurons. J. Cell Biol. 150: 1423.PubMedGoogle Scholar
  75. Du, Y., Fischer, T.Z., Clinton-Luke, P., Lercher, L.D. and Dreyfus, C.F., 2006, Distinct effects of p75 in mediating actions of neurotrophins on basal forebrain oligodendrocytes. Mol. Cell. Neurosci. 31: 366.PubMedGoogle Scholar
  76. Duarte, C.B., Ferreira, I.L., Santos, P.F., Carvalho, A.L., Agostinho, P.M. and Carvalho, A.P., 1998, Glutamate in life and death of retinal amacrine cells. Gen. Pharmacol. 30: 289.PubMedGoogle Scholar
  77. Egan, M.F., Kojima, M., Callicott, J.H., Goldberg, T.E., Kolachana, B.S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B. and Weinberger, D.R., 2003, The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112: 257.PubMedGoogle Scholar
  78. Eide, F.F., Vining, E.R., Eide, B.L., Zang, K., Wang, X.Y. and Reichardt, L.F., 1996, Naturally occurring truncated TrkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J. Neurosci. 16: 3123.PubMedGoogle Scholar
  79. Elkabes, S., DiCicco-Bloom, E.M. and Black, I.B., 1996, Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J. Neurosci. 16: 2508.PubMedGoogle Scholar
  80. Elkabes, S., Peng, L. and Black, I.B., 1998, Lipopolysaccharide differentially regulates microglial trk receptor and neurotrophin expression. J. Neurosci. Res. 54: 117.PubMedGoogle Scholar
  81. Elmariah, S.B., Oh, E.J., Hughes, E.G. and Balice-Gordon, R.J., 2005, Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors. J. Neurosci. 25: 3638.PubMedGoogle Scholar
  82. Encinas, M., Iglesias, M., Llecha, N. and Comella, J.X., 1999, Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J. Neurochem. 73: 1409.PubMedGoogle Scholar
  83. Endres, M., Fan, G., Hirt, L., Fujii, M., Matsushita, K., Liu, X., Jaenisch, R. and Moskowitz, M.A., 2000, Ischemic brain damage in mice after selectively modifying BDNF or NT4 gene expression. J. Cereb. Blood Flow Metab. 20: 139.PubMedGoogle Scholar
  84. Epa, W.R., Markovska, K. and Barrett, G.L., 2004, The p75 neurotrophin receptor enhances TrkA signaling by binding to Shc and augmenting its phosphorylation. J. Neurochem. 89: 344.PubMedGoogle Scholar
  85. Erickson, J.T., Brosenitsch, T.A. and Katz, D.M., 2001, Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo. J. Neurosci. 21: 581.PubMedGoogle Scholar
  86. Ernfors, P., Henschen, A., Olson, L. and Persson, H., 1989, Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord motoneurons. Neuron 2: 1605.PubMedGoogle Scholar
  87. Esteban, P.F., Yoon, H.Y., Becker, J., Dorsey, S.G., Caprari, P., Palko, M.E., Coppola, V., Saragovi, H.U., Randazzo, P.A. and Tessarollo, L., 2006, A kinase-deficient TrkC receptor isoform activates Arf6-Rac1 signaling through the scaffold protein tamalin. J. Cell Biol. 173: 291.PubMedGoogle Scholar
  88. Fagan, A.M., Zhang, H., Landis, S., Smeyne, R.J., Silos-Santiago, I. and Barbacid, M., 1996, TrkA, but not TrkC, receptors are essential for survival of sympathetic neurons in vivo. J. Neurosci. 16: 6208.PubMedGoogle Scholar
  89. Fahnestock, M., Michalski, B., Xu, B. and Coughlin, M.D., 2001, The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol. Cell. Neurosci. 18: 210.PubMedGoogle Scholar
  90. Fahnestock, M., Garzon, D., Holsinger, R.M. and Michalski, B., 2002, Neurotrophic factors and Alzheimer’s disease: are we focusing on the wrong molecule? J. Neural Transm. Suppl. 241.Google Scholar
  91. Farhadi, H.F., Mowla, S.J., Petrecca, K., Morris, S.J., Seidah, N.G. and Murphy, R.A., 2000, Neurotrophin-3 sorts to the constitutive secretory pathway of hippocampal neurons and is diverted to the regulated secretory pathway by coexpression with brain-derived neurotrophic factor. J. Neurosci. 20: 4059.PubMedGoogle Scholar
  92. Fawcett, J.W. and Keynes, R.J., 1990, Peripheral nerve regeneration. Annu. Rev. Neurosci. 13: 43.PubMedGoogle Scholar
  93. Fawcett, J.W. and Asher, R.A., 1999, The glial scar and central nervous system repair. Brain Res. Bull. 49: 377.PubMedGoogle Scholar
  94. Ferguson, B., Matyszak, M.K., Esiri, M.M. and Perry, V.H., 1997, Axonal damage in acute multiple sclerosis lesions. Brain 120: 393.PubMedGoogle Scholar
  95. Ferrer, I., Krupinski, J., Goutan, E., Marti, E., Ambrosio, S. and Arenas, E., 2001, Brain-derived neurotrophic factor reduces cortical cell death by ischemia after middle cerebral artery occlusion in the rat. Acta Neuropathol. (Berl). 101: 229.Google Scholar
  96. Filbin, M.T., 2003, Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci. 4: 703.PubMedGoogle Scholar
  97. Foehr, E.D., Lin, X., O'Mahony, A., Geleziunas, R., Bradshaw, R.A. and Greene, W.C., 2000, NF-kappa B signaling promotes both cell survival and neurite process formation in nerve growth factor-stimulated PC12 cells. J. Neurosci. 20: 7556.PubMedGoogle Scholar
  98. Frade, J.M., Rodriguez-Tebar, A. and Barde, Y.A., 1996, Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383: 166.PubMedGoogle Scholar
  99. Friedman, W.J., 2000, Neurotrophins induce death of hippocampal neurons via the p75 receptor. J. Neurosci. 20: 6340.PubMedGoogle Scholar
  100. Fryer, R.H., Kaplan, D.R., Feinstein, S.C., Radeke, M.J., Grayson, D.R. and Kromer, L.F., 1996, Developmental and mature expression of full-length and truncated TrkB receptors in the rat forebrain. J. Comp. Neurol. 374: 21.PubMedGoogle Scholar
  101. Fryer, H.J., Wolf, D.H., Knox, R.J., Strittmatter, S.M., Pennica, D., O’Leary, R.M., Russell, D.S. and Kalb, R.G., 2000, Brain-derived neurotrophic factor induces excitotoxic sensitivity in cultured embryonic rat spinal motor neurons through activation of the phosphatidylinositol 3-kinase pathway. J. Neurochem. 74: 582.PubMedGoogle Scholar
  102. Gauthier, L.R., Charrin, B.C., Borrell-Pages, M., Dompierre, J.P., Rangone, H., Cordelieres, F.P., De Mey, J., MacDonald, M.E., Lessmann, V., Humbert, S. and Saudou, F., 2004, Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118: 127.PubMedGoogle Scholar
  103. Geller, B., Badner, J.A., Tillman, R., Christian, S.L., Bolhofner, K. and Cook, E.H., Jr., 2004, Linkage disequilibrium of the brain-derived neurotrophic factor Val66Met polymorphism in children with a prepubertal and early adolescent bipolar disorder phenotype. Am. J. Psychiatry 161: 1698.PubMedGoogle Scholar
  104. Gibbs, R.B. and Pfaff, D.W., 1994, In situ hybridization detection of trkA mRNA in brain: distribution, colocalization with p75NGFR and up-regulation by nerve growth factor. J. Comp. Neurol. 341: 324.PubMedGoogle Scholar
  105. Ginsberg, S.D., Che, S., Wuu, J., Counts, S.E. and Mufson, E.J., 2006, Down regulation of trk but not p75NTRgene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer's disease. J. Neurochem. 97: 475.PubMedGoogle Scholar
  106. Girard, C., Bemelmans, A.P., Dufour, N., Mallet, J., Bachelin, C., Nait-Oumesmar, B., Baron-Van Evercooren, A. and Lachapelle, F., 2005, Grafts of brain-derived neurotrophic factor and neurotrophin 3-transduced primate Schwann cells lead to functional recovery of the demyelinated mouse spinal cord. J. Neurosci. 25: 7924.PubMedGoogle Scholar
  107. Gonzalez, D., Dees, W.L., Hiney, J.K., Ojeda, S.R. and Saneto, R.P., 1990, Expression of beta-nerve growth factor in cultured cells derived from the hypothalamus and cerebral cortex. Brain Res. 511: 249.PubMedGoogle Scholar
  108. Goodman, L.J., Valverde, J., Lim, F., Geschwind, M.D., Federoff, H.J., Geller, A.I. and Hefti, F., 1996, Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Mol. Cell. Neurosci. 7: 222.PubMedGoogle Scholar
  109. Gotz, R., Koster, R., Winkler, C., Raulf, F., Lottspeich, F., Schartl, M. and Thoenen, H., 1994, Neurotrophin-6 is a new member of the nerve growth factor family. Nature 372: 266.PubMedGoogle Scholar
  110. Gozes, I., 2001, Neuroprotective peptide drug delivery and development: potential new therapeutics. Trends Neurosci. 24: 700.PubMedGoogle Scholar
  111. Grewal, S.S., York, R.D. and Stork, P.J., 1999, Extracellular-signal-regulated kinase signaling in neurons. Curr. Opin. Neurobiol. 9: 544.PubMedGoogle Scholar
  112. Haapasalo, A., Sipola, I., Larsson, K., Akerman, K.E., Stoilov, P., Stamm, S., Wong, G. and Castren, E., 2002, Regulation of TRKB surface expression by brain-derived neurotrophic factor and truncated TRKB isoforms. J. Biol. Chem. 277: 43160.PubMedGoogle Scholar
