Neuron-Glia Interaction in Homeostasis of the Neurotransmitters Glutamate and GABA


The functional activity in the brain is primarily composed of interplay between excitation and inhibition. In any given region the output is based upon a complex processing of incoming signals that require both excitatory and inhibitory units. Moreover, these units must be regulated and balanced such that an integrated and finely tuned response is generated. In each of these units or synapses, the activity depends on biosynthesis, release, receptor interaction, and inactivation of the neurotransmitters; thus, it is easily understood that each of these processes needs to be highly regulated and controlled.


Glutamine Synthetase Glutamate Transporter Glutamate Uptake Glutamatergic Neuron Gaba Transporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balcar, V.J., 2002, Molecular pharmacology of the Na+-dependent transport of acidic amino acids in the mammalian central nervous system. Biol. Pharm. Bull. 25: 291.CrossRefPubMedGoogle Scholar
  2. Belhage, B., Hansen, G.H. and Schousboe, A., 1993, Depolarization by K+ and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: Vesicular versus non-vesicular release of GABA. Neuroscience 54: 1019.CrossRefPubMedGoogle Scholar
  3. Benveniste, H., Drejer, J., Schousboe, A. and Diemer, N.H., 1984, Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43: 1369.CrossRefPubMedGoogle Scholar
  4. Berl, S. and Clarke, D.D., 1983, The metabolic compartmentation concept. In: Glutamine, Glutamate and GABA in The Central Nervous System. L. Hertz, E. Kvamme, E.G. McGeer and A. Schousboe, eds., Alan R. Liss, Inc., New York, pp. 205-217.Google Scholar
  5. Bernath, S., 1992, Calcium-independent release of amino acid neurotransmitters: fact or artifact? Prog. Neurobiol. 38: 57.CrossRefPubMedGoogle Scholar
  6. Bixel, M.G., Hutson, S.M. and Hamprecht, B., 1997, Cellular distribution of branched-chain amino acid aminotransferase isoenzymes among rat brain glial cells in culture. J. Histochem. Cytochem. 45: 685.PubMedGoogle Scholar
  7. Bonde, C., Sarup, A., Schousboe, A., Gegelashvili, G., Zimmer, J. and Noraberg, J., 2003, Neurotoxic and neuroprotective effects of the glutamate transporter inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA) during physiological and ischemia-like conditions. Neurochem. Int. 43: 371.CrossRefPubMedGoogle Scholar
  8. Borden, L.A., 1996, GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem. Int. 29: 335.CrossRefPubMedGoogle Scholar
  9. Bræstrup, C., Nielsen, E.B., Sonnewald, U., Knutsen, L.J.S., Andersen, K.E., Jansen, J.A., Frederiksen, K., Andersen, P.H., Mortensen, A. and Suzdak, P.D., 1990, (R)-N-[4,4-Bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid binds with high affinity to the brain γ-aminobutyric acid uptake carrier. J. Neurochem. 54: 639.CrossRefPubMedGoogle Scholar
  10. Bridges, R.J., Kavanaugh, M.P. and Chamberlin, A.R., 1999, A pharmacological review of competitive inhibitors and substrates of high-affinity, sodium-dependent glutamate transport in the central nervous system. Curr. Pharm. Des. 5: 363.PubMedGoogle Scholar
  11. Chao, T.I., Rickmann, M. and Wolff, J.R., 2002, The synapse-astrocyte boundary: anatomical basis for an integrative role of glia in synaptic transmission. In: Tripartite Synapses: Synaptic Transmission with Glia. A. Volterra, P. Magistretti and P. Haydon, eds., Oxford University Press, Oxford, New York, pp. 3-23.Google Scholar
