Advertisement

Diabetic Retinopathy, Inflammation, and Proteasome

  • António F. Ambrósio
  • Paulo Pereira
  • José Cunha- Vaz

Diabetic retinopathy is a leading cause of vision loss and blindness in adults in developed countries. Growing evidence indicates that a low grade and chronic inflammatory process may have a key role in the pathogenesis of diabetic retinopathy, even at the early stages of the disease.

Keywords

Vascular Endothelial Growth Factor Diabetic Retinopathy Proteasome Inhibitor Leukocyte Adhesion Proliferative Diabetic Retinopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

14. References

  1. Abiko, T., Abiko, A., Clermont, A.C., Shoelson, B., Horio, N., Takahashi, J., Adamis, A.P., King, G.L. and Bursell, S.E., 2003, Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase-C activation. Diabetes 52: 829.PubMedGoogle Scholar
  2. Abu El-Asrar, A.M., Desmet, S., Meersschaert, A., Dralands, L., Missotten, L. and Geboes, K., 2001, Expression of the inducible isoform of nitric oxide synthase in the retinas of human subjects with diabetes mellitus. Am. J. Ophthalmol. 132: 551.PubMedGoogle Scholar
  3. Abu El-Asrar, A.M., Meersschaert, A., Dralands, L., Missotten, L. and Geboes, K., 2004, Inducible nitric oxide synthase and vascular endothelial growth factor are colocalized in the retinas of human subjects with diabetes. Eye 18: 306.PubMedGoogle Scholar
  4. Adamis, A.P., 2002, Is diabetic retinopathy an inflammatory disease? Br. J. Ophthalmol. 86: 363.PubMedGoogle Scholar
  5. Adams, J., 2002, Development of the proteasome inhibitor PS-341. Oncologist 7: 9.PubMedGoogle Scholar
  6. Adams, J. and Kauffman, M., 2004, Development of the proteasome inhibitor Velcade (Bortezomib), Cancer Invest. 22: 304.PubMedGoogle Scholar
  7. Adams, J., Behnke, M., Chen, S., Cruickshank, A.A., Dick, L.R., Grenier, L., Klunder, J.M., Ma, Y.T., Plamondon, L. and Stein, R. L., 1998, Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg. Med. Chem. Lett. 8: 333.PubMedGoogle Scholar
  8. Aiello, L.P., Avery, R.L., Arrigg, P.G., Keyt, B.A., Jampel, H.D., Shah, S.T., Pasquale, L.R., Thieme, H., Iwamoto, M.A., Park, J.E., et al., 1994, Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331: 1480.PubMedGoogle Scholar
  9. Aiello, L.P., Bursell, S.E., Clermont, A., Duh, E., Ishii, H., Takagi, C., Mori, F., Ciulla, T.A., Ways, K., Jirousek, M., Smith, L.E. and King, G.L., 1997, Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective β-isoform-selective inhibitor. Diabetes 46: 1473.PubMedGoogle Scholar
  10. Antonetti, D.A., Barber, A.J., Khin, S., Lieth, E., Tarbell, J.M. and Gardner, T.W., 1998, Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Diabetes 47: 1953.PubMedGoogle Scholar
  11. Antonetti, D.A., Barber, A.J., Hollinger, L.A., Wolpert, E.B. and Gardner, T.W., 1999, Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden. 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J. Biol. Chem. 274: 23463.PubMedGoogle Scholar
  12. Antonetti, D.A., Wolpert, E.B., DeMaio, L., Harhaj, N.S. and Scaduto, R.C., Jr., 2002, Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J. Neurochem. 80: 667.PubMedGoogle Scholar
  13. Ayalasomayajula, S.P. and Kompella, U.B., 2003, Celecoxib, a selective cyclooxygenase-2 inhibitor, inhibits retinal vascular endothelial growth factor expression and vascular leakage in a streptozotocin-induced diabetic rat model. Eur. J. Pharmacol. 458: 283.PubMedGoogle Scholar
  14. Bachmair, A., Finley, D. and Varshavsky, A., 1986, In vivo half-life of a protein is a function of its amino-terminal residue. Science 234: 179.PubMedGoogle Scholar
  15. Bai, N., Tang, S., Ma, J., Luo, Y. and Lin, S., 2003, Increased expression of intercellular adhesion molecule-1, vascular cellular adhesion molecule-1 and leukocyte common antigen in diabetic rat retina. Yan Ke Xue Bao. 19: 176.PubMedGoogle Scholar
  16. Baldwin, A.S., Jr., 1996, The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol. 14: 649.PubMedGoogle Scholar
  17. Bamforth, S.D., Lightman, S.L. and Greenwood, J., 1997, Interleukin-1 β-induced disruption of the retinal vascular barrier of the central nervous system is mediated through leukocyte recruitment and histamine. Am. J. Pathol. 150: 329.PubMedGoogle Scholar
  18. Barber, A.J., 2003, A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog. Neuropsychopharmacol. Biol. Psychiatry. 27: 283.PubMedGoogle Scholar
  19. Barber, A.J. and Antonetti, D.A., 2003, Mapping the blood vessels with paracellular permeability in the retinas of diabetic rats. Invest. Ophthalmol. Vis. Sci. 44: 5410.PubMedGoogle Scholar
