Polyglutamine Expansion Diseases – the Case of Machado-Joseph Disease

  • Sandra Macedo- Ribeiro
  • Luís Pereira de Almeida
  • Ana Luísa Carvalho
  • Ana Cristina Rego

Polyglutamine expansion diseases are inherited neurodegenerative disorders caused by the expansion of CAG repeat mutations in the coding region of genes encoding for specific proteins, mostly of unknown function. One example is Machado-Joseph disease (MJD) or spinocerebellar ataxia 3, which was described in people of Portuguese descendents and is caused by expanded ataxin-3, a polyubiquitin-binding protein. Like other neurodegenerative diseases, MJD exhibits gradual progression of symptoms that finally result in the death of the patients. Despite the identification of the genetic defects, the molecular mechanisms by which the mutant protein initiates the pathogenic process remain to be elucidated. This chapter resumes some of the most important features of polyglutamine expansion diseases with a special emphasis on MJD pathogenesis. Particular relevance is given to ataxin-3 structure and function, the formation of aggregates of mutant ataxin-3, the characteristics of current disease animal models and the most recent therapeutic strategies proposed for the treatment of MJD.


Spinocerebellar Ataxia Spinocerebellar Ataxia Type Polyglutamine Disease Polyglutamine Tract Glutamine Repeat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht, M., Golatta, M., Wullner, U. and Lengauer, T., 2004, Structural and functional analysis of ataxin-2 and ataxin-3. Eur. J. Biochem. 271: 3155.PubMedGoogle Scholar
  2. Altschuler, E.L., Hud, N.V., Mazrimas, J.A. and Rupp, B., 1997, Random coil conformation for extended polyglutamine stretches in aqueous soluble monomeric peptides. J. Pept. Res. 50: 73.PubMedGoogle Scholar
  3. Alves, S., Regulier, E., Deglon, N. and de Almeida, L.P., 2005, Lentiviral-based overexpression and silencing of the ataxin-3 gene. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005. Online. Program No. 427.9.Google Scholar
  4. Andersen, K.M., Hofmann, K. and Hartmann-Petersen, R., 2005, Ubiquitin-binding proteins: similar, but different. Essays Biochem. 41: 49.PubMedGoogle Scholar
  5. Apostol, B.L., Kazantsev, A., Raffioni, S., Illes, K., Pallos, J., Bodai, L., Slepko, N., Bear, J.E., Gertler, F.B., Hersch, S., Housman, D.E., Marsh, J.L. and Thompson, L.M., 2003, A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila. Proc. Natl .Acad. Sci. USA 100: 5950.PubMedGoogle Scholar
  6. Aronin, N., Kim, M., Laforet, G. and DiFiglia, M., 1999, Are there multiple pathways in the pathogenesis of Huntington’s disease? Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 995.PubMedGoogle Scholar
  7. Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R. and Finkbeiner, S., 2004, Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431: 805.PubMedGoogle Scholar
  8. Bates, G.P., 2001, Huntington’s disease. Exploiting expression. Nature 413: 691.PubMedGoogle Scholar
  9. Bates, G., 2003, Huntingtin aggregation and toxicity in Huntington’s disease. Lancet 361: 1642.PubMedGoogle Scholar
  10. Bennett, M.J., Sawaya, M.R. and Eisenberg, D., 2006, Deposition diseases and 3D domain swapping. Structure 14: 811.PubMedGoogle Scholar
  11. Berke, S.J., Schmied, F.A., Brunt, E.R., Ellerby, L.M. and Paulson, H.L., 2004, Caspase-mediated proteolysis of the polyglutamine disease protein ataxin-3. J. Neurochem. 89: 908.PubMedGoogle Scholar