  12. Choi, S. and Silverman, R.B., 2002, Inactivation and inhibition of gamma-aminobutyric acid aminotransferase by conformationally restricted vigabatrin analogues. J. Med. Chem. 45: 4531.CrossRefPubMedGoogle Scholar
  13. Clausen, R.P., Moltzen, E.K., Perregaard, J., Lenz, S.M., Sanchez, C., Falch, E., Frølund, B., Sarup, A., Larsson, O. M., Schousboe, A. and Krogsgaard-Larsen, P., 2005, Selective inhibitors of GABA uptake: synthesis and Molecular Pharmacology of 3-hydroxy-4-N-methylamino-4,5,6,7-tetrahydro-1,2-benzo[d]isoxazole analogues. Bioorg. Med. Chem. 13: 895.CrossRefPubMedGoogle Scholar
  14. Clausen, R.P., Frølund, B., Larsson, O.M., Schousboe, A., Krogsgaard-Larsen, P. and White, H.S., 2006a, A novel selective γ-aminobutyric acid transport inhibitor demonstrates a functional role for GABA transporter subtype GAT2/BGT-1 in the CNS. Neurochem. Int. 48: 637.PubMedGoogle Scholar
  15. Clausen, R.P., Madsen, K., Larsson, O.M., Frølund, B., Krogsgaard-Larsen, P. and Schousboe, A., 2006b, Structure-activity relationship and pharmacology of γ-aminobutyric acid (GABA) transport inhibitors. Adv. Pharmacol. 54: 265.CrossRefPubMedGoogle Scholar
  16. Conti, F., Minelli, A. and Melone, M., 2004, GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res. Brain Res. Rev. 45: 196.CrossRefPubMedGoogle Scholar
  17. Dalby, N.O., 2003, Inhibition of γ-aminobutyric acid uptake: uptake, physiology and effects against epileptic seizures. Eur. J. Pharmacol. 479: 127.CrossRefPubMedGoogle Scholar
  18. Danbolt, N.C., 2001, Glutamate uptake. Progr. Neurobiol. 65: 1.CrossRefGoogle Scholar
  19. De Biasi, S., Vitellaro-Zuccarello, L. and Brecha, N.C., 1998, Immunoreactivity for the GABA transporter-1 and GABA transporter-3 is restricted to astrocytes in the rat thalamus. A light and electron-microscopic immunolocalization. Neuroscience 83: 815.CrossRefPubMedGoogle Scholar
  20. Drejer, J., Larsson, O.M. and Schousboe, A., 1982, Characterization of glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 47: 259.CrossRefPubMedGoogle Scholar
  21. Drejer, J., Larsson, O.M. and Schousboe, A., 1983, Characterization of uptake and release processes for D- and L-aspartate in primary cultures of astrocytes and cerebellar granule cells. Neurochem. Res. 8: 231.CrossRefPubMedGoogle Scholar
  22. Farber, N.B., Newcomer, J.W. and Olney, J.W., 2002, Glutamatergic transmission: therapeutic prospects for schizophrenia and Alzheimer’s disease. In: Glutamate and GABA Receptors and Transporters. J. Egebjerg, A. Schousboe and P. Krogsgaard-Larsen, eds., Taylor & Francis Publ., London, UK, pp. 385-406.Google Scholar
  23. Gadea, A. and Lopez-Colome, A., 2001, Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J. Neurosci. Res. 63: 461.CrossRefPubMedGoogle Scholar
  24. Gegelashvili, G. and Schousboe, A., 1997, High-affinity glutamate transporters: regulation of expression and activity. Mol. Pharmacol. 52: 6.PubMedGoogle Scholar
  25. Gegelashvili, G. and Schousboe, A., 1998, Cellular distrubution and kinetic properties of high-affinity glutamate transporters. Brain Res. Bull. 45: 233.Google Scholar
  26. Gram, L., Larsson, O.M., Johnsen, A.H. and Schousboe, A., 1988, Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res. 2: 87.CrossRefPubMedGoogle Scholar
  27. Guastella, J., Nelson, N., Nelson, H., Czyzyk, L., Keynan, S., Miedel, M.C., Davidson, N., Lester, H.A. and Kanner, B.I., 1990, Cloning and expression of a rat brain GABA transporter. Science 249: 1303.CrossRefPubMedGoogle Scholar