  20. Barber, A.J., Antonetti, D.A. and Gardner, T.W., 2000, Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. Invest. Ophthalmol. Vis. Sci. 41: 3561.PubMedGoogle Scholar
  21. Barber, A.J., Antonetti, D.A., Kern, T.S., Reiter, C.E., Soans, R.S., Krady, J.K., Levison, S.W., Gardner, T.W. and Bronson, S.K., 2005, The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest. Ophthalmol. Vis. Sci. 46: 2210.PubMedGoogle Scholar
  22. Barouch, F.C., Miyamoto, K., Allport, J.R., Fujita, K., Bursell, S.E., Aiello, L.P., Luscinskas, F.W. and Adamis, A. P., 2000, Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest. Ophthalmol. Vis. Sci. 41: 1153.PubMedGoogle Scholar
  23. Ben-Mahmud, B.M., Mann, G.E., Datti, A., Orlacchio, A., Kohner, E.M. and Chibber, R., 2004, Tumor necrosis factor-alpha in diabetic plasma increases the activity of core 2 GlcNAc-T and adherence of human leukocytes to retinal endothelial cells: significance of core 2 GlcNAc-T in diabetic retinopathy. Diabetes 53: 2968.PubMedGoogle Scholar
  24. Becerra, S.P., 1997, Structure-function studies on PEDF. A noninhibitory serpin with neurotrophic activity. Adv. Exp. Med. Biol. 425: 223.PubMedGoogle Scholar
  25. Bogyo, M. and Wang, E.W., 2002, Proteasome inhibitors: complex tools for a complex enzyme. Curr. Top Microbiol. Immunol. 268: 185.PubMedGoogle Scholar
  26. Boyd, S.D., Tsai, K.Y. and Jacks, T., 2000, An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat. Cell Biol. 2: 563.PubMedGoogle Scholar
  27. Brownlee, M., 2005, The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54: 1615.PubMedGoogle Scholar
  28. Bullard, S.R., Hatchell, D.L., Cohen, H.J. and Rao, K.M., 1994, Increased adhesion of neutrophils to retinal vascular endothelial cells exposed to hyperosmolarity. Exp. Eye Res. 58: 641.PubMedGoogle Scholar
  29. Caldwell, R.B., Bartoli, M., Behzadian, M.A., El-Remessy, A.E., Al-Shabrawey, M., Platt, D.H. and Caldwell, R.W., 2003, Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab. Res. Rev. 19: 442.PubMedGoogle Scholar
  30. Carmo, A., Ramos, P., Reis, A., Proença, R. and Cunha-Vaz, J.G., 1998, Breakdown of the inner and outer blood retinal barrier in streptozotocin-induced diabetes. Exp. Eye Res. 67: 569.Google Scholar
  31. Carmo, A., Cunha-Vaz, J.G., Carvalho, A.P. and Lopes, M.C., 1999, L-arginine transport in retinas from streptozotocin diabetic rats: correlation with the level of IL-1β and NO synthase activity. Vision Res. 39: 3817.PubMedGoogle Scholar
  32. Carmo, A., Cunha-Vaz, J.G., Carvalho, A.P. and Lopes, M.C., 2000, Effect of cyclosporin-A on the blood-retinal barrier permeability in streptozotocin-induced diabetes. Mediators Inflamm. 9: 243.PubMedGoogle Scholar
  33. Carroll, W.J., Hollis, T.M. and Gardner, T.W., 1988, Retinal histamine synthesis is increased in experimental diabetes. Invest. Ophthalmol. Vis. Sci. 29: 1201.PubMedGoogle Scholar
  34. Carroll, J.E., Hess, D.C., Howard, E.F. and Hill, W.D., 2000, Is nuclear factor-kappaB a good treatment target in brain ischemia/reperfusion injury? Neuroreport 11: R1.PubMedGoogle Scholar
  35. Carter, R.S., Pennington, K.N., Arrate, P., Oltz, E.M. and Ballard, D.W., 2005, Site-specific monoubiquitination of IkappaB kinase IKKβ regulates its phosphorylation and persistent activation. J. Biol. Chem. 280: 43272.PubMedGoogle Scholar
  36. Chader, G.J., 2001, PEDF: raising both hopes and questions in controlling angiogenesis. Proc. Natl. Acad. Sci. USA 98: 2122.PubMedGoogle Scholar
  37. Chau, V., Tobias, J.W., Bachmair, A., Marriott, D., Ecker, D.J., Gonda, D.K. and Varshavsky, A., 1989, A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243: 1576.PubMedGoogle Scholar
  38. Chen, W., Jump, D.B., Grant, M.B., Esselman, W.J. and Busik, J.V. 2003, Dyslipidemia, but not hyperglycemia, induces inflammatory adhesion molecules in human retinal vascular endothelial cells. Invest. Ophthalmol. Vis. Sci. 44: 5016.PubMedGoogle Scholar
  39. Chibber, R., Ben-Mahmud, B.M., Mann, G.E., Zhang, J.J. and Kohner, E.M., 2003, Protein kinase C β2-dependent phosphorylation of core 2 GlcNAc-T promotes leukocyte-endothelial cell adhesion: a mechanism underlying capillary occlusion in diabetic retinopathy. Diabetes 52: 1519.PubMedGoogle Scholar
  40. Ciechanover, A., 2006, The ubiquitin proteolytic system: from a vague idea, through basic mechanisms and onto human diseases and drug targeting. Neurology. 66: S7.PubMedGoogle Scholar
  41. Cunha-Vaz, J.G., 1976, The blood-retinal barriers. Doc. Ophthalmol. 41: 287.PubMedGoogle Scholar
  42. Cunha-Vaz, J.G., 2000, Diabetic retinopathy: surrogate outcomes for drug development for diabetic retinopathy. Ophthalmologica 214: 377.PubMedGoogle Scholar