  113. Hall, D., Dhilla, A., Charalambous, A., Gogos, J.A. and Karayiorgou, M., 2003, Sequence variants of the brain-derived neurotrophic factor (BDNF) gene are strongly associated with obsessive-compulsive disorder. Am. J. Hum. Genet. 73: 370.PubMedGoogle Scholar
  114. Hama, H., Hara, C., Yamaguchi, K. and Miyawaki, A., 2004, PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron 41: 405.PubMedGoogle Scholar
  115. Hamanoue, M., Middleton, G., Wyatt, S., Jaffray, E., Hay, R.T. and Davies, A.M., 1999, P75-mediated NF-kappaB activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol. Cell. Neurosci. 14: 28.PubMedGoogle Scholar
  116. Han, B.H. and Holtzman, D.M., 2000, BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J. Neurosci. 20: 5775.PubMedGoogle Scholar
  117. Hannila, S.S., Lawrance, G.M., Ross, G.M. and Kawaja, M.D., 2004, TrkA and mitogen-activated protein kinase phosphorylation are enhanced in sympathetic neurons lacking functional p75 neurotrophin receptor expression. Eur. J. Neurosci. 19: 2903.PubMedGoogle Scholar
  118. Hansen, A.J., 1977, Extracellular potassium concentration in juvenile and adult rat brain cortex during anoxia. Acta Physiol. Scand. 99: 412.PubMedGoogle Scholar
  119. Harada, T., Harada, C., Nakayama, N., Okuyama, S., Yoshida, K., Kohsaka, S., Matsuda, H. and Wada, K., 2000, Modification of glial-neuronal cell interactions prevents photoreceptor apoptosis during light-induced retinal degeneration. Neuron 26: 533.PubMedGoogle Scholar
  120. Harada, T., Harada, C., Kohsaka, S., Wada, E., Yoshida, K., Ohno, S., Mamada, H., Tanaka, K., Parada, L.F. and Wada, K., 2002, Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J. Neurosci. 22: 9228.PubMedGoogle Scholar
  121. Harada, C., Harada, T., Quah, H.M., Maekawa, F., Yoshida, K., Ohno, S., Wada, K., Parada, L.F. and Tanaka, K., 2003, Potential role of glial cell line-derived neurotrophic factor receptors in Müller glial cells during light-induced retinal degeneration. Neuroscience 122: 229.PubMedGoogle Scholar
  122. Harada, C., Harada, T., Nakamura, K., Sakai, Y., Tanaka, K. and Parada, L.F., 2006, Effect of p75 NTR on the regulation of naturally occurring cell death and retinal ganglion cell number in the mouse eye. Dev. Biol. 290: 57.PubMedGoogle Scholar
  123. Harrington, A.W., Leiner, B., Blechschmitt, C., Arevalo, J.C., Lee, R., Morl, K., Meyer, M., Hempstead, B.L., Yoon, S.O. and Giehl, K.M., 2004, Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc. Natl. Acad. Sci. USA 101: 6226.PubMedGoogle Scholar
  124. Hartmann, M., Heumann, R. and Lessmann, V., 2001, Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses. EMBO J. 20: 5887.PubMedGoogle Scholar
  125. Hashimoto, Y., Kaneko, Y., Tsukamoto, E., Frankowski, H., Kouyama, K., Kita, Y., Niikura, T., Aiso, S., Bredesen, D.E., Matsuoka, M. and Nishimoto, I., 2004, Molecular characterization of neurohybrid cell death induced by Alzheimer’s amyloid-beta peptides via p75NTR/PLAIDD. J. Neurochem. 90: 549.PubMedGoogle Scholar
  126. Hayes, R.C., Wiley, R.G. and Armstrong, D.M., 1992, Induction of nerve growth factor receptor (p75NGFr) mRNA within hypoglossal motoneurons following axonal injury. Brain Res. Mol. Brain Res. 15: 291.PubMedGoogle Scholar
  127. Hazzalin, C.A. and Mahadevan, L.C., 2002, MAPK-regulated transcription: a continuously variable gene switch? Nat. Rev. Mol. Cell Biol. 3: 30.PubMedGoogle Scholar
  128. Heinrich, M., Gorath, M. and Richter-Landsberg, C., 1999, Neurotrophin-3 (NT-3) modulates early differentiation of oligodendrocytes in rat brain cortical cultures. Glia 28: 244.PubMedGoogle Scholar
  129. Hempstead, B.L. and Salzer, J.L., 2002, Neurobiology. A glial spin on neurotrophins. Science 298: 1184.PubMedGoogle Scholar
  130. Hetman, M. and Gozdz, A., 2004, Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur. J. Biochem. 271: 2050.PubMedGoogle Scholar
  131. Hetman, M., Kanning, K., Cavanaugh, J.E. and Xia, Z., 1999, Neuroprotection by brain-derived neurotrophic factor is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. J. Biol. Chem. 274: 22569.PubMedGoogle Scholar
  132. Hetman, M., Cavanaugh, J.E., Kimelman, D. and Xia, Z., 2000, Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal. J. Neurosci. 20: 2567.PubMedGoogle Scholar
  133. Higuchi, M., Tomioka, M., Takano, J., Shirotani, K., Iwata, N., Masumoto, H., Maki, M., Itohara, S. and Saido, T.C., 2005, Distinct mechanistic roles of calpain and caspase activation in neurodegeneration as revealed in mice overexpressing their specific inhibitors. J. Biol. Chem. 280: 15229.PubMedGoogle Scholar
  134. Holtzman, D.M., Li, Y., Parada, L.F., Kinsman, S., Chen, C.K., Valletta, J.S., Zhou, J., Long, J.B. and Mobley, W.C., 1992, P140trk mRNA marks NGF-responsive forebrain neurons: evidence that trk gene expression is induced by NGF. Neuron 9: 465.PubMedGoogle Scholar
  135. Holtzman, D.M., Kilbridge, J., Li, Y., Cunningham, E.T., Jr., Lenn, N.J., Clary, D.O., Reichardt, L.F. and Mobley, W.C., 1995, TrkA expression in the CNS: evidence for the existence of several novel NGF-responsive CNS neurons. J. Neurosci. 15: 1567.PubMedGoogle Scholar
  136. Hossmann, K.A., Sakaki, S. and Zimmerman, V., 1977, Cation activities in reversible ischemia of the cat brain. Stroke 8: 77.PubMedGoogle Scholar
  137. Huang, E.J. and Reichardt, L.F., 2001, Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24: 677.PubMedGoogle Scholar
  138. Huang, E.J. and Reichardt, L.F., 2003, Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72: 609.PubMedGoogle Scholar
  139. Husson, I., Rangon, C.M., Lelievre, V., Bemelmans, A.P., Sachs, P., Mallet, J., Kosofsky, B.E. and Gressens, P., 2005, BDNF-induced white matter neuroprotection and stage-dependent neuronal survival following a neonatal excitotoxic challenge. Cereb. Cortex. 15: 250.PubMedGoogle Scholar
  140. Hwang, I.K., Lee, K.Y., Yoo, K.Y., Kim, D.S., Lee, N.S., Jeong, Y.G., Kang, T.C., Han, B.H., Kim, J.S. and Won, M.H., 2005, Tyrosine kinase A but not phosphacan/protein tyrosine phosphatase-zeta/beta immunoreactivity and protein level changes in neurons and astrocytes in the gerbil hippocampus proper after transient forebrain ischemia. Brain Res. 1036: 35.PubMedGoogle Scholar
  141. Ishikawa, Y., Ikeuchi, T. and Hatanaka, H., 2000, Brain-derived neurotrophic factor accelerates nitric oxide donor-induced apoptosis of cultured cortical neurons. J. Neurochem. 75: 494.PubMedGoogle Scholar
  142. Jaboin, J., Kim, C.J., Kaplan, D.R. and Thiele, C.J., 2002, Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3'-kinase pathway. Cancer Res. 62: 6756.PubMedGoogle Scholar
  143. Jaboin, J., Hong, A., Kim, C.J. and Thiele, C.J., 2003, Cisplatin-induced cytotoxicity is blocked by brain-derived neurotrophic factor activation of TrkB signal transduction path in neuroblastoma. Cancer Lett. 193: 109.PubMedGoogle Scholar
  144. Jean, I., Lavialle, C., Barthelaix-Pouplard, A. and Fressinaud, C., 2003, Neurotrophin-3 specifically increases mature oligodendrocyte population and enhances remyelination after chemical demyelination of adult rat CNS. Brain Res. 972: 110.PubMedGoogle Scholar
  145. Jiang, X., Tian, F., Mearow, K., Okagaki, P., Lipsky, R.H. and Marini, A.M., 2005, The excitoprotective effect of N-methyl-D-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal neurons. J. Neurochem. 94: 713.PubMedGoogle Scholar
  146. Jing, S., Tapley, P. and Barbacid, M., 1992, Nerve growth factor mediates signal transduction through Trk homodimer receptors. Neuron 9: 1067.PubMedGoogle Scholar
  147. Junier, M.P., Suzuki, F., Onteniente, B. and Peschanski, M., 1994, Target-deprived CNS neurons express the NGF gene while reactive glia around their axonal terminals contain low and high affinity NGF receptors. Brain. Res. Mol. Brain Res. 24: 247.PubMedGoogle Scholar
  148. Kano, T., Abe, T., Tomita, H., Sakata, T., Ishiguro, S. and Tamai, M., 2002, Protective effect against ischemia and light damage of iris pigment epithelial cells transfected with the BDNF gene. Invest. Ophthalmol. Vis. Sci. 43: 3744.PubMedGoogle Scholar