  28. Gundersen, V., Danbolt, N.C., Ottersen, O.P. and Storm-Mathiesen, J., 1993, Demonstration of glutamate/aspartate uptake activity in nerve endings by use of antibodies recognizing exogenous D-aspartate. Neuroscience 57: 97.CrossRefPubMedGoogle Scholar
  29. Gundersen, V., Ottersen, O.P. and Storm-Mathiesen, J., 1996, Selective excitatory amino acid uptake in glutamatergic nerve terminals and in glia in the rat striatum: quantitative electron microscopic immunocytochemistry of exogenous (D)-aspartate and endogenous glutamate and GABA. Eur. J. Neurosci. 8: 758.CrossRefPubMedGoogle Scholar
  30. Hagberg, H., Lehmann, A., Sandberg, M., Nyström, B., Jacobsen, I. and Hamberger, A., 1985, Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J. Cereb. Blood Flow Metab. 5: 413.PubMedGoogle Scholar
  31. Henn, F.A. and Hamberger, A., 1971, Glial cell function: uptake of transmitter substances. Proc. Natl. Acad. Sci. USA 68: 2686.CrossRefPubMedGoogle Scholar
  32. Hertz, L., Schousboe, A., Boechler, N., Mukerji, S. and Fedoroff, S., 1978, Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochem. Res. 3: 1.CrossRefPubMedGoogle Scholar
  33. Iadarola, M.J. and Gale, K., 1980, Evaluation of increases in nerve terminal-dependent vs nerve terminal-independent compartments of GABA in vivo. Brain Res. Bull. 5(Suppl. 2): 13.CrossRefGoogle Scholar
  34. Iversen, L.L. and Kelly, J.S., 1975, Uptake and metabolism of γ-aminobutyric acid by neurones and glial cells. Biochem. Pharmacol. 24: 933.CrossRefPubMedGoogle Scholar
  35. Kälviäinen, R., 2004, Tiagabine. In: The Treatment of Epilepsy, Sec. Ed. S. Shorvon, E. Perucca, D. Fish and E. Dodson, eds., Blackwell Science, Oxford, UK, pp. 507-514.CrossRefGoogle Scholar
  36. Krämer, G., 2004, Vigabatrin. In: The Treatment of Epilepsy, Sec. Ed. S. Shorvon, E. Perucca, D. Fish and E. Dodson, eds., Blackwell Science, Oxford, UK, pp. 540-547.CrossRefGoogle Scholar
  37. Krogsgaard-Larsen, P., Frølund, B., Liljefors, T. and Ebert, B., 2004, GABA(A) agonists and partial agonists: THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem. Pharmacol. 68: 1573.CrossRefPubMedGoogle Scholar
  38. Kvamme, E., Svenneby, G., Hertz, L. and Schousboe, A., 1982, Properties of phosphate activated glutaminase in astrocytes cultured from mouse brain. Neurochem. Res. 7: 761.CrossRefPubMedGoogle Scholar
  39. Kvamme, E., Torgner, I.A. and Roberg, B., 2001, Kinetics and localization of brain phosphate activated glutaminase. J. Neurosci. Res. 66: 951.CrossRefPubMedGoogle Scholar
  40. Laake, J.H., Takumi, Y., Eidet, J., Torgner, I.A., Roberg, B., Kvamme, E. and Ottersen, O.P., 1999, Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience 88: 1137.CrossRefPubMedGoogle Scholar
  41. Lehre, K.P. and Danbolt, N.C., 1998, The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J. Neurosci. 18: 8751.PubMedGoogle Scholar
  42. Levy, L.M., 2002, Structure, function and regulation of glutamate transporters. In: Glutamate and GABA Receptors and Transporters. Structure, Function and Pharmacology. J. Egebjerg, A. Schousboe and P. Krogsgaard-Larsen, eds., Taylor and Francis, London, pp. 307-336.Google Scholar
  43. Levy, W.B., Redburn, D.A. and Cotman, C.W., 1973, Stimulus-coupled secretion of gamma-aminobutyric acid from rat brain synaptosomes. Science 181: 676.CrossRefPubMedGoogle Scholar
  44. Lieth, E., LaNoue, K.F., Berkich, D.A., Xu, B., Ratz, M., Taylor, C. and Hutson, S.M., 2001, Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J. Neurochem. 76: 1712.CrossRefPubMedGoogle Scholar