  12. Berke, S.J., Chai, Y., Marrs, G.L., Wen, H. and Paulson, H.L., 2005, Defining the role of ubiquitin-interacting motifs in the polyglutamine disease protein, ataxin-3. J. Biol. Chem. 280: 32026.PubMedGoogle Scholar
  13. Berthelier, V., Hamilton, J.B., Chen, S. and Wetzel, R., 2001, A microtiter plate assay for polyglutamine aggregate extension. Anal. Biochem. 295: 227.PubMedGoogle Scholar
  14. Bevivino, A.E. and Loll, P.J., 2001, An expanded glutamine repeat destabilizes native ataxin-3 structure and mediates formation of parallel beta-fibrils. Proc. Natl. Acad. Sci. USA 98: 11955.PubMedGoogle Scholar
  15. Bezprozvanny, I. and Hayden, M.R., 2004, Deranged neuronal calcium signaling and Huntington disease. Biochem. Biophys. Res. Commun. 322: 1310.PubMedGoogle Scholar
  16. Boeddrich, A., Gaumer, S., Haacke, A., Tzvetkov, N., Albrecht, M., Evert, B.O., Muller, E.C., Lurz, R., Breuer, P., Schugardt, N., et al., 2006, An arginine/lysine-rich motif is crucial for VCP/p97-mediated modulation of ataxin-3 fibrillogenesis. EMBO J. 25: 1547.PubMedGoogle Scholar
  17. Brooks, E., Arrasate, M., Cheung, K. and Finkbeiner, S.M., 2004, Using antibodies to analyze polyglutamine stretches. Methods. Mol. Biol. 277: 103.PubMedGoogle Scholar
  18. Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C.M. and Stefani, M., 2002, Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416: 507.PubMedGoogle Scholar
  19. Burnett, B.G. and Pittman, R.N., 2005, The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation. Proc. Natl. Acad. Sci. USA 102: 4330.PubMedGoogle Scholar
  20. Burnett, B., Li, F. and Pittman, R.N., 2003, The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum. Mol. Genet. 12: 3195.PubMedGoogle Scholar
  21. Burright, E.N., Davidson, J.D., Duvick, L.A., Koshy, B., Zoghbi, H.Y. and Orr, H.T., 1997, Identification of a self-association region within the SCA1 gene product, ataxin-1. Hum. Mol. Genet. 6: 513.PubMedGoogle Scholar
  22. Caplen, N.J., Taylor, J.P., Statham, V.S., Tanaka, F., Fire, A. and Morgan, R.A., 2002, Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum. Mol. Genet. 11: 175.PubMedGoogle Scholar
  23. Caughey, B. and Lansbury, P.T., 2003, Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26: 267.PubMedGoogle Scholar
  24. Cemal, C.K., Carroll, C.J., Lawrence, L., Lowrie, M.B., Ruddle, P., Al-Mahdawi, S., King, R.H., Pook, M.A., Huxley, C. and Chamberlain, S., 2002, YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum. Mol. Genet. 11: 1075.PubMedGoogle Scholar
  25. Cha, J.H., 2000, Transcriptional dysregulation in Huntington’s disease. Trends Neurosci. 23: 387.PubMedGoogle Scholar
  26. Chai, Y., Koppenhafer, S.L., Bonini, N.M. and Paulson, H.L., 1999a, Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J. Neurosci. 19: 10338.PubMedGoogle Scholar
  27. Chai, Y., Koppenhafer, S.L., Shoesmith, S.J., Perez, M.K. and Paulson, H.L., 1999b, Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum. Mol. Genet. 8: 673.PubMedGoogle Scholar
  28. Chai, Y., Berke, S.S., Cohen, R.E. and Paulson, H.L., 2004, Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways. J. Biol. Chem. 279: 3605.PubMedGoogle Scholar
  29. Chan, H.Y., Warrick, J.M., Gray-Board, G.L., Paulson, H.L. and Bonini, N.M., 2000, Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum. Mol. Genet. 9: 2811.Google Scholar