  43. Cunha-Vaz, J.G., 2001, Initial alterations in nonproliferative diabetic retinopathy. Ophthalmologica 215: 7.PubMedGoogle Scholar
  44. Cunha-Vaz, J., Faria de Abreu, J.R. and Campos, A.J., 1975, Early breakdown of the blood-retinal barrier in diabetes. Br. J. Ophthalmol. 59: 649.PubMedGoogle Scholar
  45. Curtis, T.M. and Scholfield, C.N., 2004, The role of lipids and protein kinase Cs in the pathogenesis of diabetic retinopathy. Diabetes Metab. Res. Rev. 20: 28.PubMedGoogle Scholar
  46. Dawson, D.W., Volpert, O.V., Gillis, P., Crawford, S.E., Xu, H., Benedict, W. and Bouck, N.P., 1999, Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285: 245.PubMedGoogle Scholar
  47. Deshaies, R.J., 1999, SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15: 435.PubMedGoogle Scholar
  48. Deshaies, R.J. and Ferrell, J.E., Jr., 2001, Multisite phosphorylation and the countdown to S phase. Cell 107: 819.PubMedGoogle Scholar
  49. Du, Y., Smith, M.A., Miller, C.M. and Kern, T.S., 2002, Diabetes-induced nitrative stress in the retina, and correction by aminoguanidine. J. Neurochem. 80: 771.PubMedGoogle Scholar
  50. Edelman, J.L., Lutz, D. and Castro, M.R., 2005, Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown. Exp. Eye Res. 80: 249.PubMedGoogle Scholar
  51. Elliott, P.J. and Ross, J.S., 2001, The proteasome: a new target for novel drug therapies. Am. J. Clin. Pathol. 116: 637.PubMedGoogle Scholar
  52. Elliott, P.J., Zollner, T.M. and Boehncke, W.H., 2003, Proteasome inhibition: a new anti-inflammatory strategy. J. Mol. Med. 81: 235.PubMedGoogle Scholar
  53. El-Remessy, A.B, Behzadian, M.A., Abou-Mohamed, G., Franklin, T., Caldwell, R.W. and Caldwell, R.B., 2003, Experimental diabetes causes breakdown of the blood-retina barrier by a mechanism involving tyrosine nitration and increases in expression of vascular endothelial growth factor and urokinase plasminogen activator receptor. Am. J. Pathol. 162: 1995.PubMedGoogle Scholar
  54. Enea, N.A., Hollis, T.M., Kern, J.A. and Gardner, T.W., 1989, Histamine H1 receptors mediate increased blood-retinal barrier permeability in experimental diabetes. Arch. Ophthalmol. 107: 270.PubMedGoogle Scholar
  55. Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al., 2001, C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43.PubMedGoogle Scholar
  56. Feldman, R.M., Correll, C.C., Kaplan, K.B. and Deshaies, R.J., 1997, A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91: 221.PubMedGoogle Scholar
  57. Ferrara, N. and Gerber, H.P., 2001, The role of vascular endothelial growth factor in angiogenesis. Acta Haematol. 106: 148.PubMedGoogle Scholar
  58. Frank, R.N., 2004, Diabetic retinopathy. N. Engl. J. Med. 350: 48.PubMedGoogle Scholar
  59. Franks, W.A., Limb, G.A., Stanford, M.R., Ogilvie, J., Wolstencroft, R.A., Chignell, A.H. and Dumonde, D.C., 1992, Cytokines in human intraocular inflammation. Curr. Eye Res. 11: 187.PubMedGoogle Scholar
  60. Gao, G., Li, Y., Zhang, D., Gee, S., Crosson, C. and Ma, J., 2001, Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett. 489: 270.PubMedGoogle Scholar
  61. Gardner, T.W., 1995, Histamine, ZO-1 and increased blood-retinal barrier permeability in diabetic retinopathy. Trans. Am. Ophthalmol. Soc. 93: 583.PubMedGoogle Scholar
  62. Gardner, T.W., Eller, A.W., Friberg, T.R., D’Antonio, J.A. and Hollis, T.M., 1995, Antihistamines reduce blood-retinal barrier permeability in type I (insulin-dependent) diabetic patients with nonproliferative retinopathy. A pilot study. Retina 15: 134.PubMedGoogle Scholar
  63. Gardner, T.W., Antonetti, D.A., Barber, A.J., LaNoue, K.F. and Levison, S.W., 2002, Diabetic retinopathy: more than meets the eye. Surv. Ophthalmol. 47: 253.Google Scholar
  64. Gerhardinger, C., Costa, M.B., Coulombe, M.C., Toth, I., Hoehn, T. and Grosu, P., 2005, Expression of acute-phase response proteins in retinal Muller cells in diabetes. Invest. Ophthalmol. Vis. Sci. 46: 349.PubMedGoogle Scholar
  65. Geyer, R.K., Yu, Z.K. and Maki, C.G., 2000, The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat .Cell Biol. 2: 569.PubMedGoogle Scholar
  66. Glickman, M.H. and Ciechanover, A., 2002, The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82: 373.PubMedGoogle Scholar
  67. Glickman, M.H., Rubin, D.M., Fu, H., Larsen, C.N., Coux, O., Wefes, I., Pfeifer, G., Cjeka, Z., Vierstra, R., Baumeister, W., et al., 1999, Functional analysis of the proteasome regulatory particle. Mol. Biol. Rep. 26: 21.PubMedGoogle Scholar
  68. Glotzer, M., Murray, A.W. and Kirschner, M.W., 1991, Cyclin is degraded by the ubiquitin pathway. Nature 349: 132.PubMedGoogle Scholar