  149. Kaplan, M.R., Meyer-Franke, A., Lambert, S., Bennett, V., Duncan, I.D., Levinson, S.R. and Barres, B.A., 1997, Induction of sodium channel clustering by oligodendrocytes. Nature 386: 724.PubMedGoogle Scholar
  150. Kenchappa, R.S., Zampieri, N., Chao, M.V., Barker, P.A., Teng, H.K., Hempstead, B.L. and Carter, B.D., 2006, Ligand-dependent cleavage of the p75 neurotrophin receptor is necessary for NRIF nuclear translocation and apoptosis in sympathetic neurons. Neuron 50: 219.PubMedGoogle Scholar
  151. Kerkhoff, H., Jennekens, F.G., Troost, D. and Veldman, H., 1991, Nerve growth factor receptor immunostaining in the spinal cord and peripheral nerves in amyotrophic lateral sclerosis. Acta Neuropathol. (Berl.) 81: 649.Google Scholar
  152. Kerschensteiner, M., Gallmeier, E., Behrens, L., Leal, V.V., Misgeld, T., Klinkert, W.E., Kolbeck, R., Hoppe, E., Oropeza-Wekerle, R.L., Bartke, I., Stadelmann, C., Lassmann, H., Wekerle, H. and Hohlfeld, R., 1999, Activated human T cells, B cells and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J. Exp. Med. 189: 865.PubMedGoogle Scholar
  153. Kerschensteiner, M., Stadelmann, C., Dechant, G., Wekerle, H. and Hohlfeld, R., 2003, Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann. Neurol. 53: 292.PubMedGoogle Scholar
  154. Khursigara, G., Orlinick, J.R. and Chao, M.V., 1999, Association of the p75 neurotrophin receptor with TRAF6. J. Biol. Chem. 274: 2597.PubMedGoogle Scholar
  155. Kido, N., Tanihara, H., Honjo, M., Inatani, M., Tatsuno, T., Nakayama, C. and Honda, Y., 2000, Neuroprotective effects of brain-derived neurotrophic factor in eyes with NMDA-induced neuronal death. Brain Res. 884: 59.PubMedGoogle Scholar
  156. Kim, S.U. and de Vellis, J., 2005, Microglia in health and disease. J. Neurosci. Res. 81: 302.PubMedGoogle Scholar
  157. Kim, S.H., Won, S.J., Sohn, S., Kwon, H.J., Lee, J.Y., Park, J.H. and Gwag, B.J., 2002, Brain-derived neurotrophic factor can act as a pronecrotic factor through transcriptional and translational activation of NADPH oxidase. J. Cell Biol. 159: 821.PubMedGoogle Scholar
  158. Kim, H.J., Hwang, J.J., Behrens, M.M., Snider, B.J., Choi, D.W. and Koh, J.Y., 2003, TrkB mediates BDNF-induced potentiation of neuronal necrosis in cortical culture. Neurobiol. Dis. 14: 110.PubMedGoogle Scholar
  159. Kim, D.H., Zhao, X., Tu, C.H., Casaccia-Bonnefil, P. and Chao, M.V., 2004, Prevention of apoptotic but not necrotic cell death following neuronal injury by neurotrophins signaling through the tyrosine kinase receptor. J. Neurosurg. 100: 79.PubMedGoogle Scholar
  160. Kinoshita, Y., Ueyama, T., Senba, E., Terada, T., Nakai, K. and Itakura, T., 2001, Expression of c-fos, heat shock protein 70, neurotrophins and cyclooxygenase-2 mRNA in response to focal cerebral ischemia/reperfusion in rats and their modification by magnesium sulfate. J. Neurotrauma 18: 435.PubMedGoogle Scholar
  161. Klein, R., Silos-Santiago, I., Smeyne, R.J., Lira, S.A., Brambilla, R., Bryant, S., Zhang, L., Snider, W.D. and Barbacid, M., 1994, Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature 368: 249.PubMedGoogle Scholar
  162. Klesse, L.J. and Parada, L.F., 1998, P21 ras and phosphatidylinositol-3 kinase are required for survival of wild-type and NF1 mutant sensory neurons. J. Neurosci. 18: 10420.PubMedGoogle Scholar
  163. Klesse, L.J., Meyers, K.A., Marshall, C.J. and Parada, L.F., 1999, Nerve growth factor induces survival and differentiation through two distinct signaling cascades in PC12 cells. Oncogene 18: 2055.PubMedGoogle Scholar
  164. Ko, M.L., Hu, D.N., Ritch, R. and Sharma, S.C., 2000, The combined effect of brain-derived neurotrophic factor and a free radical scavenger in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 41: 2967.PubMedGoogle Scholar
  165. Koh, S., Oyler, G.A. and Higgins, G.A., 1989, Localization of nerve growth factor receptor messenger RNA and protein in the adult rat brain. Exp. Neurol. 106: 209.PubMedGoogle Scholar
  166. Koh, J.Y., Gwag, B.J., Lobner, D. and Choi, D.W., 1995, Potentiated necrosis of cultured cortical neurons by neurotrophins. Science 268: 573.PubMedGoogle Scholar
  167. Kohara, K., Kitamura, A., Morishima, M. and Tsumoto, T., 2001, Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science 291: 2419.PubMedGoogle Scholar
  168. Kohno, R., Sawada, H., Kawamoto, Y., Uemura, K., Shibasaki, H. and Shimohama, S., 2004, BDNF is induced by wild-type alpha-synuclein but not by the two mutants, A30P or A53T, in glioma cell line. Biochem. Biophys. Res. Commun. 318: 113.PubMedGoogle Scholar
  169. Kokaia, Z. andsberg, G., Martinez-Serrano, A. and Lindvall, O., 1998, Focal cerebral ischemia in rats induces expression of p75 neurotrophin receptor in resistant striatal cholinergic neurons. Neuroscience 84: 1113.PubMedGoogle Scholar
  170. Kokaia, Z., Bengzon, J., Metsis, M., Kokaia, M., Persson, H. and Lindvall, O., 1993, Coexpression of neurotrophins and their receptors in neurons of the central nervous system. Proc. Natl. Acad. Sci. USA 90: 6711.PubMedGoogle Scholar
  171. Koliatsos, V.E., Crawford, T.O. and Price, D.L., 1991, Axotomy induces nerve growth factor receptor immunoreactivity in spinal motor neurons. Brain Res. 549: 297.PubMedGoogle Scholar
  172. Kong, H., Boulter, J., Weber, J.L., Lai, C. and Chao, M.V., 2001, An evolutionarily conserved transmembrane protein that is a novel downstream target of neurotrophin and ephrin receptors. J. Neurosci. 21: 176.PubMedGoogle Scholar
  173. Krueger-Naug, A.M., Emsley, J.G., Myers, T.L., Currie, R.W. and Clarke, D.B., 2003, Administration of brain-derived neurotrophic factor suppresses the expression of heat shock protein 27 in rat retinal ganglion cells following axotomy. Neuroscience 116: 49.PubMedGoogle Scholar
  174. Kubo, T., Nonomura, T., Enokido, Y. and Hatanaka, H., 1995, Brain-derived neurotrophic factor (BDNF) can prevent apoptosis of rat cerebellar granule neurons in culture. Brain Res. Dev. Brain Res. 85: 249.PubMedGoogle Scholar
  175. Kuruvilla, R., Ye, H. and Ginty, D.D., 2000, Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron 27: 499.PubMedGoogle Scholar
  176. Kuruvilla, R., Zweifel, L.S., Glebova, N.O., Lonze, B.E., Valdez, G., Ye, H. and Ginty, D.D., 2004, A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 118: 243.PubMedGoogle Scholar
  177. Ladiwala, U., Lachance, C., Simoneau, S.J., Bhakar, A., Barker, P.A. and Antel, J.P., 1998, P75 neurotrophin receptor expression on adult human oligodendrocytes: signaling without cell death in response to NGF. J. Neurosci. 18: 1297.PubMedGoogle Scholar
  178. Larsson, E., Nanobashvili, A., Kokaia, Z. and Lindvall, O., 1999, Evidence for neuroprotective effects of endogenous brain-derived neurotrophic factor after global forebrain ischemia in rats. J. Cereb. Blood Flow Metab. 19: 1220.PubMedGoogle Scholar
  179. Lee, F.S. and Chao, M.V., 2001, Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc. Natl. Acad. Sci. USA 98: 3555.PubMedGoogle Scholar
  180. Lee, K.F., Li, E., Huber, L.J., Landis, S.C., Sharpe, A.H., Chao, M.V. and Jaenisch, R., 1992, Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69: 737.PubMedGoogle Scholar
  181. Lee, T.H., Abe, K., Kogure, K. and Itoyama, Y., 1995, Expressions of nerve growth factor and p75 low affinity receptor after transient forebrain ischemia in gerbil hippocampal CA1 neurons. J. Neurosci. Res. 41: 684.PubMedGoogle Scholar
  182. Lee, T.H., Kato, H., Chen, S.T., Kogure, K. and Itoyama, Y., 1998a, Expression of nerve growth factor and TrkA after transient focal cerebral ischemia in rats. Stroke 29: 1687.PubMedGoogle Scholar
  183. Lee, T.H., Kato, H., Pan, L.H., Ryu, J.H., Kogure, K. and Itoyama, Y., 1998b, Localization of nerve growth factor, TrkA and p75 immunoreactivity in the hippocampal formation and basal forebrain of adult rats. Neuroscience 83: 335.PubMedGoogle Scholar
  184. Lee, R., Kermani, P., Teng, K.K. and Hempstead, B.L., 2001, Regulation of cell survival by secreted proneurotrophins. Science 294: 1945.PubMedGoogle Scholar