  30. Chen, Y.W., Stott, K. and Perutz, M.F., 1999, Crystal structure of a dimeric chymotrypsin inhibitor 2 mutant containing an inserted glutamine repeat. Proc. Natl. Acad. Sci. USA 96: 1257.PubMedGoogle Scholar
  31. Chen, L., Shinde, U., Ortolan, T.G. and Madura, K., 2001a, Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep. 2: 933.PubMedGoogle Scholar
  32. Chen, S., Berthelier, V., Yang, W. and Wetzel, R., 2001b, Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol. 311: 173.PubMedGoogle Scholar
  33. Chen, S., Berthelier, V., Hamilton, J.B., O’Nuallain, B. and Wetzel, R., 2002a, Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41: 7391.PubMedGoogle Scholar
  34. Chen, S., Ferrone, F.A. and Wetzel, R., 2002b, Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. USA 99: 11884.PubMedGoogle Scholar
  35. Chevalier-Larsen, E.S., O’Brien, C.J., Wang, H., Jenkins, S.C., Holder, L., Lieberman, A.P. and Merry, D.E., 2004, Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. J. Neurosci. 24: 4778.PubMedGoogle Scholar
  36. Chong, S.S., McCall, A.E., Cota, J., Subramony, S.H., Orr, H.T., Hughes, M.R. and Zoghbi, H.Y., 1995, Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat. Genet. 10: 344.PubMedGoogle Scholar
  37. Chou, A.H., Yeh, T.H., Kuo, Y.L., Kao, Y.C., Jou, M.J., Hsu, C.Y., Tsai, S.R., Kakizuka, A. and Wang, H.L., 2006, Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiol. Dis. 21: 333.PubMedGoogle Scholar
  38. Chow, M.K., Ellisdon, A.M., Cabrita, L.D. and Bottomley, S.P., 2004a, Polyglutamine expansion in ataxin-3 does not affect protein stability: implications for misfolding and disease. J. Biol. Chem. 279: 47643.PubMedGoogle Scholar
  39. Chow, M.K., Mackay, J.P., Whisstock, J.C., Scanlon, M.J. and Bottomley, S.P., 2004b, Structural and functional analysis of the Josephin domain of the polyglutamine protein ataxin-3. Biochem. Biophys. Res. Commun. 322: 387.PubMedGoogle Scholar
  40. Chow, M.K., Paulson, H.L. and Bottomley, S.P., 2004c, Destabilization of a non-pathological variant of ataxin-3 results in fibrillogenesis via a partially folded intermediate: a model for misfolding in polyglutamine disease. J. Mol. Biol. 335: 333.PubMedGoogle Scholar
  41. Clark, H.B., Burright, E.N., Yunis, W.S., Larson, S., Wilcox, C., Hartman, B., Matilla, A., Zoghbi, H.Y. and Orr, H.T., 1997, Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J. Neurosci. 17: 7385.PubMedGoogle Scholar
  42. Colomer Gould, V.F., 2005, Mouse models of Machado-Joseph disease and other polyglutamine spinocerebellar ataxias. NeuroRx 2: 480.PubMedGoogle Scholar
  43. Coutinho, P. and Andrade, C., 1978, Autosomal dominant system degeneration in Portuguese families of the Azores Islands. A new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology 28: 703.PubMedGoogle Scholar
  44. Cummings, C.J. and Zoghbi, H.Y., 2000, Fourteen and counting: unraveling trinucleotide repeat diseases. Hum. Mol. Genet. 9: 909.PubMedGoogle Scholar
  45. Davies, S.W., Turmaine, M., Cozens, B.A., DiFiglia, M., Sharp, A.H., Ross, C.A., Scherzinger, E., Wanker, E.E., Mangiarini, L. and Bates, G.P., 1997, Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90: 537.PubMedGoogle Scholar
  46. de Almeida, L.P., Zala, D., Aebischer, P. and Deglon, N., 2001, Neuroprotective effect of a CNTF-expressing lentiviral vector in the quinolinic acid rat model of Huntington’s disease. Neurobiol. Dis. 8: 433.PubMedGoogle Scholar