  45. Lippert, B., Metcalf, B.W., Jung, M.J. and Casara, P., 1977, Amino-hex-5-enoic acid, a selective catalytic inhibitor of 4-aminobutyric-acid aminotransferase in mammalian brain. Eur. J. Biochem. 74: 441.CrossRefPubMedGoogle Scholar
  46. Liu, Q.R., Lopez-Corcuera, B., Nelson, H., Mandiyan, S. and Nelson, N., 1992, Cloning and expression of a cDNA encoding the transporter of taurine and β-alanine in mouse brain. Proc. Natl. Acad. Sci. USA 89: 12145.CrossRefPubMedGoogle Scholar
  47. Liu, Q.R., Lopez-Corcuera, B., Mandiyan, S., Nelson, H. and Nelson, N., 1993, Molecular characterization of four pharmacologically distinct γ-aminobutyric acid transporters in mouse brain. J. Biol. Chem. 268: 2104.Google Scholar
  48. Lopéz-Corcuera, B., Liu, Q.R., Mandiyan, S., Nelson, H. and Nelson, N., 1992, Expression of a mouse brain cDNA encoding novel γ-aminobutyric acid transporter. J. Biol. Chem. 267: 17491.PubMedGoogle Scholar
  49. Martin, D.L. and Rimval, K., 1993, Regulation of γ-aminobutyric acid synthesis in the brain. J. Neurochem. 60: 395.CrossRefPubMedGoogle Scholar
  50. McKenna, M.C., Waagepetersen, H.S., Schousboe, A. and Sonnewald, U., 2006, Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: Current evidence and pharmacological tools. Biochem. Pharmacol. 71: 399.CrossRefPubMedGoogle Scholar
  51. McMahon, H.T. and Nicholls, D.G., 1991, Transmitter glutamate release from isolated nerve terminals: evidence for biphasic release and triggering by localized Ca2+. J. Neurochem. 56: 86.CrossRefPubMedGoogle Scholar
  52. Minchin, M.C.W. and Iversen, L.L., 1974, Release of [3H]gamma-aminobutyric acid from glial cells in rat dorsal root ganglia. J. Neurochem. 23: 535.CrossRefGoogle Scholar
  53. Minelli, A., DeBiasi, S., Brecha, N.C., Zuccarello, L.V. and Conti, F., 1996, GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J. Neurosci. 16: 6255.PubMedGoogle Scholar
  54. Minelli, A., Barbaresi, P. and Conti, F., 2003, Postnatal development of high-affinity plasma membrane GABA transporters GAT-2 and GAT-3 in the rat cerebral cortex. Dev. Brain Res. 142: 7.CrossRefGoogle Scholar
  55. Mody, I., 2001, Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem. Res. 26: 907.CrossRefPubMedGoogle Scholar
  56. Nicholls, D. and Attwell, D., 1990, The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11: 462.CrossRefPubMedGoogle Scholar
  57. Norenberg, M.D. and Martinez-Hernandez, A., 1979, Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161: 303.CrossRefPubMedGoogle Scholar
  58. Olsen, M., Sarup, A., Larsson, O.M. and Schousboe, A., 2005, Effect of hyperosmotic conditions on the expression of the betaine-GABA-transporter (BGT-1) in cultured mouse astrocytes. Neurochem. Res. 30: 855.CrossRefPubMedGoogle Scholar
  59. O’Shea, R.D., Fodera, M.V., Aprico, K., Dehnes, Y., Danbolt, C., Crawford, D. and Beart, P.M., 2002, Evaluation of drugs acting at glutamate transporters in organotypic hippocampal cultures: new evidence on substrates and blockers in excitotoxicity. Neurochem. Res. 27: 5.CrossRefPubMedGoogle Scholar
  60. Parpura, V., Basarsky, T.A., Liu, F., Jeftinija, K., Jeftinija, S. and Haydon, P.G., 1994, Glutamate-mediated astrocyte-neuron signaling. Nature 369: 744.CrossRefPubMedGoogle Scholar
  61. Phillis, J.W., Ren, J. and O’Regan, M.H., 2000, Transporter reversal as a mechanism of glutamate release from the ischemic rat cerebral cortex: studies with DL-threo-beta-benzyloxyaspartate. Brain. Res. 868: 105.CrossRefPubMedGoogle Scholar