  185. Lee, T.H., Kato, H., Chen, S.T., Kogure, K. and Itoyama, Y., 2002a, Expression disparity of brain-derived neurotrophic factor immunoreactivity and mRNA in ischemic hippocampal neurons. Neuroreport 13: 2271.PubMedGoogle Scholar
  186. Lee, F.S., Rajagopal, R., Kim, A.H., Chang, P.C. and Chao, M.V., 2002b, Activation of TrkA neurotrophin receptor signaling by pituitary adenylate cyclase-activating polypeptides. J. Biol. Chem. 277: 9096.PubMedGoogle Scholar
  187. Leeds, P., Leng, Y., Chalecka-Franaszek, E. and Chuang, D.M., 2005, Neurotrophins protect against cytosine arabinoside-induced apoptosis of immature rat cerebellar neurons. Neurochem. Int. 46: 61.PubMedGoogle Scholar
  188. Lemke, G. and Chao, M., 1988, Axons regulate Schwann cell expression of the major myelin and NGF receptor genes. Development 102: 499.PubMedGoogle Scholar
  189. Lesne, S., Gabriel, C., Nelson, D.A., White, E., Mackenzie, E.T., Vivien, D. and Buisson, A., 2005, Akt-dependent expression of NAIP-1 protects neurons against amyloid-β toxicity. J. Biol. Chem. 280: 24941.PubMedGoogle Scholar
  190. Levi-Montalcini, R., 1987, The nerve growth factor 35 years later. Science 237: 1154.PubMedGoogle Scholar
  191. Li, Z., Jaboin, J., Dennis, P.A. and Thiele, C.J., 2005, Genetic and pharmacologic identification of Akt as a mediator of brain-derived neurotrophic factor/TrkB rescue of neuroblastoma cells from chemotherapy-induced cell death. Cancer Res. 65: 2070.PubMedGoogle Scholar
  192. Liebl, D.J., Huang, W., Young, W. and Parada, L.F., 2001, Regulation of Trk receptors following contusion of the rat spinal cord. Exp. Neurol. 167: 15.PubMedGoogle Scholar
  193. Lindsay, R.M., 1979, Adult rat brain astrocytes support survival of both NGF-dependent and NGF-insensitive neurones. Nature 282: 80.PubMedGoogle Scholar
  194. Lindsay, R.M., Wiegand, S.J., Altar, C.A. and DiStefano, P.S., 1994, Neurotrophic factors: from molecule to man. Trends Neurosci. 17: 182.PubMedGoogle Scholar
  195. Linggi, M.S., Burke, T.L., Williams, B.B., Harrington, A., Kraemer, R., Hempstead, B.L., Yoon, S.O. and Carter, B.D., 2005, Neurotrophin receptor interacting factor (NRIF) is an essential mediator of apoptotic signaling by the p75 neurotrophin receptor. J. Biol. Chem. 280: 13801.PubMedGoogle Scholar
  196. Liot, G., Gabriel, C., Cacquevel, M., Ali, C., MacKenzie, E.T., Buisson, A. and Vivien, D., 2004, Neurotrophin-3-induced PI-3 kinase/Akt signaling rescues cortical neurons from apoptosis. Exp. Neurol. 187: 38.PubMedGoogle Scholar
  197. Lipton, S.A., 2001, Retinal ganglion cells, glaucoma and neuroprotection. Prog. Brain Res. 131: 712.PubMedGoogle Scholar
  198. Liu, Q.Y., Schaffner, A.E., Li, Y.X., Dunlap, V. and Barker, J.L., 1996, Upregulation of GABAA current by astrocytes in cultured embryonic rat hippocampal neurons. J. Neurosci. 16: 2912.PubMedGoogle Scholar
  199. Liu, Q.Y., Schaffner, A.E., Chang, Y.H., Vaszil, K. and Barker, J.L., 1997, Astrocytes regulate amino acid receptor current densities in embryonic rat hippocampal neurons. J. Neurobiol. 33: 848.PubMedGoogle Scholar
  200. Liu, Y.Z., Chrivia, J.C. and Latchman, D.S., 1998, Nerve growth factor up-regulates the transcriptional activity of CBP through activation of the p42/p44 MAPK cascade. J. Biol. Chem. 273: 32400.PubMedGoogle Scholar
  201. Liu, L., Cavanaugh, J.E., Wang, Y., Sakagami, H., Mao, Z. and Xia, Z., 2003, ERK5 activation of MEF2-mediated gene expression plays a critical role in BDNF-promoted survival of developing but not mature cortical neurons. Proc. Natl. Acad. Sci. USA 100: 8532.PubMedGoogle Scholar
  202. Lobsiger, C.S., Schweitzer, B., Taylor, V. and Suter, U., 2000, Platelet-derived growth factor-BB supports the survival of cultured rat Schwann cell precursors in synergy with neurotrophin-3. Glia 30: 290.PubMedGoogle Scholar
  203. Logan, A. and Berry, M., 2002, Cellular and molecular determinants of glial scar formation. Adv. Exp. Med. Biol. 513: 115.PubMedGoogle Scholar
  204. Lou, H., Kim, S.K., Zaitsev, E., Snell, C.R., Lu, B. and Loh, Y.P., 2005, Sorting and activity-dependent secretion of BDNF require interaction of a specific motif with the sorting receptor carboxypeptidase E. Neuron 45: 245.PubMedGoogle Scholar
  205. Lu, B., Pang, P.T. and Woo, N.H., 2005, The yin and yang of neurotrophin action. Nat. Rev. Neurosci. 6: 603.PubMedGoogle Scholar
  206. Madeddu, F., Naska, S. and Bozzi, Y., 2004, BDNF down-regulates the caspase 3 pathway in injured geniculo-cortical neurones. Neuroreport 15: 2045.PubMedGoogle Scholar
  207. Malcangio, M. and Lessmann, V., 2003, A common thread for pain and memory synapses? Brain-derived neurotrophic factor and trkB receptors. Trends Pharmacol. Sci. 24: 116.Google Scholar
  208. Markus, A., Zhong, J. and Snider, W.D., 2002, Raf and Akt mediate distinct aspects of sensory axon growth. Neuron 35: 65.PubMedGoogle Scholar
  209. Martin, K.R., Quigley, H.A., Zack, D.J., Levkovitch-Verbin, H., Kielczewski, J., Valenta, D., Baumrind, L., Pease, M.E., Klein, R.L. and Hauswirth, W.W., 2003, Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest. Ophthalmol. Vis. Sci. 44: 4357.PubMedGoogle Scholar
  210. Martinez-Murillo, R., Fernandez, A.P., Bentura, M.L. and Rodrigo, J., 1998, Subcellular localization of low-affinity nerve growth factor receptor-immunoreactive protein in adult rat Purkinje cells following traumatic injury. Exp. Brain Res. 119: 47.PubMedGoogle Scholar
  211. Martinowich, K., Hattori, D., Wu, H., Fouse, S., He, F., Hu, Y., Fan, G. and Sun, Y.E., 2003, DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302: 890.PubMedGoogle Scholar
  212. Matsuzaki, H., Namikawa, K., Kiyama, H., Mori, N. and Sato, K., 2004, Brain-derived neurotrophic factor rescues neuronal death induced by methamphetamine. Biol. Psychiatry 55: 52.PubMedGoogle Scholar
  213. Mattson, M.P., Lovell, M.A., Furukawa, K. and Markesbery, W.R., 1995, Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J. Neurochem. 65: 1740.PubMedGoogle Scholar
  214. Mazzoni, I.E., Said, F.A., Aloyz, R., Miller, F.D. and Kaplan, D., 1999, Ras regulates sympathetic neuron survival by suppressing the p53-mediated cell death pathway. J. Neurosci. 19: 9716.PubMedGoogle Scholar
  215. McDonald, N.Q. and Hendrickson, W.A., 1993, A structural superfamily of growth factors containing a cystine knot motif. Cell 73: 421.PubMedGoogle Scholar
  216. McKeon, R.J., Silver, J. and Large, T.H., 1997, Expression of full-length trkB receptors by reactive astrocytes after chronic CNS injury. Exp. Neurol. 148: 558.PubMedGoogle Scholar
  217. Meakin, S.O., MacDonald, J.I., Gryz, E.A., Kubu, C.J. and Verdi, J.M., 1999, The signaling adapter FRS-2 competes with Shc for binding to the nerve growth factor receptor TrkA. A model for discriminating proliferation and differentiation. J. Biol. Chem. 274: 9861.PubMedGoogle Scholar
  218. Meier, C., Parmantier, E., Brennan, A., Mirsky, R. and Jessen, K.R., 1999, Developing Schwann cells acquire the ability to survive without axons by establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-3 and platelet-derived growth factor-BB. J. Neurosci. 19: 3847.PubMedGoogle Scholar
  219. Merlio, J.P., Ernfors, P., Jaber, M. and Persson, H., 1992, Molecular cloning of rat trkC and distribution of cells express-ing messenger RNAs for members of the trk family in the rat central nervous system. Neuroscience 51: 513.PubMedGoogle Scholar
  220. Meyer, A., Chretien, P., Massicotte, G., Sargent, C., Chretien, M. and Marcinkiewicz, M., 1996, Kainic acid increases the expression of the prohormone convertases furin and PC1 in the mouse hippocampus. Brain Res. 732: 121.PubMedGoogle Scholar
  221. Meyer-Franke, A., Wilkinson, G.A., Kruttgen, A., Hu, M., Munro, E., Hanson, M.G., Jr., Reichardt, L.F. and Barres, B.A., 1998, Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21: 681.PubMedGoogle Scholar
  222. Michaelidis, T.M., Sendtner, M., Cooper, J.D., Airaksinen, M.S., Holtmann, B., Meyer, M. and Thoenen, H., 1996, Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development. Neuron 17: 75.PubMedGoogle Scholar
  223. Michalski, B. and Fahnestock, M., 2003, Pro-brain-derived neurotrophic factor is decreased in parietal cortex in Alzheimer’s disease. Brain. Res. Mol. Brain Res. 111: 148.PubMedGoogle Scholar