  47. de Chiara, C., Menon, R.P., Adinolfi, S., de Boer, J., Ktistaki, E., Kelly, G., Calder, L., Kioussis, D. and Pastore, A., 2005, The AXH domain adopts alternative folds the solution structure of HBP1 AXH. Structure (Camb.) 13: 743.Google Scholar
  48. Demuro, A., Mina, E., Kayed, R., Milton, S.C., Parker, I. and Glabe, C.G., 2005, Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem. 280: 17294.PubMedGoogle Scholar
  49. Desai, U.A., Pallos, J., Ma, A.A., Stockwell, B.R., Thompson, L.M., Marsh, J.L. and Diamond, M.I., 2006, Biologically active molecules that reduce polyglutamine aggregation and toxicity. Hum. Mol. Genet. 15: 2114.PubMedGoogle Scholar
  50. DiFiglia, M., Sapp, E., Chase, K.O., Davies, S.W., Bates, G.P., Vonsattel, J.P. and Aronin, N., 1997, Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990.PubMedGoogle Scholar
  51. Djousse, L., Knowlton, B., Hayden, M., Almqvist, E.W., Brinkman, R., Ross, C., Margolis, R., Rosenblatt, A., Durr, A., Dode, C., Morrison, P.J., Novelletto, A., Frontali, M., Trent, R.J., McCusker, E., Gomez-Tortosa, E., Mayo, D., Jones, R., Zanko, A., Nance, M., Abramson, R., Suchowersky, O., Paulsen, J., Harrison, M., Yang, Q., Cupples, L.A., Gusella, J.F., MacDonald, M.E. and Myers, R.H., 2003, Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. Am. J. Med. Genet. A 119: 279.Google Scholar
  52. do Carmo Costa, M., Gomes-da-Silva, J., Miranda, C.J., Sequeiros, J., Santos, M.M. and Maciel, P., 2004, Genomic structure, promoter activity and developmental expression of the mouse homologue of the Machado-Joseph disease (MJD) gene. Genomics 84: 361.PubMedGoogle Scholar
  53. Donaldson, K.M., Li, W., Ching, K.A., Batalov, S., Tsai, C.C. and Joazeiro, C.A., 2003, Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates. Proc. Natl. Acad. Sci. USA 100: 8892.PubMedGoogle Scholar
  54. Doss-Pepe, E.W., Stenroos, E.S., Johnson, W.G. and Madura, K., 2003, Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol. Cell. Biol. 23: 6469.PubMedGoogle Scholar
  55. Durr, A., Stevanin, G., Cancel, G., Duyckaerts, C., Abbas, N., Didierjean, O., Chneiweiss, H., Benomar, A., LyonCaen, O., Julien, J., Serdaru, M., Penet, C., Agid, Y. and Brice, A., 1996, Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular and neuropathological features. Ann. Neurol. 39: 490.PubMedGoogle Scholar
  56. Echaniz-Laguna, A., Rousso, E., Anheim, M., Cossee, M. and Tranchant, C., 2005, A family with early-onset and rapidly progressive X-linked spinal and bulbar muscular atrophy. Neurology 64: 1458.PubMedGoogle Scholar
  57. Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T., 2001, Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494.PubMedGoogle Scholar
  58. Ellerby, L.M., Andrusiak, R.L., Wellington, C.L., Hackam, A.S., Propp, S.S., Wood, J.D., Sharp, A.H., Margolis, R.L., Ross, C.A., Salvesen, G.S., Hayden, M.R. and Bredesen, D.E., 1999, Cleavage of atrophin-1 at caspase site aspartic acid 109 modulates cytotoxicity. J. Biol. Chem. 274: 8730.PubMedGoogle Scholar
  59. Ellisdon, A.M., Thomas, B. and Bottomley, S.P., 2006, The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step. J. Biol. Chem. 281: 16888.PubMedGoogle Scholar
  60. Evert, B.O., Wullner, U., Schulz, J.B., Weller, M., Groscurth, P., Trottier, Y., Brice, A. and Klockgether, T., 1999, High level expression of expanded full-length ataxin-3 in vitro causes cell death and formation of intranuclear inclusions in neuronal cells. Hum. Mol. Genet. 8: 1169.PubMedGoogle Scholar