  69. Goldberg, A.L. and Rock, K., 2002, Not just research tools-proteasome inhibitors offer therapeutic promise. Nat. Med. 8: 338.PubMedGoogle Scholar
  70. Gorbea, C., Taillandier, D. and Rechsteiner, M.. 1999, Assembly of the regulatory complex of the 26S proteasome. Mol. Biol. Rep. 26: 15.PubMedGoogle Scholar
  71. Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H.D. and Huber, R., 1997, Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386: 463.PubMedGoogle Scholar
  72. Hammes, H.P., Lin, J., Bretzel, R.G., Brownlee, M. and Breier, G., 1998, Upregulation of the vascular endothelial growth factor/vascular endothelial growth factor receptor system in experimental background diabetic retinopathy of the rat. Diabetes 47: 401.PubMedGoogle Scholar
  73. Harhaj, N.S., Barber, A.J. and Antonetti, D.A., 2002, Platelet-derived growth factor mediates tight junction redistribution and increases permeability in MDCK cells. J. Cell Physiol. 193: 349.PubMedGoogle Scholar
  74. Hayden, M.S. and Ghosh, S., 2004, Signaling to NF-kappaB. Genes Dev. 18: 2195.PubMedGoogle Scholar
  75. Heissmeyer, V., Krappmann, D., Hatada, E.N. and Scheidereit, C., 2001, Shared pathways of IkappaB kinase-induced SCF(βTrCP)-mediated ubiquitination and degradation for the NF-kappaB precursor p105 and IkappaBalpha. Mol. Cell Biol. 21: 1024.PubMedGoogle Scholar
  76. Hershko, A., 1997, Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr. Opin. Cell Biol. 9: 788.PubMedGoogle Scholar
  77. Hollis, T.M., Sill, H.W., Butler, C., Campos, M.J. and Gardner, T.W., 1992, Astemizole reduces blood-retinal barrier leakage in experimental diabetes. J. Diabetes Complications 6: 230.PubMedGoogle Scholar
  78. Hughes, J.M., Brink, A., Witmer, A.N., Hanraads-de Riemer, M., Klaassen, I. and Schlingemann, R.O., 2004, Vascular leucocyte adhesion molecules unaltered in the human retina in diabetes. Br. J. Ophthalmol. 88: 566.PubMedGoogle Scholar
  79. Huibregtse, J.M., Scheffner, M., Beaudenon, S. and Howley, P.M., 1995, A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA 92: 2563.PubMedGoogle Scholar
  80. Ishida, S., Usui, T., Yamashiro, K., Kaji, Y., Amano, S., Ogura, Y., Hida, T., Oguchi, Y., Ambati, J., Miller, J.W., et al., 2003, VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J. Exp. Med. 198: 483.PubMedGoogle Scholar
  81. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S. and Kaelin, W.G., Jr., 2001, HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464.PubMedGoogle Scholar
  82. Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., et al., 2001, Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468.PubMedGoogle Scholar
  83. Joussen, A.M., Huang, S., Poulaki, V., Camphausen, K., Beecken, W.D., Kirchhof, B. and Adamis, A.P., 2001a, In vivo retinal gene expression in early diabetes. Invest. Ophthalmol. Vis. Sci. 42: 3047.PubMedGoogle Scholar
  84. Joussen, A.M, Murata, T., Tsujikawa, A., Kirchhof, B., Bursell, S.E. and Adamis, A.P., 2001b, Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am. J. Pathol. 158: 147.PubMedGoogle Scholar
  85. Joussen, A.M., Poulaki, V., Mitsiades, N., Kirchhof, B., Koizumi, K., Dohmen, S. and Adamis, A.P., 2002a, Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J. 16: 438.PubMedGoogle Scholar
  86. Joussen, A.M., Poulaki, V., Qin, W., Kirchhof, B., Mitsiades, N., Wiegand, S.J., Rudge, J., Yancopoulos, G.D. and Adamis, A.P., 2002b, Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am. J. Pathol. 160: 501.PubMedGoogle Scholar
  87. Joussen, A.M., Poulaki, V., Mitsiades, N., Cai, W.Y., Suzuma, I., Pak, J., Ju, S.T., Rook, S.L., Esser, P., Mitsiades, C.S., Kirchhof, B., Adamis, A.P. and Aiello, L.P., 2003, Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J. 17: 76.PubMedGoogle Scholar
  88. Joussen, A.M., Poulaki, V., Le, M.L., Koizumi, K., Esser, C., Janicki, H., Schraermeyer, U., Kociok, N., Fauser, S., Kirchhof, B., Kern, T.S. and Adamis, A.P., 2004, A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 18: 1450.PubMedGoogle Scholar
  89. Kamura, T., Sato, S., Iwai, K., Czyzyk-Krzeska, M., Conaway, R.C. and Conaway, J.W., 2000, Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc. Natl. Acad. Sci. USA 97: 10430.PubMedGoogle Scholar
  90. Karin, M. and Ben-Neriah, Y., 2000, Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu. Rev. Immunol. 18: 621.PubMedGoogle Scholar
  91. Kishino, T., Lalande, M. and Wagstaff, J., 1997, UBE3A/E6-AP mutations cause Angelman syndrome. Nat. Genet. 15: 70.PubMedGoogle Scholar
  92. Koepp, D.M., Harper, J.W. and Elledge, S.J., 1999, How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 97: 431.PubMedGoogle Scholar