  224. Middlemas, D.S., Meisenhelder, J. and Hunter, T., 1994, Identification of TrkB autophosphorylation sites and evidence that phospholipase C-gamma 1 is a substrate of the TrkB receptor. J. Biol. Chem. 269: 5458.PubMedGoogle Scholar
  225. Middlemiss, P.J., Gysbers, J.W. and Rathbone, M.P., 1995, Extracellular guanosine and guanosine-5'-triphosphate increase: NGF synthesis and release from cultured mouse neopallial astrocytes. Brain Res. 677: 152.PubMedGoogle Scholar
  226. Minichiello, L., Calella, A.M., Medina, D.L., Bonhoeffer, T., Klein, R. and Korte, M., 2002, Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36: 121.PubMedGoogle Scholar
  227. Miwa, T., Furukawa, S., Nakajima, K., Furukawa, Y. and Kohsaka, S., 1997, Lipopolysaccharide enhances synthesis of brain-derived neurotrophic factor in cultured rat microglia. J. Neurosci. Res. 50: 1023.PubMedGoogle Scholar
  228. Miyake, K., Yamamoto, W., Tadokoro, M., Takagi, N., Sasakawa, K., Nitta, A., Furukawa, S. and Takeo, S., 2002, Alterations in hippocampal GAP-43, BDNF and L1 following sustained cerebral ischemia. Brain Res. 935: 24.PubMedGoogle Scholar
  229. Mocchetti, I. and Bachis, A., 2004, Brain-derived neurotrophic factor activation of TrkB protects neurons from HIV-1/gp120-induced cell death. Crit. Rev. Neurobiol. 16: 51.PubMedGoogle Scholar
  230. Moelling, K., Schad, K., Bosse, M., Zimmermann, S. and Schweneker, M., 2002, Regulation of Raf-Akt cross-talk. J. Biol. Chem. 277: 31099.PubMedGoogle Scholar
  231. Moqrich, A., Earley, T.J., Watson, J., Andahazy, M., Backus, C., Martin-Zanca, D., Wright, D.E., Reichardt, L.F. and Patapoutian, A., 2004, Expressing TrkC from the TrkA locus causes a subset of dorsal root ganglia neurons to switch fate. Nat. Neurosci. 7: 812.PubMedGoogle Scholar
  232. Mowla, S.J., Pareek, S., Farhadi, H.F., Petrecca, K., Fawcett, J.P., Seidah, N.G., Morris, S.J., Sossin, W.S. and Murphy, R.A., 1999, Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J. Neurosci. 19: 2069.PubMedGoogle Scholar
  233. Mufson, E.J. and Kordower, J.H., 1992, Cortical neurons express nerve growth factor receptors in advanced age and Alzheimer disease. Proc. Natl. Acad. Sci. USA 89: 569.PubMedGoogle Scholar
  234. Mufson, E.J., Bothwell, M., Hersh, L.B. and Kordower, J.H., 1989, Nerve growth factor receptor immunoreactive profiles in the normal, aged human basal forebrain: colocalization with cholinergic neurons. J. Comp. Neurol. 285: 196.PubMedGoogle Scholar
  235. Mufson, E.J., Higgins, G.A. and Kordower, J.H., 1991, Nerve growth factor receptor immunoreactivity in the new world monkey (Cebus apella) and human cerebellum. J. Comp. Neurol. 308: 555.PubMedGoogle Scholar
  236. Mufson, E.J., Brashers-Krug, T. and Kordower, J.H., 1992, P75 nerve growth factor receptor immunoreactivity in the human brainstem and spinal cord. Brain Res. 589: 115.PubMedGoogle Scholar
  237. Mufson, E.J., Ginsberg, S.D., Ikonomovic, M.D. and DeKosky, S.T., 2003, Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J. Chem. Neuroanat. 26: 233.PubMedGoogle Scholar
  238. Muller, G., Storz, P., Bourteele, S., Doppler, H., Pfizenmaier, K., Mischak, H., Philipp, A., Kaiser, C. and Kolch, W., 1998, Regulation of Raf-1 kinase by TNF via its second messenger ceramide and cross-talk with mitogenic signaling. EMBO J. 17: 732.PubMedGoogle Scholar
  239. Muragaki, Y., Timothy, N., Leight, S., Hempstead, B.L., Chao, M.V., Trojanowski, J.Q. and Lee, V.M., 1995, Expression of trk receptors in the developing and adult human central and peripheral nervous system. J. Comp. Neurol. 356: 387.PubMedGoogle Scholar
  240. Nakajima, K., Kikuchi, Y., Ikoma, E., Honda, S., Ishikawa, M., Liu, Y. and Kohsaka, S., 1998, Neurotrophins regulate the function of cultured microglia. Glia 24: 272.PubMedGoogle Scholar
  241. Nakajima, K., Honda, S., Tohyama, Y., Imai, Y., Kohsaka, S. and Kurihara, T., 2001, Neurotrophin secretion from cultured microglia. J. Neurosci. Res. 65: 322.PubMedGoogle Scholar
  242. Nakazawa, T., Tamai, M. and Mori, N., 2002, Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Invest. Ophthalmol. Vis. Sci. 43: 3319.PubMedGoogle Scholar
  243. Narhi, L.O., Rosenfeld, R., Talvenheimo, J., Prestrelski, S.J., Arakawa, T., Lary, J.W., Kolvenbach, C.G., Hecht, R., Boone, T., Miller, J.A. et al., 1993, Comparison of the biophysical characteristics of human brain-derived neurotrophic factor, neurotrophin-3 and nerve growth factor. J. Biol. Chem. 268: 13309.PubMedGoogle Scholar
  244. Narumiya, S., Ohno, M., Tanaka, N., Yamano, T. and Shimada, M., 1998, Enhanced expression of full-length TrkB receptors in young rat brain with hypoxic/ischemic injury. Brain Res. 797: 278.PubMedGoogle Scholar
  245. Neves-Pereira, M., Mundo, E., Muglia, P., King, N., Macciardi, F. and Kennedy, J.L., 2002, The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am. J. Hum. Genet. 71: 651.PubMedGoogle Scholar
  246. Nilsson, A.S., Fainzilber, M., Falck, P. and Ibanez, C.F., 1998, Neurotrophin-7: a novel member of the neurotrophin family from the zebrafish. FEBS Lett. 424: 285.PubMedGoogle Scholar
  247. Nimnual, A.S., Yatsula, B.A. and Bar-Sagi, D., 1998, Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science 279: 560.PubMedGoogle Scholar
  248. Nykjaer, A., Lee, R., Teng, K.K., Jansen, P., Madsen, P., Nielsen, M.S., Jacobsen, C., Kliemannel, M., Schwarz, E., Willnow, T.E., Hempstead, B.L. and Petersen, C.M., 2004, Sortilin is essential for proNGF-induced neuronal cell death. Nature 427: 843.PubMedGoogle Scholar
  249. Nykjaer, A., Willnow, T.E. and Petersen, C.M., 2005, Ap75NTR-live or let die. Curr. Opin. Neurobiol. 15: 49.PubMedGoogle Scholar
  250. Oderfeld-Nowak, B., Zaremba, M., Micera, A. and Aloe, L., 2001, The upregulation of nerve growth factor receptors in reactive astrocytes of rat spinal cord during experimental autoimmune encephalomyelitis. Neurosci. Lett. 308: 165-168.PubMedGoogle Scholar
  251. Oderfeld-Nowak, B., Orzylowska-Sliwinska, O., Soltys, Z., Zaremba, M., Januszewski, S., Janeczko, K. and Mossakowski, M., 2003, Concomitant up-regulation of astroglial high and low affinity nerve growth factor receptors in the CA1 hippocampal area following global transient cerebral ischemia in rat. Neuroscience 120: 31.PubMedGoogle Scholar
  252. Ohira, K., Kumanogoh, H., Sahara, Y., Homma, K.J., Hirai, H., Nakamura, S. and Hayashi, M., 2005, A truncated tropomyosin-related kinase B receptor, T1, regulates glial cell morphology via Rho GDP dissociation inhibitor 1. J. Neurosci. 25: 1343.PubMedGoogle Scholar
  253. Okoye, G., Zimmer, J., Sung, J., Gehlbach, P., Deering, T., Nambu, H., Hackett, S., Melia, M., Esumi, N., Zack, D.J. and Campochiaro, P.A., 2003, Increased expression of brain-derived neurotrophic factor preserves retinal function and slows cell death from rhodopsin mutation or oxidative damage. J. Neurosci. 23: 4164.PubMedGoogle Scholar
  254. Onyango, I.G., Tuttle, J.B. and Bennett, J.P., Jr., 2005, Brain-derived growth factor and glial cell line-derived growth factor use distinct intracellular signaling pathways to protect PD cybrids from H2O2-induced neuronal death. Neurobiol. Dis. 20: 141.PubMedGoogle Scholar
  255. Osborne, N.N. and Herrera, A.J., 1994, The effect of experimental ischaemia and excitatory amino acid agonists on the GABA and serotonin immunoreactivities in the rabbit retina. Neuroscience 59: 1071.PubMedGoogle Scholar
  256. Ouyang, Y., Kantor, D., Harris, K.M., Schuman, E.M. and Kennedy, M.B., 1997, Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus. J. Neurosci. 17: 5416.PubMedGoogle Scholar
  257. Ozbas-Gerceker, F., Gorter, J.A., Redeker, S., Ramkema, M., van der Valk, P., Baayen, J.C., Ozguc, M., Saygi, S., Soylemezoglu, F., Akalin, N., Troost, D. and Aronica, E., 2004, Neurotrophin receptor immunoreactivity in the hippocampus of patients with mesial temporal lobe epilepsy. Neuropathol. Appl. Neurobiol. 30: 651.PubMedGoogle Scholar
  258. Pang, P.T., Teng, H.K., Zaitsev, E., Woo, N.T., Sakata, K., Zhen, S., Teng, K.K., Yung, W.H., Hempstead, B.L. and Lu, B., 2004, Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306: 487. NTRNTRGoogle Scholar