  61. Evert, B.O., Vogt, I.R., Kindermann, C., Ozimek, L., de Vos, R.A., Brunt, E.R., Schmitt, I., Klockgether, T. and Wullner, U., 2001, Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains. J. Neurosci. 21: 5389.PubMedGoogle Scholar
  62. Fan, X., Dion, P., Laganiere, J., Brais, B. and Rouleau, G.A., 2001, Oligomerization of polyalanine expanded PABPN1 facilitates nuclear protein aggregation that is associated with cell death. Hum. Mol. Genet. 10: 2341.PubMedGoogle Scholar
  63. Farrer, L. A., 1985, Diabetes mellitus in Huntington disease. Clin. Genet. 27: 62.PubMedCrossRefGoogle Scholar
  64. Ferrigno, P. and Silver, P.A., 2000, Polyglutamine expansions: proteolysis, chaperones, and the dangers of promiscuity. Neuron 26: 9.PubMedGoogle Scholar
  65. Filipek, R., Rzychon, M., Oleksy, A., Gruca, M., Dubin, A., Potempa, J. and Bochtler, M., 2003, The Staphostatin-staphopain complex: a forward binding inhibitor in complex with its target cysteine protease. J. Biol. Chem. 278: 40959.PubMedGoogle Scholar
  66. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C., 1998, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806.PubMedGoogle Scholar
  67. Fujigasaki, H., Uchihara, T., Koyano, S., Iwabuchi, K., Yagishita, S., Makifuchi, T., Nakamura, A., Ishida, K., Toru, S., Hirai, S., et al., 2000, Ataxin-3 is translocated into the nucleus for the formation of intranuclear inclusions in normal and Machado-Joseph disease brains. Exp. Neurol. 165: 248.PubMedGoogle Scholar
  68. Fujigasaki, H., Uchihara, T., Takahashi, J., Matsushita, H., Nakamura, A., Koyano, S., Iwabuchi, K., Hirai, S. and Mizusawa, H., 2001, Preferential recruitment of ataxin-3 independent of expanded polyglutamine: an immunohistochemical study on Marinesco bodies. J. Neurol. Neurosurg. Psychiatry 71: 518.PubMedGoogle Scholar
  69. Furusho, K., Yoshizawa, T., Hara, J., Yamanaka, A., Sakurai, T., Goto, K. and Shoji, S., 2005a, Effects of intraperitoneal administration of ectoine on the cell death produced by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch in the ataxin-3/orexin transgenic mice. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005. Online Program No. 427.12.Google Scholar
  70. Furusho, K., Yoshizawa, T. and Shoji, S., 2005b, Ectoine alters subcellular localization of inclusions and reduces apoptotic cell death induced by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol. Dis. 20: 170.PubMedGoogle Scholar
  71. Gales, L., Cortes, L., Almeida, C., Melo, C.V., do Carmo Costa, M., Maciel, P., Clarke, D.T., Damas, A.M. and Macedo-Ribeiro, S., 2005, Towards a structural understanding of the fibrillization pathway in Machado-Joseph’s disease: trapping early oligomers of non-expanded ataxin-3. J. Mol. Biol. 353: 642.PubMedGoogle Scholar
  72. Gardian, G., Browne, S.E., Choi, D.K., Klivenyi, P., Gregorio, J., Kubilus, J.K., Ryu, H., Langley, B., Ratan, R.R., Ferrante, R.J., et al., 2005, Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J. Biol. Chem. 280: 556.PubMedGoogle Scholar
  73. Gauthier, L.R., Charrin, B.C., Borrell-Pages, M., Dompierre, J.P., Rangone, H., Cordelieres, F.P., De, M.J., MacDonald, M.E., Lessmann, V., Humbert, S. and Saudou, F., 2004, Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118: 127.PubMedGoogle Scholar