  93. Kornitzer, D. and Ciechanover, A., 2000, Modes of regulation of ubiquitin-mediated protein degradation. J. Cell Physiol. 182: 1.PubMedGoogle Scholar
  94. Kowluru, R.A., 2001, Diabetes-induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are interrelated. Acta Diabetol. 38: 179.PubMedGoogle Scholar
  95. Kowluru, R.A. and Odenbach, S., 2004a, Role of interleukin-1β in the development of retinopathy in rats: effect of antioxidants. Invest. Ophthalmol. Vis. Sci. 45: 4161.PubMedGoogle Scholar
  96. Kowluru, R.A. and Odenbach, S., 2004b, Role of interleukin-1β in the pathogenesis of diabetic retinopathy. Br. J. Ophthalmol. 88: 1343.PubMedGoogle Scholar
  97. Kowluru, R.A., Engerman, R.L., Case, G.L. and Kern, T.S., 2001, Retinal glutamate in diabetes and effect of antioxidants. Neurochem. Int. 38: 385.PubMedGoogle Scholar
  98. Kowluru, R.A., Koppolu, P., Chakrabarti, S. and Chen, S., 2003, Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic. Res. 37: 1169.PubMedGoogle Scholar
  99. Krady, J.K., Basu, A., Allen, C.M., Xu, Y., LaNoue, K.F., Gardner, T.W. and Levison, S.W., 2005, Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54: 1559.PubMedGoogle Scholar
  100. Kwon, Y.T., Reiss, Y., Fried, V.A., Hershko, A., Yoon, J.K., Gonda, D.K., Sangan, P., Copeland, N.G., Jenkins, N.A. and Varshavsky, A., 1998, The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc. Natl. Acad. Sci. USA 95: 7898.PubMedGoogle Scholar
  101. Leal, E.C., Manivannan, A., Aveleira, C., Serra, A., Castilho, A., Terasaki, T., Hosoya, K.-I., Cotter, M., Ambrosio, A. and Forrester, J.V., 2005a, Leukocyte adhesion and blood-retinal barrier (BRB) breakdown in diabetic retinopathy (DR): role of nitric oxide (NO). IOVS ARVO E-Abstract 423.Google Scholar
  102. Leal, E.C., Manivannan, A., Cotter, M., Ambrosio, A.F. and Forrester, J.V., 2005b, Inducible nitric oxide synthase is involved in increased leukocyte adhesion to retinal vessels induced by diabetes. Ophthalmic Res. 37.S1.05: 62.Google Scholar
  103. Leal, E.C., Santiago, A.R. and Ambrosio, A.F., 2005c, Old and new drug targets in diabetic retinopathy: from biochemical changes to inflammation and neurodegeneration. Curr. Drug Targets CNS Neurol. Disord. 4: 421.PubMedGoogle Scholar
  104. Limb, G.A., Chignell, A.H., Green, W., LeRoy, F. and Dumonde, D.C., 1996, Distribution of TNF-alpha and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy. Br. J. Ophthalmol. 80: 168.PubMedGoogle Scholar
  105. Limb, G.A., Soomro, H., Janikoun, S., Hollifield, R.D. and Shilling, J., 1999a, Evidence for control of tumor necrosis factor-alpha (TNF-alpha) activity by TNF receptors in patients with proliferative diabetic retinopathy. Clin. Exp. Immunol. 115: 409.PubMedGoogle Scholar
  106. Limb, G.A., Webster, L., Soomro, H., Janikoun, S. and Shilling, J., 1999b, Platelet expression of tumor necrosis factor-alpha (TNF-alpha), TNF receptors and intercellular adhesion molecule-1 (ICAM-1) in patients with proliferative diabetic retinopathy. Clin. Exp. Immunol. 118: 213.PubMedGoogle Scholar
  107. Lorenzi, M. and Gerhardinger, C., 2001, Early cellular and molecular changes induced by diabetes in the retina. Diabetologia. 44: 791.PubMedGoogle Scholar
  108. Lorick, K.L., Jensen, J.P., Fang, S., Ong, A.M., Hatakeyama, S. and Weissman, A.M., 1999, RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. USA 96: 11364.PubMedGoogle Scholar
  109. Lorick, K.L., Tsai, Y.-C., Yang, Y. and Weissman, A., 2005, In: Protein Degradation, vol. 1, R. J. Mayer, A. Ciechanover and M. Rechsteiner, (Eds.). Wiley-VHC, Weinheim pp. 44-101.Google Scholar
  110. Lu, M., Perez, V.L., Ma, N., Miyamoto, K., Peng, H.B., Liao, J.K. and Adamis, A.P., 1999, VEGF increases retinal vascular ICAM-1 expression in vivo. Invest. Ophthalmol. Vis. Sci. 40: 1808.PubMedGoogle Scholar
  111. Luna, J.D., Chan, C.C., Derevjanik, N.L., Mahlow, J., Chiu, C., Peng, B., Tobe, T., Campochiaro, P.A. and Vinores, S.A., 1997, Blood-retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: comparison with vascular endothelial growth factor, tumor necrosis factor alpha, and interleukin-1β-mediated breakdown. J. Neurosci. Res. 49: 268.PubMedGoogle Scholar
  112. Mamputu, J.C. and Renier, G., 2004, Advanced glycation end-products increase monocyte adhesion to retinal endothelial cells through vascular endothelial growth factor-induced ICAM-1 expression: inhibitory effect of antioxidants. J. Leukoc. Biol. 75: 1062.PubMedGoogle Scholar
  113. Maniatis, T., 1999, A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev. 13: 505.PubMedGoogle Scholar