  259. Park, J.A., Lee, J.Y., Sato, T.A. and Koh, J.Y., 2000, Co-induction of p75and p75-associated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat. J. Neurosci. 20: 9096.PubMedGoogle Scholar
  260. Pease, M.E., McKinnon, S.J., Quigley, H.A., Kerrigan-Baumrind, L.A. and Zack, D.J., 2000, Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 41: 764.PubMedGoogle Scholar
  261. Pedraza, C.E., Podlesniy, P., Vidal, N., Arevalo, J.C., Lee, R., Hempstead, B., Ferrer, I., Iglesias, M. and Espinet, C., 2005, Pro-NGF isolated from the human brain affected by Alzheimer's disease induces neuronal apoptosis mediated by p75NTR. Am. J. Pathol. 166: 533.PubMedGoogle Scholar
  262. Pehar, M., Cassina, P., Vargas, M.R., Castellanos, R., Viera, L., Beckman, J.S., Estevez, A.G. and Barbeito, L., 2004, Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J. Neurochem. 89: 464.PubMedGoogle Scholar
  263. Peng, S., Wuu, J., Mufson, E.J. and Fahnestock, M., 2004, Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease. J. Neuropathol. Exp. Neurol. 63: 641.PubMedGoogle Scholar
  264. Peng, S., Wuu, J., Mufson, E.J. and Fahnestock, M., 2005, Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J. Neurochem. 93: 1412.PubMedGoogle Scholar
  265. Pereira, D.B., Rebola, N., Rodrigues, R.J., Cunha, R.A., Carvalho, A.P. and Duarte, C.B., 2006, TrkB receptors modulation of glutamate release is limited to a subset of nerve terminals in the adult rat hippocampus. J. Neurosci. Res. 83: 832.PubMedGoogle Scholar
  266. Perez-Navarro, E., Canudas, A.M., Akerund, P., Alberch, J. and Arenas, E., 2000, Brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 prevent the death of striatal projection neurons in a rodent model of Huntington’s disease. J. Neurochem. 75: 2190.PubMedGoogle Scholar
  267. Perez-Navarro, E., Gavalda, N., Gratacos, E. and Alberch, J., 2005, Brain-derived neurotrophic factor prevents changes in Bcl-2 family members and caspase-3 activation induced by excitotoxicity in the striatum. J. Neurochem. 92: 678.PubMedGoogle Scholar
  268. Pfrieger, F.W. and Barres, B.A., 1997, Synaptic efficacy enhanced by glial cells in vitro. Science 277: 1684.PubMedGoogle Scholar
  269. Philpott, K.L., McCarthy, M.J., Klippel, A. and Rubin, L.L., 1997, Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J. Cell Biol. 139: 809.PubMedGoogle Scholar
  270. Poo, M.M., 2001, Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2: 24.PubMedGoogle Scholar
  271. Porritt, M.J., Batchelor, P.E. and Howells, D.W., 2005, Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Exp. Neurol. 192: 226.PubMedGoogle Scholar
  272. Poser, S., Impey, S., Xia, Z. and Storm, D.R., 2003, Brain-derived neurotrophic factor protection of cortical neurons from serum withdrawal-induced apoptosis is inhibited by cAMP. J. Neurosci. 23: 4420.PubMedGoogle Scholar
  273. Pshenichkin, S.P. and Wise, B.C., 1995, Okadaic acid increases nerve growth factor secretion, mRNA stability and gene transcription in primary cultures of cortical astrocytes. J. Biol. Chem. 270: 5994.PubMedGoogle Scholar
  274. Quigley, H.A., McKinnon, S.J., Zack, D.J., Pease, M.E., Kerrigan-Baumrind, L.A., Kerrigan, D.F. and Mitchell, R.S., 2000, Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest. Ophthalmol. Vis. Sci. 41: 3460.PubMedGoogle Scholar
  275. Rajagopal, R., Chen, Z.Y., Lee, F.S. and Chao, M.V., 2004, Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J. Neurosci. 24: 6650.PubMedGoogle Scholar
  276. Ribases, M., Gratacos, M., Armengol, L., de Cid, R., Badia, A., Jimenez, L., Solano, R., Vallejo, J., Fernandez, F. and Estivill, X., 2003, Met66 in the brain-derived neurotrophic factor (BDNF) precursor is associated with anorexia nervosa restrictive type. Mol. Psychiatry 8: 745.PubMedGoogle Scholar
  277. Ribases, M., Gratacos, M., Fernandez-Aranda, F., Bellodi, L., Boni, C. anderluh, M., Cavallini, M.C., Cellini, E., Di Bella, D., Erzegovesi, S., Foulon, C., Gabrovsek, M., Gorwood, P., Hebebrand, J., Hinney, A., Holliday, J., Hu, X., Karwautz, A., Kipman, A., Komel, R., Nacmias, B., Remschmidt, H., Ricca, V., Sorbi, S., Wagner, G., Treasure, J., Collier, D.A. and Estivill, X., 2004, Association of BDNF with anorexia, bulimia and age of onset of weight loss in six European populations. Hum. Mol. Genet. 13: 1205.Google Scholar
  278. Rickhag, M., Wieloch, T., Gido, G., Elmer, E., Krogh, M., Murray, J., Lohr, S., Bitter, H., Chin, D.J., von Schack, D., Shamloo, M. and Nikolich, K., 2006, Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns and reveals a biphasic activation of genes in surviving tissue. J. Neurochem. 96: 14.PubMedGoogle Scholar
  279. Rivera, C., Li, H., Thomas-Crusells, J., Lahtinen, H., Viitanen, T., Nanobashvili, A., Kokaia, Z., Airaksinen, M.S., Voipio, J., Kaila, K. and Saarma, M., 2002, BDNF-induced TrkB activation down-regulates the K+-Cl-cotransporter KCC2 and impairs neuronal Cl- extrusion. J. Cell Biol. 159: 747.PubMedGoogle Scholar
  280. Rose, C.R., Blum, R., Pichler, B., Lepier, A., Kafitz, K.W. and Konnerth, A., 2003, Truncated TrkB-T1 mediates neurotrophin-evoked calcium signaling in glia cells. Nature 426: 74.PubMedGoogle Scholar
  281. Rossler, O.G., Giehl, K.M. and Thiel, G., 2004, Neuroprotection of immortalized hippocampal neurones by brain-derived neurotrophic factor and Raf-1 protein kinase: role of extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase. J. Neurochem. 88: 1240.PubMedGoogle Scholar
  282. Rudge, J.S., Alderson, R.F., Pasnikowski, E., McClain, J., Ip, N.Y. and Lindsay, R.M., 1992, Expression of ciliary neurotrophic factor and the neurotrophins-nerve growth factor, brain-derived neurotrophic factor and neurotrophin 3-in cultured rat hippocampal astrocytes. Eur. J. Neurosci. 4: 459.PubMedGoogle Scholar
  283. Sanchez, I., Hassinger, L., Paskevich, P.A., Shine, H.D. and Nixon, R.A., 1996, Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. J. Neurosci. 16: 5095.PubMedGoogle Scholar
  284. Sarbassov, D.D., Guertin, D.A., Ali, S.M. and Sabatini, D.M., 2005, Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098.PubMedGoogle Scholar
  285. Sato, S., Fujita, N. and Tsuruo, T., 2004, Involvement of 3-phosphoinositide-dependent protein kinase-1 in the MEK/MAPK signal transduction pathway. J. Biol. Chem. 279: 33759.PubMedGoogle Scholar
  286. Schabitz, W.R., Sommer, C., Zoder, W., Kiessling, M., Schwaninger, M. and Schwab, S., 2000, Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke 31: 2212.PubMedGoogle Scholar
  287. Schmidt-Kastner, R., Wetmore, C. and Olson, L., 1996, Comparative study of brain-derived neurotrophic factor messenger RNA and protein at the cellular level suggests multiple roles in hippocampus, striatum and cortex. Neuroscience 74: 161.PubMedGoogle Scholar
  288. Schor, N.F., 2005, The p75 neurotrophin receptor in human development and disease. Prog. Neurobiol. 77: 201.PubMedGoogle Scholar
  289. Schuettauf, F., Vorwerk, C., Naskar, R., Orlin, A., Quinto, K., Zurakowski, D., Dejneka, N.S., Klein, R.L., Meyer, E.M. and Bennett, J., 2004, Adeno-associated viruses containing bFGF or BDNF are neuroprotective against excitotoxicity. Curr. Eye Res. 29: 379.PubMedGoogle Scholar
  290. Schulte, J.H., Schramm, A., Klein-Hitpass, L., Klenk, M., Wessels, H., Hauffa, B.P., Eils, J., Eils, R., Brodeur, G.M., Schweigerer, L., Havers, W. and Eggert, A., 2005, Microarray analysis reveals differential gene expression patterns and regulation of single target genes contributing to the opposing phenotype of TrkA- and TrkB-expressing neuroblastomas. Oncogene 24: 165.PubMedGoogle Scholar
  291. Seeburger, J.L., Tarras, S., Natter, H. and Springer, J.E., 1993, Spinal cord motoneurons express p75NGFR and p145trkB mRNA in amyotrophic lateral sclerosis. Brain Res. 621: 111.PubMedGoogle Scholar
  292. Segal, R.A., 2003, Selectivity in neurotrophin signaling: theme and variations. Annu. Rev. Neurosci. 26: 299.PubMedGoogle Scholar
  293. Seidah, N.G., Benjannet, S., Pareek, S., Chretien, M. and Murphy, R.A., 1996a, Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett. 379: 247.PubMedGoogle Scholar