  74. Gilman, S., Sima, A.A., Junck, L., Kluin, K.J., Koeppe, R.A., Lohman, M.E. and Little, R., 1996, Spinocerebellar ataxia type 1 with multiple system degeneration and glial cytoplasmic inclusions. Ann. Neurol. 39: 241.PubMedGoogle Scholar
  75. Glabe, C.G. and Kayed, R., 2006, Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66: S74.PubMedGoogle Scholar
  76. Gordon-Smith, D.J., Carbajo, R.J., Stott, K. and Neuhaus, D., 2001, Solution studies of chymotrypsin inhibitor-2 glutamine insertion mutants show no interglutamine interactions. Biochem. Biophys. Res. Commun. 280: 855.PubMedGoogle Scholar
  77. Goti, D., Katzen, S.M., Mez, J., Kurtis, N., Kiluk, J., Ben-Haiem, L., Jenkins, N.A., Copeland, N.G., Kakizuka, A., Sharp, A.H., et al., 2004, A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J. Neurosci. 24: 10266.PubMedGoogle Scholar
  78. Goto, J., Watanabe, M., Ichikawa, Y., Yee, S.B., Ihara, N., Endo, K., Igarashi, S., Takiyama, Y., Gaspar, C., Maciel, P., et al., 1997, Machado-Joseph disease gene products carrying different carboxyl termini. Neurosci. Res. 28: 373.PubMedGoogle Scholar
  79. Gouw, L.G., Castaneda, M.A., McKenna, C.K., Digre, K.B., Pulst, S.M., Perlman, S., Lee, M.S., Gomez, C., Fischbeck, K., Gagnon, D., Storey, E., Bird, T., Jeri, F.R. and Ptacek, L.J., 1998, Analysis of the dynamic mutation in the SCA7 gene shows marked parental effects on CAG repeat transmission. Hum. Mol. Genet. 7: 525.PubMedGoogle Scholar
  80. Griffin, J.L., Cemal, C.K. and Pook, M.A., 2004, Defining a metabolic phenotype in the brain of a transgenic mouse model of spinocerebellar ataxia 3. Physiol. Genomics 16: 334.PubMedGoogle Scholar
  81. Gunawardena, S., Her, L.S., Brusch, R.G., Laymon, R.A., Niesman, I.R., Gordesky-Gold, B., Sintasath, L., Bonini, N.M. and Goldstein, L.S., 2003, Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40: 25.PubMedGoogle Scholar
  82. Guo, Z. and Eisenberg, D., 2006, Runaway domain swapping in amyloid-like fibrils of T7 endonuclease I. Proc. Natl. Acad. Sci. USA 103: 8042.PubMedGoogle Scholar
  83. Gusella, J.F. and MacDonald, M.E., 2000, Molecular genetics: unmasking polyglutamine triggers in neuro-degenerative disease. Nat. Rev. Neurosci. 1: 109.PubMedGoogle Scholar
  84. Gwinn-Hardy, K., Singleton, A., O’Suilleabhain, P., Boss, M., Nicholl, D., Adam, A., Hussey, J., Critchley, P., Hardy, J. and Farrer, M., 2001, Spinocerebellar ataxia type 3 phenotypically resembling Parkinson’s disease in a black family. Arch. Neurol. 58: 296.PubMedGoogle Scholar
  85. Haacke, A., Broadley, S.A., Boteva, R., Tzvetkov, N., Hartl, F.U. and Breuer, P., 2006, Proteolytic cleavage of polyglutamine-expanded ataxin-3 is critical for aggregation and sequestration of non-expanded ataxin-3. Hum. Mol. Genet. 15: 555.PubMedGoogle Scholar
  86. Hagenah, J.M., Zuhlke, C., Hellenbroich, Y., Heide, W. and Klein, C., 2004, Focal dystonia as a presenting sign of spinocerebellar ataxia 17. Mov. Disord. 19: 217.PubMedGoogle Scholar
  87. Hara, J., Beuckmann, C.T., Nambu, T., Willie, J.T., Chemelli, R.M., Sinton, C.M., Sugiyama, F., Yagami, K., Goto, K., Yanagisawa, M. and Sakurai, T., 2001, Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30: 345.PubMedGoogle Scholar
  88. Harper, S.Q., Staber, P.D., He, X., Eliason, S.L., Martins, I.H., Mao, Q., Yang, L., Kotin, R.M., Paulson, H.L. and Davidson, B.L., 2005, RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc. Natl. Acad. Sci. USA 102: 5820.PubMedGoogle Scholar