  62. Plaitakis, A. and Zaganas, I., 2001, Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J. Neurosci. Res. 66: 899.CrossRefPubMedGoogle Scholar
  63. Ribak, C.E., Tong, W.M. and Brecha, N.C., 1996a, GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J. Comp. Neurol. 367: 595.CrossRefPubMedGoogle Scholar
  64. Ribak, C.E., Tong, W.M. and Brecha, N.C., 1996b, Astrocytic processes compensate for the apparent lack of GABA transporters in the axon terminals of cerebellar Purkinje cells. Anat. Embryol. 193: 379.Google Scholar
  65. Roberts, P.J., 1974, Amino acid release from isolated rat dorsal root ganglia. Brain Res. 74: 327.CrossRefPubMedGoogle Scholar
  66. Roberts, E., 1991, Living systems are tonically inhibited, autonomous optimizers, and disinhibition coupled to variability generation is their major organizing principle: Inhibitory command-control at levels of membrane, genome, metabolism, brain, and society. Neurochem. Res. 16: 409.CrossRefPubMedGoogle Scholar
  67. Rossi, D.J., Oshima, T. and Attwell, D., 2000, Glutamate release in severe brain ischemia is mainly by reversed uptake. Nature 403: 316.CrossRefPubMedGoogle Scholar
  68. Sandberg, M., Butcher, S.P. and Hagberg, H., 1986, Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: In vivo dialysis of rat hippocampus. J. Neurochem. 47: 178.PubMedCrossRefGoogle Scholar
  69. Schousboe, A., 1981, Transport and metabolism of glutamate and GABA in neurons and glial cells. Int. Rev. Neurobiol. 22: 1.CrossRefPubMedGoogle Scholar
  70. Schousboe, A., 2003, Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem. Res. 28: 347.CrossRefPubMedGoogle Scholar
  71. Schousboe, A. and Frandsen, A., 1995, Glutamate receptors and neurotoxicity. In: CNS Neurotransmitters and Neuromodulators: Glutamate. T.W. Stone, ed., CRC Press, Boca Raton, FL, pp. 239-251.Google Scholar
  72. Schousboe, A. and Kanner, B., 2002, GABA transporters: functional and pharmacological properties. In: Glutamate and GABA Receptors and Transporters. J. Egebjerg, A. Schousboe and P. Krogsgaard-Larsen, eds., Taylor & Francis Publ., London, UK, pp. 337-349.Google Scholar
  73. Schousboe, A. and Waagepetersen, H.S., 2004, Role of astrocytes in homeostasis of glutamate and GABA during physiological and pathophysiological conditions. In: Non-Neuronal Cells of the Nervous System: Function and Dysfunction. L. Hertz, ed., Elsevier Science Publ., Amsterdam, The Netherlands, pp. 461-475.Google Scholar
  74. Schousboe, A. and Waagepetersen, H.S., 2005, Role of astrocytes in glutamate homeostasis: implications for excitotoxicity. Neurotox. Res. 8: 221.CrossRefPubMedGoogle Scholar
  75. Schousboe, A., Svenneby, G. and Hertz, L., 1977a, Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J. Neurochem. 29: 999.CrossRefPubMedGoogle Scholar
  76. Schousboe, A., Hertz, L. and Svenneby, G., 1977b, Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem. Res. 2: 217.CrossRefGoogle Scholar
  77. Schousboe, A., Hertz, L., Svenneby, G. and Kvamme, E., 1979, Phosphate activated glutaminase activity and glutamine uptake in primary cultures of astrocytes. J. Neurochem. 32: 943.CrossRefPubMedGoogle Scholar
  78. Schousboe, A., Larsson, O.M., Wood, J.D. and Krogsgaard-Larsen, P., 1983, Transport and metabolism of GABA in neurons and glia: implications for epilepsy. Epilepsia 24: 531.CrossRefPubMedGoogle Scholar