  114. Masson, N., Willam, C., Maxwell, P.H., Pugh, C.W. and Ratcliffe, P.J., 2001, Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 20: 5197.PubMedGoogle Scholar
  115. Mathews, M.K., Merges, C., McLeod, D.S. and Lutty, G.A., 1997, Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 38: 2729.PubMedGoogle Scholar
  116. Matsuda, S., Gomi, F., Oshima, Y., Tohyama, M. and Tano, Y., 2005, Vascular endothelial growth factor reduced and connective tissue growth factor induced by triamcinolone in ARPE19 cells under oxidative stress. Invest. Ophthalmol. Vis. Sci. 46: 1062.PubMedGoogle Scholar
  117. Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R. and Ratcliffe, P.J., 1999, The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 399: 271.PubMedGoogle Scholar
  118. Meylan, E. and Tschopp, J., 2005, The RIP kinases: crucial integrators of cellular stress. Trends Biochem. Sci. 30: 151.PubMedGoogle Scholar
  119. McLeod, D.S., Lefer, D.J., Merges, C. and Lutty, G.A., 1995, Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroids. Am. J. Pathol. 147: 642.PubMedGoogle Scholar
  120. Miyamoto, K., Hiroshiba, N., Tsujikawa, A. and Ogura, Y., 1998, In vivo demonstration of increased leukocyte entrapment in retinal microcirculation of diabetic rats. Invest. Ophthalmol. Vis. Sci. 39: 2190.PubMedGoogle Scholar
  121. Miyamoto, K., Khosrof, S., Bursell, S.-E., Rohan, R., Murata, T., Clermont, A., Aiello, L.P., Ogura, Y. and Adamis, A.P., 1999, Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc. Natl. Acad. Sci. USA 96: 10836.PubMedGoogle Scholar
  122. Mohr, S., 2004, Potential new strategies to prevent the development of diabetic retinopathy. Expert. Opin. Investig. Drugs. 13: 189.PubMedGoogle Scholar
  123. Mohr, S., Xi, X., Tang, J. and Kern, T.S., 2002, Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes. 51: 1172.PubMedGoogle Scholar
  124. Moore, T.C, Moore, J.E., Kaji, Y., Frizzell, N., Usui, T., Poulaki, V., Campbell, I.L., Stitt, A.W., Gardiner, T.A., Archer, D.B. and Adamis, A.P., 2003, The role of advanced glycation end-products in retinal microvascular leukostasis. Invest. Ophthalmol. Vis. Sci. 44: 4457.PubMedGoogle Scholar
  125. Nauck, M., Roth, M., Tamm, M., Eickelberg, O., Wieland, H., Stulz, P. and Perruchoud, A.P., 1997, Induction of vascular endothelial growth factor by platelet-activating factor and platelet-derived growth factor is downregulated by corticosteroids. Am. J. Respir. Cell Mol. Biol. 16: 398.PubMedGoogle Scholar
  126. Nauck, M., Karakiulakis, G., Perruchoud, A.P., Papakonstantinou, E. and Roth, M., 1998, Corticosteroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells. Eur. J. Pharmacol. 341: 309.PubMedGoogle Scholar
  127. Nonaka, A., Kiryu, J., Tsujikawa, A., Yamashiro, K., Miyamoto, K., Nishiwaki, H., Honda, Y. and Ogura, Y., 2000, PKC-β inhibitor (LY333531) attenuates leukocyte entrapment in retinal microcirculation of diabetic rats. Invest. Ophthalmol. Vis. Sci. 41: 2702.PubMedGoogle Scholar
  128. Orian, A., Gonen, H., Bercovich, B., Fajerman, I., Eytan, E., Israel, A., Mercurio, F., Iwai, K., Schwartz, A.L. and Ciechanover, A., 2000, SCF(β)(-TrCP) ubiquitin ligase-mediated processing of NF-kappaB p105 requires phosphorylation of its C-terminus by IkappaB kinase. EMBO J. 19: 2580.PubMedGoogle Scholar
  129. Ozkaynak, E., Finley, D. and Varshavsky, A., 1984, The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 312: 663.PubMedGoogle Scholar
  130. Page, A.M. and Hieter, P., 1999, The anaphase-promoting complex: new subunits and regulators. Annu. Rev. Biochem. 68: 583.PubMedGoogle Scholar
  131. Palombella, V.J., Rando, O.J., Goldberg, A.L. and Maniatis, T., 1994, The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78: 773.PubMedGoogle Scholar
  132. Park, J.W., Park, S.J., Park, S.H., Kim, K.Y., Chung, J.W., Chun, M.H. and Oh, S.J., 2005, Upregulated expression of neuronal nitric oxide synthase in experimental diabetic retina. Neurobiol. Dis. (Epub ahead of print).Google Scholar
  133. Phillips, J.B., Williams, A.J., Adams, J., Elliott, P.J. and Tortella, F.C., 2000, Proteasome inhibitor PS519 reduces infarction and attenuates leukocyte infiltration in a rat model of focal cerebral ischemia. Stroke 31: 1686.PubMedGoogle Scholar
  134. Pickart, C.M., 2001, Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70: 503.PubMedGoogle Scholar
  135. Pickart, C.M., 2004, Back to the future with ubiquitin, Cell 116: 181.PubMedGoogle Scholar
  136. Pickart, C.M. and VanDemark, A.P., 2000, Opening doors into the proteasome. Nat. Struct. Biol. 7: 999.PubMedGoogle Scholar