  294. Seidah, N.G., Benjannet, S., Pareek, S., Savaria, D., Hamelin, J., Goulet, B., Laliberte, J., Lazure, C., Chretien, M. and Murphy, R.A., 1996b, Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem. J. 314: 951.PubMedGoogle Scholar
  295. Seroogy, K.B., Lundgren, K.H., Tran, T.M., Guthrie, K.M., Isackson, P.J. and Gall, C.M., 1994, Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J. Comp. Neurol. 342: 321.PubMedGoogle Scholar
  296. Shalizi, A., Lehtinen, M., Gaudilliere, B., Donovan, N., Han, J., Konishi, Y. and Bonni, A., 2003, Characterization of a neurotrophin signaling mechanism that mediates neuron survival in a temporally specific pattern. J. Neurosci. 23: 7326.PubMedGoogle Scholar
  297. Sheedlo, H.J., Srinivasan, B., Brun-Zinkernagel, A.M., Roque, C.H., Lambert, W., Wordinger, R.J. and Roque, R.S., 2002, Expression of p75NTR in photoreceptor cells of dystrophic rat retinas. Brain. Res. Mol. Brain Res. 103: 71.PubMedGoogle Scholar
  298. Shelton, D.L., Sutherland, J., Gripp, J., Camerato, T., Armanini, M.P., Phillips, H.S., Carroll, K., Spencer, S.D. and Levinson, A.D., 1995, Human trks: molecular cloning, tissue distribution and expression of extracellular domain immunoadhesins. J. Neurosci. 15: 477.PubMedGoogle Scholar
  299. Shieh, P.B. and Ghosh, A., 1999, Molecular mechanisms underlying activity-dependent regulation of BDNF expression. J. Neurobiol. 41: 127.PubMedGoogle Scholar
  300. Shimoke, K., Utsumi, T., Kishi, S., Nishimura, M., Sasaya, H., Kudo, M. and Ikeuchi, T., 2004, Prevention of endoplasmic reticulum stress-induced cell death by brain-derived neurotrophic factor in cultured cerebral cortical neurons. Brain Res. 1028: 105.PubMedGoogle Scholar
  301. Shimoke, K., Kubo, T., Numakawa, T., Abiru, Y., Enokido, Y., Takei, N., Ikeuchi, T. and Hatanaka, H., 1997, Involvement of phosphatidylinositol-3 kinase in prevention of low K+-induced apoptosis of cerebellar granule neurons. Brain Res. Dev. Brain Res. 101: 197.Google Scholar
  302. Siegel, G.J. and Chauhan, N.B., 2000, Neurotrophic factors in Alzheimer's and Parkinson's disease brain. Brain Res. Brain Res. Rev. 33: 199.PubMedGoogle Scholar
  303. Skaper, S.D., Floreani, M., Negro, A., Facci, L. and Giusti, P., 1998, Neurotrophins rescue cerebellar granule neurons from oxidative stress-mediated apoptotic death: selective involvement of phosphatidylinositol 3-kinase and the mitogen-activated protein kinase pathway. J. Neurochem. 70: 1859.PubMedCrossRefGoogle Scholar
  304. Sklar, P., Gabriel, S.B., McInnis, M.G., Bennett, P., Lim, Y.M., Tsan, G., Schaffner, S., Kirov, G., Jones, I., Owen, M., Craddock, N., DePaulo, J.R. and Lander, E.S., 2002, Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Brain-derived neutrophic factor. Mol. Psychiatry 7: 579.PubMedGoogle Scholar
  305. Smeyne, R.J., Klein, R., Schnapp, A., Long, L.K., Bryant, S., Lewin, A., Lira, S.A. and Barbacid, M., 1994, Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368: 246.PubMedGoogle Scholar
  306. Soltys, Z., Janeczko, K., Orzylowska-Sliwinska, O., Zaremba, M., Januszewski, S. and Oderfeld-Nowak, B., 2003, Morphological transformations of cells immunopositive for GFAP, TrkA or p75 in the CA1 hippocampal area following transient global ischemia in the rat. A quantitative study. Brain Res. 987: 186.PubMedGoogle Scholar
  307. Srinivasan, B., Roque, C.H., Hempstead, B.L., Al-Ubaidi, M.R. and Roque, R.S., 2004, Microglia-derived pronerve growth factor promotes photoreceptor cell death via p75 neurotrophin receptor. J. Biol. Chem. 279: 41839.PubMedGoogle Scholar
  308. Stadelmann, C., Kerschensteiner, M., Misgeld, T., Bruck, W., Hohlfeld, R. and Lassmann, H., 2002, BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125: 75.PubMedGoogle Scholar
  309. Swanwick, C.C., Harrison, M.B. and Kapur, J., 2004, Synaptic and extrasynaptic localization of brain-derived neurotrophic factor and the tyrosine kinase B receptor in cultured hippocampal neurons. J. Comp. Neurol. 478: 405.PubMedGoogle Scholar
  310. Syroid, D.E., Maycox, P.J., Soilu-Hanninen, M., Petratos, S., Bucci, T., Burrola, P., Murray, S., Cheema, S., Lee, K.F., Lemke, G. and Kilpatrick, T.J., 2000, Induction of postnatal Schwann cell death by the low-affinity neurotrophin receptor in vitro and after axotomy. J. Neurosci. 20: 5741.PubMedGoogle Scholar
  311. Takano, R., Hisahara, S., Namikawa, K., Kiyama, H., Okano, H. and Miura, M., 2000, Nerve growth factor protects oligodendrocytes from tumor necrosis factor-alpha-induced injury through Akt-mediated signaling mechanisms. J. Biol. Chem. 275: 16360.PubMedGoogle Scholar
  312. Takei, N., Tanaka, O., Endo, Y., Lindholm, D. and Hatanaka, H., 1999, BDNF and NT-3 but not CNTF counteract the Ca2+ ionophore-induced apoptosis of cultured cortical neurons: involvement of dual pathways. Neuropharmacology 38: 283.PubMedGoogle Scholar
  313. Taniuchi, M., Clark, H.B., Schweitzer, J.B. and Johnson, E.M., Jr., 1988, Expression of nerve growth factor receptors by Schwann cells of axotomized peripheral nerves: ultrastructural location, suppression by axonal contact and binding properties. J. Neurosci. 8: 664.PubMedGoogle Scholar
  314. Tao, X., West, A.E., Chen, W.G., Corfas, G. and Greenberg, M.E., 2002, A calcium-responsive transcription factor, CaRF, that regulates neuronal activity-dependent expression of BDNF. Neuron 33: 383.PubMedGoogle Scholar
  315. Taylor, S., Srinivasan, B., Wordinger, R.J. and Roque, R.S., 2003, Glutamate stimulates neurotrophin expression in cultured Müller cells. Brain. Res. Mol. Brain Res. 111: 189.PubMedGoogle Scholar
  316. Teng, K.K. and Hempstead, B.L., 2004, Neurotrophins and their receptors: signaling trios in complex biological systems. Cell. Mol. Life Sci. 61: 35.PubMedGoogle Scholar
  317. Teng, H.K., Teng, K.K., Lee, R., Wright, S., Tevar, S., Almeida, R.D., Kermani, P., Torkin, R., Chen, Z.Y., Lee, F.S., Kraemer, R.T., Nykjaer, A. and Hempstead, B.L., 2005, ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75 NTR and sortilin. J. Neurosci. 25: 5455.PubMedGoogle Scholar
  318. Thippeswamy, T., McKay, J.S., Morris, R., Quinn, J., Wong, L.F. and Murphy, D., 2005, Glial-mediated neuroprotection: evidence for the protective role of the NO-cGMP pathway via neuron-glial communication in the peripheral nervous system. Glia 49: 197.PubMedGoogle Scholar
  319. Thompson, S.W., Bennett, D.L., Kerr, B.J., Bradbury, E.J. and McMahon, S.B., 1999, Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc. Natl. Acad. Sci. USA 96: 7714.PubMedGoogle Scholar
  320. Torsney, C. and MacDermott, A.B., 2005, Neuroscience: a painful factor. Nature 438: 923.PubMedGoogle Scholar
  321. Toyomoto, M., Inoue, S., Ohta, K., Kuno, S., Ohta, M., Hayashi, K. and Ikeda, K., 2005, Production of NGF, BDNF and GDNF in mouse astrocyte cultures is strongly enhanced by a cerebral vasodilator, ifenprodil. Neurosci. Lett. 379: 185.PubMedGoogle Scholar
  322. Trapp, B.D., Peterson, J., Ransohoff, R.M., Rudick, R., Mork, S. and Bo, L., 1998, Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338: 278.PubMedGoogle Scholar
  323. Troy, C.M., Friedman, J.E. and Friedman, W.J., 2002, Mechanisms of p75-mediated death of hippocampal neurons. Role of caspases. J. Biol. Chem. 277: 34295.PubMedGoogle Scholar
  324. Tsuda, M., Shigemoto-Mogami, Y., Koizumi, S., Mizokoshi, A., Kohsaka, S., Salter, M.W. and Inoue, K., 2003, P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424: 778.PubMedGoogle Scholar
  325. Tsukamoto, E., Hashimoto, Y., Kanekura, K., Niikura, T., Aiso, S. and Nishimoto, I., 2003, Characterization of the toxic mechanism triggered by Alzheimer's amyloid-beta peptides via p75 neurotrophin receptor in neuronal hybrid cells. J. Neurosci. Res. 73: 627.PubMedGoogle Scholar
  326. Turner, B.J., Cheah, I.K., Macfarlane, K.J., Lopes, E.C., Petratos, S., Langford, S.J. and Cheema, S.S., 2003, Antisense peptide nucleic acid-mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice. J. Neurochem. 87: 752.PubMedGoogle Scholar
  327. Tuszynski, M.H., U, H.S., Amaral, D.G. and Gage, F.H., 1990, Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration. J. Neurosci. 10: 3604.Google Scholar