  89. Hayashi, Y., Kakita, A., Yamada, M., Koide, R., Igarashi, S., Takano, H., Ikeuchi, T., Wakabayashi, K., Egawa, S., Tsuji, S. and Takahashi, H., 1998, Hereditary dentatorubral-pallidoluysian atrophy: detection of widespread ubiquitinated neuronal and glial intranuclear inclusions in the brain. Acta Neuropathol. (Berl.) 96: 547.Google Scholar
  90. HDCRG, 1993, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72: 971.Google Scholar
  91. Heiser, V., Scherzinger, E., Boeddrich, A., Nordhoff, E., Lurz, R., Schugardt, N., Lehrach, H. and Wanker, E.E., 2000, Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc. Natl. Acad. Sci. USA 97: 6739.PubMedGoogle Scholar
  92. Heiser, V., Engemann, S., Brocker, W., Dunkel, I., Boeddrich, A., Waelter, S., Nordhoff, E., Lurz, R., Schugardt, N., Rautenberg, S., et al., 2002, Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington’s disease by using an automated filter retardation assay. Proc. Natl. Acad. Sci. USA 99 (suppl. 4): 16400.PubMedGoogle Scholar
  93. Heuser, I.J., Chase, T.N. and Mouradian, M.M., 1991, The limbic-hypothalamic-pituitary-adrenal axis in Huntington’s disease. Biol. Psychiatry 30: 943.PubMedGoogle Scholar
  94. Higashiyama, H., Hirose, F., Yamaguchi, M., Inoue, Y.H., Fujikake, N., Matsukage, A. and Kakizuka, A., 2002, Identification of ter94, Drosophila VCP, as a modulator of polyglutamine-induced neurodegeneration. Cell Death Differ. 9: 264.PubMedGoogle Scholar
  95. Hirabayashi, M., Inoue, K., Tanaka, K., Nakadate, K., Ohsawa, Y., Kamei, Y., Popiel, A.H., Sinohara, A., Iwamatsu, A., Kimura, Y., et al., 2001, VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death Differ. 8: 977.PubMedGoogle Scholar
  96. Hockly, E., Richon, V.M., Woodman, B., Smith, D.L., Zhou, X., Rosa, E., Sathasivam, K., Ghazi-Noori, S., Mahal, A., Lowden, P.A., et al., 2003, Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 100: 2041.PubMedGoogle Scholar
  97. Huang, C.C., Faber, P.W., Persichetti, F., Mittal, V., Vonsattel, J.P., MacDonald, M.E. and Gusella, J.F., 1998, Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat. Cell Mol. Genet. 24: 217.PubMedGoogle Scholar
  98. Ichikawa, Y., Goto, J., Hattori, M., Toyoda, A., Ishii, K., Jeong, S.Y., Hashida, H., Masuda, N., Ogata, K., Kasai, F., Hirai, M., Maciel, P., Rouleau, G.A., Sakaki, Y. and Kanazawa, I., 2001, The genomic structure and expression of MJD, the Machado-Joseph disease gene. J. Hum. Genet. 46: 413.PubMedGoogle Scholar
  99. Ikeda, H., Yamaguchi, M., Sugai, S., Aze, Y., Narumiya, S. and Kakizuka, A., 1996, Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat. Genet. 13: 196.PubMedGoogle Scholar
  100. Imbert, G., Saudou, F., Yvert, G., Devys, D., Trottier, Y., Garnier, J.M., Weber, C., Mandel, J.L., Cancel, G., Abbas, N., Durr, A., Didierjean, O., Stevanin, G., Agid, Y. and Brice, A., 1996, Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat. Genet. 14: 285.PubMedGoogle Scholar
  101. Jana, N.R., Dikshit, P., Goswami, A., Kotliarova, S., Murata, S., Tanaka, K. and Nukina, N., 2005, Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J. Biol. Chem. 280: 11635.PubMedGoogle Scholar
  102. Janowski, R., Kozak, M., Abrahamson, M., Grubb, A. and Jaskolski, M., 2005, A3D domain-swapped human cystatin C with amyloid like intermolecular beta-sheets. Proteins 61: 570.PubMedGoogle Scholar
  103. Johnston, S.C., Riddle, S.M., Cohen, R.E. and Hill, C.P., 1999, Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J. 18: 3877.PubMedGoogle Scholar