  137. Qaum, T., Xu, Q., Joussen, A.M., Clemens, M.W., Qin, W., Miyamoto, K., Hassessian, H., Wiegand, S.J., Rudge, J., Yancopoulos, G.D. and Adamis, A.P., 2001, VEGF-initiated blood-retinal barrier breakdown in early diabetes. Invest. Ophthalmol. Vis. Sci. 42: 2408.PubMedGoogle Scholar
  138. Rasmussen, H., Chu, K.W., Campochiaro, P., Gehlbach, P.L., Haller, J.A., Handa, J.T., Nguyen, Q.D. and Sung, J.U., 2001, Clinical protocol. An open-label, phase I, single administration, dose-escalation study of ADGVPEDF.11D (ADPEDF) in neovascular age-related macular degeneration (AMD). Hum. Gene Ther. 12: 2029.PubMedGoogle Scholar
  139. Reiss, Y. and Hershko, A., 1990, Affinity purification of ubiquitin-protein ligase on immobilized protein substrates. Evidence for the existence of separate NH2-terminal binding sites on a single enzyme. J. Biol. Chem. 265: 3685.PubMedGoogle Scholar
  140. Reiss, Y., Kaim, D. and Hershko, A., 1988, Specificity of binding of NH2-terminal residue of proteins to ubiquitin-protein ligase. Use of amino acid derivatives to characterize specific binding sites. J. Biol. Chem. 263: 2693.PubMedGoogle Scholar
  141. Robinson, G.S., Pierce, E.A., Rook, S.L., Foley, E., Webb, R. and Smith, L.E., 1996, Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc. Natl. Acad. Sci. USA 93: 4851.PubMedGoogle Scholar
  142. Rock, K.L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D. and Goldberg, A.L., 1994, Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78: 761.PubMedGoogle Scholar
  143. Romeo, G., Liu, W.H., Asnaghi, V., Kern, T.S. and Lorenzi, M., 2002, Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 51: 2241.PubMedGoogle Scholar
  144. Rungger-Brandle, E., Dosso, A.A. and Leuenberger, P.M., 2000, Glial reactivity, an early feature of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 41: 1971.PubMedGoogle Scholar
  145. Saishin, Y., Saishin, Y., Takahashi, K., Lima e Silva, R., Hylton, D., Rudge, J.S., Wiegand, S.J. and Campochiaro, P.A., 2003a, VEGF-TRAP(R1R2) suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J. Cell Physiol. 195: 241.PubMedGoogle Scholar
  146. Saishin, Y., Saishin, Y., Takahashi, K., Melia, M., Vinores, S.A. and Campochiaro, P.A., 2003b, Inhibition of protein kinase C decreases prostaglandin-induced breakdown of the blood-retinal barrier. J. Cell Physiol. 195: 210.PubMedGoogle Scholar
  147. Scheffner, M., Huibregtse, J.M., Vierstra, R.D. and Howley, P.M., 1993, The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495.PubMedGoogle Scholar
  148. Scheffner, M., Nuber, U. and Huibregtse, J.M., 1995, Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373: 81.PubMedGoogle Scholar
  149. Schmidt, A.M. and Stern, D.M., 2000, RAGE: a new target for the prevention and treatment of the vascular and inflammatory complications of diabetes. Trends Endocrinol. Metab. 11: 368.PubMedGoogle Scholar
  150. Schmitz, M.L., Bacher, S. and Kracht, M., 2001, I kappa B-independent control of NF-kappa B activity by modulatory phosphorylations. Trends Biochem. Sci. 26: 186.PubMedGoogle Scholar
  151. Schroder, S., Palinski, W. and Schmid-Schonbein, G.W., 1991, Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am. J. Pathol. 139: 81.PubMedGoogle Scholar
  152. Shima, D.T., Adamis, A.P., Ferrara, N., Yeo, K.T., Yeo, T.K., Allende, R., Folkman, J. and D’Amore, P.A., 1995, Hypoxic induction of endothelial cell growth factors in retinal cells: identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen. Mol. Med. 1: 182.PubMedGoogle Scholar
  153. Shimura, H., Hattori, N., Kubo, S., Mizuno, Y., Asakawa, S., Minoshima, S., Shimizu, N., Iwai, K., Chiba, T., Tanaka, K., et al., 2000, Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25: 302.PubMedGoogle Scholar
  154. Skowyra, D., Craig, K.L., Tyers, M., Elledge, S.J. and Harper, J.W., 1997, F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91: 209.PubMedGoogle Scholar
  155. Spranger, J., Meyer-Schwickerath, R., Klein, M., Schatz, H. and Pfeiffer, A., 1995, TNF-alpha level in the vitreous body. Increase in neovascular eye diseases and proliferative diabetic retinopathy. Med. Klin. (Munich) 90: 134.Google Scholar
  156. Stellmach, V., Crawford, S.E., Zhou, W. and Bouck, N., 2001, Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor, Proc. Natl. Acad. Sci. USA 98: 2593.PubMedGoogle Scholar
  157. Stitt, A.W., 2003, The role of advanced glycation in the pathogenesis of diabetic retinopathy. Exp. Mol. Pathol. 75: 95.PubMedGoogle Scholar
  158. Stone, J., Itin, A., Alon, T., Pe’er, J., Gnessin, H., Chan-Ling, T. and Keshet, E., 1995, Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15: 4738.PubMedGoogle Scholar