  79. Schousboe, A., Sarup, A., Bak, L.K., Waagepetersen, H.S. and Larsson, O.M., 2004a, Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission. Neurochem. Int. 45: 512.CrossRefGoogle Scholar
  80. Schousboe, A., Sarup, A., Larsson, O.M. and White, H.S., 2004b, GABA transporters as drug targets for modulation of GABAergic activity. Biochem. Pharmacol. 68: 1557.CrossRefPubMedGoogle Scholar
  81. Schousboe, A., Larsson, O.M., Sarup, A. and White, H.S., 2004c, Role of the betaine/GABA transporter (BGT-1/GAT2) for the control of epilepsy. Eur. J. Pharmacol. 500: 281.CrossRefPubMedGoogle Scholar
  82. Sihra, T.S. and Nicholls, D.G., 1987, Aminobutyrate can be released exocytotically from guinea-pig cerebral cortical synaptosomes. J. Neurochem. 49: 261.CrossRefPubMedGoogle Scholar
  83. Srinivasan, V., Neal, M.J. and Mitchell, J.F., 1969, The effect of electrical stimulation and high potassium concentration on efflux of [3H]gamma-aminobutyric acid from brain slices. J. Neurochem. 16: 1235.CrossRefPubMedGoogle Scholar
  84. van den Berg, C.J. and Garfinkel, D., 1971, A simulation study of brain compartments: Metabolism of glutamate and related substances in mouse brain. Biochem. J. 23: 211.Google Scholar
  85. Volterra, A. and Meldolesi, J., 2005, Quantal release of transmitter: not only from neurons but from astrocytes as well? In: Neuroglia, Second Edition. H. Kettenmann and B. Ransom, Oxford University Press, Oxford, UK, pp. 190-201.Google Scholar
  86. Waagepetersen, H.S., Shimamoto, K. and Schousboe, A., 2001, Comparison of effects of DL-threo-β-benzyloxyaspartate (DL-TBOA) and L-trans-pyrrolidine-2,4-dicarboxylate (t-2,4-PDC) on uptake and release of [3H]D-aspartate in astrocytes and glutamatergic neurons. Neurochem. Res. 26: 661.CrossRefPubMedGoogle Scholar
  87. Waagepetersen, H.S., Qu, H., Sonnewald, U., Shimamoto, K. and Schousboe, A., 2005, Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons. Neurochem. Int. 47: 92.CrossRefPubMedGoogle Scholar
  88. Wadiche, J.I., Arriza, J.L., Amara, S.G. and Kavanaugh, M.P., 1995, Kinetics of a human glutamate transporter. Neuron 14: 1019.CrossRefPubMedGoogle Scholar
  89. White, H.S., Sarup, A., Bolvig, T., Kristensen, A.S., Petersen, G., Nelson, N., Pickering, D.S., Larsson, O.M., Frølund, B., Krogsgaard-Larsen, P. and Schousboe, A., 2002, Correlation between anticonvulsant activity and inhibitory action on glial GABA uptake of the highly selective mouse GAT1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole (exo-THPO) and its N-alkylated analogs. J. Pharmacol. Exp. Therap. 302: 636.CrossRefGoogle Scholar
  90. White, H.S., Watson, W.P., Hansen, S., Slough, S., Sarup, A., Bolvig, T., Petersen, G., Larsson, O.M., Clausen, R.P., Frølund, B., Krogsgaard-Larsen, P. and Schousboe, A., 2005, First demonstration of a functional role for CNS betaine/GABA transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J. Pharmacol. Exp. Therap. 312: 866.CrossRefGoogle Scholar
  91. Wood, J.D., Kurylo, E. and Tsui, S.K., 1981, Interactions of di-n-propylacetate, gabaculine, and aminooxyacetic acid: anticonvulsant activity and the gamma-aminobutyrate system. J. Neurochem. 37: 1440.CrossRefPubMedGoogle Scholar
  92. Zhu, X.M. and Ong, W.Y., 2004, Changes in GABA transporters in the rat hippocampus after kainate-induced neuronal injury: decrease in GAT-1 and GAT-3 but upregulation of betaine/GABA transporter BGT-1. J. Neurosci. Res. 77: 402.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Dept. PharmacolDanish Univ. Pharm. Sci.CopenhagenDenmark

Personalised recommendations