  328. Tuszynski, M.H., Thal, L., Pay, M., Salmon, D.P., Hoi Sang, U., Bakay, R., Patel, P., Blesch, A., Vahlsing, H.L., Ho, G., Tong, G., Potkin, S.G., Fallon, J., Hansen, L., Mufson, E.J., Kordower, J.H., Gall, C. and Conner, J., 2005, A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat. Med. 11: 551.PubMedGoogle Scholar
  329. Ullian, E.M., Sapperstein, S.K., Christopherson, K.S. and Barres, B.A., 2001, Control of synapse number by glia. Science 291: 657.PubMedGoogle Scholar
  330. Ullian, E.M., Christopherson, K.S. and Barres, B.A., 2004, Role for glia in synaptogenesis. Glia 47: 209.PubMedGoogle Scholar
  331. Vaillant, A.R., Mazzoni, I., Tudan, C., Boudreau, M., Kaplan, D.R. and Miller, F.D., 1999, Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J. Cell Biol. 146: 955.PubMedGoogle Scholar
  332. Valdez, G., Akmentin, W., Philippidou, P., Kuruvilla, R., Ginty, D.D. and Halegoua, S., 2005, Pincher-mediated macroendocytosis underlies retrograde signaling by neurotrophin receptors. J. Neurosci. 25: 5236.PubMedGoogle Scholar
  333. Vargas, M.R., Pehar, M., Cassina, P., Beckman, J.S. and Barbeito, L., 2006, Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75 NTR -dependent motor neuron apoptosis. J. Neurochem. 97: 687.PubMedGoogle Scholar
  334. von Schack, D., Casademunt, E., Schweigreiter, R., Meyer, M., Bibel, M. and Dechant, G., 2001, Complete ablation of the neurotrophin receptor p75 NTR causes defects both in the nervous and the vascular system. Nat. Neurosci. 4: 977.PubMedGoogle Scholar
  335. Watson, F.L., Heerssen, H.M., Bhattacharyya, A., Klesse, L., Lin, M.Z. and Segal, R.A., 2001, Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat. Neurosci. 4: 981.PubMedGoogle Scholar
  336. Weisenhorn, D.M., Roback, J., Young, A.N. and Wainer, B.H., 1999, Cellular aspects of trophic actions in the nervous system. Int. Rev. Cytol. 189: 177.PubMedGoogle Scholar
  337. Wen, W., Sanelli, T., Ge, W., Strong, W. and Strong, M.J., 2006, Activated microglial supernatant induced motor neuron cytotoxicity is associated with upregulation of the TNFR1 receptor. Neurosci. Res. 55: 87.PubMedGoogle Scholar
  338. Woolf, C.J., 2003, No Nogo: now where to go? Neuron 38: 153.PubMedGoogle Scholar
  339. Wooten, M.W., Seibenhener, M.L., Mamidipudi, V., Diaz-Meco, M.T., Barker, P.A. and Moscat, J., 2001, The atypical protein kinase C-interacting protein p62 is a scaffold for NF-kappaB activation by nerve growth factor. J. Biol. Chem. 276: 7709.PubMedGoogle Scholar
  340. Wu, D., 2005, Neuroprotection in experimental stroke with targeted neurotrophins. NeuroRx 2: 120.PubMedGoogle Scholar
  341. Wu, D. and Pardridge, W.M., 1999, Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc. Natl. Acad. Sci. USA 96: 254.PubMedGoogle Scholar
  342. Wu, X., Zhu, D., Jiang, X., Okagaki, P., Mearow, K., Zhu, G., McCall, S., Banaudha, K., Lipsky, R.H. and Marini, A.M., 2004, AMPA protects cultured neurons against glutamate excitotoxicity through a phosphatidylinositol 3-kinase-dependent activation in extracellular signal-regulated kinase to upregulate BDNF gene expression. J. Neurochem. 90: 807.PubMedGoogle Scholar
  343. Xing, J., Kornhauser, J.M., Xia, Z., Thiele, E.A. and Greenberg, M.E., 1998, Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol. Cell Biol. 18: 1946.PubMedGoogle Scholar
  344. Xu, B., Gottschalk, W., Chow, A., Wilson, R.I., Schnell, E., Zang, K., Wang, D., Nicoll, R.A., Lu, B. and Reichardt, L.F., 2000, The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving TrkB. J. Neurosci. 20: 6888.PubMedGoogle Scholar
  345. Xu, B., Goulding, E.H., Zang, K., Cepoi, D., Cone, R.D., Jones, K.R., Tecott, L.H. and Reichardt, L.F., 2003, Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat. Neurosci. 6: 736.PubMedGoogle Scholar
  346. Xue, L., Murray, J.H. and Tolkovsky, A.M., 2000, The Ras/phosphatidylinositol 3-kinase and Ras/ERK pathways function as independent survival modules each of which inhibits a distinct apoptotic signaling pathway in sympathetic neurons. J. Biol. Chem. 275: 8817.PubMedGoogle Scholar
  347. Yamada, M., Tanabe, K., Wada, K., Shimoke, K., Ishikawa, Y., Ikeuchi, T., Koizumi, S. and Hatanaka, H., 2001, Differences in survival-promoting effects and intracellular signaling properties of BDNF and IGF-1 in cultured cerebral cortical neurons. J. Neurochem. 78: 940.PubMedGoogle Scholar
  348. Yamamoto, T., Yuki, S., Watanabe, T., Mitsuka, M., Saito, K.I. and Kogure, K., 1997, Delayed neuronal death prevented by inhibition of increased hydroxyl radical formation in a transient cerebral ischemia. Brain Res. 762: 240.PubMedGoogle Scholar
  349. Yamauchi, J., Chan, J.R., Miyamoto, Y., Tsujimoto, G. and Shooter, E.M., 2005, The neurotrophin-3 receptor TrkC directly phosphorylates and activates the nucleotide exchange factor Dbs to enhance Schwann cell migration. Proc. Natl. Acad. Sci. USA 102: 5198.PubMedGoogle Scholar
  350. Yan, Q., Radeke, M.J., Matheson, C.R., Talvenheimo, J., Welcher, A.A. and Feinstein, S.C., 1997, Immunocytochemical localization of TrkB in the central nervous system of the adult rat. J. Comp. Neurol. 378: 135.PubMedGoogle Scholar
  351. Yao, R. and Cooper, G.M., 1995, Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267: 2003.PubMedGoogle Scholar
  352. Yuan, J. and Yankner, B.A., 2000, Apoptosis in the nervous system. Nature 407: 802.PubMedGoogle Scholar
  353. Zafra, F., Hengerer, B., Leibrock, J., Thoenen, H. and Lindholm, D., 1990, Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J. 9: 3545.PubMedGoogle Scholar
  354. Zassler, B. and Humpel, C., 2006, Transplantation of NGF secreting primary monocytes counteracts NMDA-induced cell death of rat cholinergic neurons in vivo. Exp. Neurol. 198: 391.PubMedGoogle Scholar
  355. Zhang, Y. and Pardridge, W.M., 2001a, Conjugation of brain-derived neurotrophic factor to a blood-brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Res. 889: 49.PubMedGoogle Scholar
  356. Zhang, Y. and Pardridge, W.M., 2001b, Neuroprotection in transient focal brain ischemia after delayed intravenous administration of brain-derived neurotrophic factor conjugated to a blood-brain barrier drug targeting system. Stroke 32: 1378.PubMedGoogle Scholar
  357. Zhang, J.M., Wang, H.K., Ye, C.Q., Ge, W., Chen, Y., Jiang, Z.L., Wu, C.P., Poo, M.M. and Duan, S., 2003a, ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40: 971.PubMedGoogle Scholar
  358. Zhang, Y., Hong, Y., Bounhar, Y., Blacker, M., Roucou, X., Tounekti, O., Vereker, E., Bowers, W.J., Federoff, H.J., Goodyer, C.G. and LeBlanc, A., 2003b, P75 neurotrophin receptor protects primary cultures of human neurons against extracellular amyloid beta peptide cytotoxicity. J. Neurosci. 23: 7385.PubMedGoogle Scholar
  359. Zhou, X.F., Parada, L.F., Soppet, D. and Rush, R.A., 1993, Distribution of TrkB tyrosine kinase immunoreactivity in the rat central nervous system. Brain Res. 622: 63.PubMedGoogle Scholar
  360. Zhou, H., Summers, S.A., Birnbaum, M.J. and Pittman, R.N., 1998, Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J. Biol. Chem. 273: 16568.PubMedGoogle Scholar
  361. Zhou, X.F., Song, X.Y., Zhong, J.H., Barati, S., Zhou, F.H. and Johnson, S.M., 2004, Distribution and localization of pro-brain-derived neurotrophic factor-like immunoreactivity in the peripheral and central nervous system of the adult rat. J. Neurochem. 91: 704.PubMedGoogle Scholar
  362. Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B.R., Goffredo, D., Conti, L., MacDonald, M.E., Friedlander, R.M., Silani, V., Hayden, M.R., Timmusk, T., Sipione, S. and Cattaneo, E., 2001, Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 293: 493.PubMedGoogle Scholar
  363. Zweifel, L.S., Kuruvilla, R. and Ginty, D.D., 2005, Functions and mechanisms of retrograde neurotrophin signaling. Nat. Rev. Neurosci. 6: 615.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Bruno J. Manadas
    • 1
  • Carlos V. Melo
    • 1
  • João R. Gomes
    • 1
  • Carlos B. Duarte
    • 2
  1. 1.Dep. PhysiolTrinity CollegeIreland
  2. 2.Center for Neuroscience and Cell Biology and Department of ZoologyUniversity of CoimbraPortugal

Personalised recommendations