  159. Stone, J., Chan-Ling, T., Pe’er, J., Itin A., Gnessin, H. and Keshet, E., 1996, Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopahty of prematurity. Invest. Ophtalmol. Vis. Sci. 37: 290.Google Scholar
  160. Sugawara, R., Hikichi, T., Kitaya, N., Mori, F., Nagaoka, T., Yoshida, A. and Szabo, C., 2004, Peroxynitrite decomposition catalyst, FP15, and poly(ADP-ribose) polymerase inhibitor, PJ34, inhibit leukocyte entrapment in the retinal microcirculation of diabetic rats. Curr. Eye Res. 29: 11.PubMedGoogle Scholar
  161. Sun, L. and Chen, Z.J., 2004, The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol. 16: 119.PubMedGoogle Scholar
  162. Sutter, C.H., Laughner, E. and Semenza, G.L., 2000, Hypoxia-inducible factor 1-alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc. Natl. Acad. Sci. USA 97: 4748.PubMedGoogle Scholar
  163. Suzuma, K., Takahara, N., Suzuma, I., Isshiki, K., Ueki, K., Leitges, M., Aiello, L.P. and King, G.L., 2002, Characterization of protein kinase C β isoform’s action on retinoblastoma protein phosphorylation, vascular endothelial growth factor-induced endothelial cell proliferation, and retinal neovascularization. Proc. Natl. Acad. Sci. USA 99: 721.PubMedGoogle Scholar
  164. Takeda, M., Mori, F., Yoshida, A., Takamiya, A., Nakagomi, S., Sato, E. and Kiyama, H., 2001, Constitutive nitric oxide synthase is associated with retinal vascular permeability in early diabetic rats. Diabetologia. 44: 1043.PubMedGoogle Scholar
  165. Tamura, H., Miyamoto, K., Kiryu, J., Miyahara, S., Katsuta, H., Hirose, F., Musashi, K. and Yoshimura, N., 2005, Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Invest. Ophthalmol. Vis. Sci. 46: 1440.PubMedGoogle Scholar
  166. Tolentino, M.J., Miller, J.W., Gragoudas, E.S., Jakobiec, F.A., Flynn, E., Chatzistefanou, K., Ferrara, N. and Adamis, A.P., 1996, Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 103: 1820.PubMedGoogle Scholar
  167. Tolentino, M.J., McLeod, D.S., Taomoto, M., Otsuji, T., Adamis, A.P. and Lutty, G.A., 2002, Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate. Am. J. Ophthalmol. 133: 373.PubMedGoogle Scholar
  168. Varshavsky, A., 1997, The N-end rule pathway of protein degradation. Genes Cells 2: 13.PubMedGoogle Scholar
  169. Varshavsky, A., Turner, G., Du, F. and Xie, Y., 2000, Felix Hoppe-Seyler Lecture 2000. The ubiquitin system and the N-end rule pathway. Biol. Chem. 381: 779.PubMedGoogle Scholar
  170. Vinitsky, A., Michaud, C., Powers, J.C. and Orlowski, M., 1992, Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry 31: 9421.PubMedGoogle Scholar
  171. Vinores, S.A., Van Niel, E., Swerdloff, J.L. and Campochiaro, P.A., 1993, Electron microscopic immuno-cytochemical demonstration of blood-retinal barrier breakdown in human diabetics and its association with aldose reductase in retinal vascular endothelium and retinal pigment epithelium. Histochem. J. 25: 648.PubMedGoogle Scholar
  172. Welchman, R.L., Gordon, C. and Mayer, R.J., 2005, Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6: 599.PubMedGoogle Scholar
  173. Wertz, I.E., O’Rourke, K.M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., Wu, P., Wiesmann, C., Baker, R., Boone, D.L., et al., 2004, Deubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signaling. Nature 430: 694.PubMedGoogle Scholar
  174. Wilkinson, K.D., 2003, Signal transduction: aspirin, ubiquitin and cancer. Nature 424: 738.PubMedGoogle Scholar
  175. Wilkinson-Berka, J.L., 2004, Vasoactive factors and diabetic retinopathy: vascular endothelial growth factor, cyclooxygenase-2 and nitric oxide. Curr. Pharm. Des. 10: 3331.PubMedGoogle Scholar
  176. Williams, B., Gallacher, B., Patel, H. and Orme, C., 1997, Glucose-induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro. Diabetes 46: 1497.PubMedGoogle Scholar
  177. Wise, G.N., 1956, Retinal neovascularization. Trans. Am. Acad. Opththalmol. Soc. 54: 729.Google Scholar
  178. Xu, X., Zhu, Q., Xia, X., Zhang, S., Gu, Q. and Luo, D., 2004, Blood-retinal barrier breakdown induced by activation of protein kinase C via vascular endothelial growth factor in streptozotocin-induced diabetic rats. Curr. Eye Res. 28: 251.PubMedGoogle Scholar
  179. Zeng, X.X., Ng, Y.K. and Ling, E.A., 2000, Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis. Neurosci. 17: 463.PubMedGoogle Scholar
  180. Zheng, N., Wang, P., Jeffrey, P.D. and Pavletich, N.P., 2000, Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102: 533.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • António F. Ambrósio
    • 1
  • Paulo Pereira
    • 1
  • José Cunha- Vaz
    • 1
  1. 1.Center of Ophtalmology of Coimbra, IBILI, Faculty of MedicineUniversity of CoimbraPortugal

Personalised recommendations