  104. Kagan, B.L., 2005, Amyloidosis and protein folding. Science 307: 42.PubMedGoogle Scholar
  105. Kagan, B.L., Hirakura, Y., Azimov, R. and Azimova, R., 2001, The channel hypothesis of Huntington’s disease. Brain. Res. Bull. 56: 281.PubMedGoogle Scholar
  106. Kanazawa, I., 1998, Dentatorubral-pallidoluysian atrophy or Naito-Oyanagi disease. Neurogenetics 2: 1.PubMedGoogle Scholar
  107. Kanazawa, I., 1999, Molecular pathology of dentatorubral-pallidoluysian atrophy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 1069.PubMedGoogle Scholar
  108. Kato, T., Tanaka, F., Yamamoto, M., Yosida, E., Indo, T., Watanabe, H., Yoshiwara, T., Doyu, M. and Sobue, G., 2000, Sisters homozygous for the spinocerebellar ataxia type 6 (SCA6)/CACNA1A gene associated with different clinical phenotypes. Clin. Genet. 58: 69.PubMedGoogle Scholar
  109. Katsuno, M., Adachi, H., Doyu, M., Minamiyama, M., Sang, C., Kobayashi, Y., Inukai, A. and Sobue, G., 2003, Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nat. Med. 9: 768.PubMedGoogle Scholar
  110. Katsuno, M., Adachi, H., Waza, M., Banno, H., Suzuki, K., Tanaka, F., Doyu, M. and Sobue, G., 2006, Pathogenesis, animal models and therapeutics in Spinal and bulbar muscular atrophy (SBMA). Exp. Neurol. 200: 8.PubMedGoogle Scholar
  111. Kawaguchi, Y., Okamoto, T., Taniwaki, M., Aizawa, M., Inoue, M., Katayama, S., Kawakami, H., Nakamura, S., Nishimura, M., Akiguchi, I., et al., 1994, CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat. Genet. 8: 221.PubMedGoogle Scholar
  112. Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W. and Glabe, C.G., 2003, Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300: 486.PubMedGoogle Scholar
  113. Kazlauskaite, J., Young, A., Gardner, C.E., Macpherson, J.V., Venien-Bryan, C. and Pinheiro, T.J., 2005, An unusual soluble beta-turn-rich conformation of prion is involved in fibril formation and toxic to neuronal cells. Biochem. Biophys. Res. Commun. 328: 292.PubMedGoogle Scholar
  114. Kettner, M., Willwohl, D., Hubbard, G.B., Rub, U., Dick, E.J., Jr., Cox, A.B., Trottier, Y., Auburger, G., Braak, H. and Schultz, C., 2002, Intranuclear aggregation of nonexpanded ataxin-3 in marinesco bodies of the nonhuman primate substantia nigra. Exp. Neurol. 176: 117.PubMedGoogle Scholar
  115. Kim, Y.T., Shin, S.M., Lee, W.Y., Kim, G.M. and Jin, D.K., 2004, Expression of expanded polyglutamine protein induces behavioral changes in Drosophila (polyglutamine-induced changes in Drosophila). Cell Mol. Neurobiol. 24: 109.PubMedGoogle Scholar
  116. Koide, R., Kobayashi, S., Shimohata, T., Ikeuchi, T., Maruyama, M., Saito, M., Yamada, M., Takahashi, H. and Tsuji, S., 1999, A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum. Mol. Genet. 8: 2047.PubMedGoogle Scholar
  117. Kumada, S., Hayashi, M., Mizuguchi, M., Nakano, I., Morimatsu, Y. and Oda, M., 2000, Cerebellar degeneration in hereditary dentatorubral-pallidoluysian atrophy and Machado-Joseph disease. Acta Neuropathol. (Berl.) 99: 48.Google Scholar
  118. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. and Fischbeck, K.H., 1991, Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352: 77.PubMedGoogle Scholar
  119. La Spada, A.R., Paulson, H.L. and Fischbeck, K.H., 1994, Trinucleotide repeat expansion in neurological disease. Ann. Neurol. 36: 814.PubMedGoogle Scholar
  120. Leblhuber, F., Peichl, M., Neubauer, C., Reisecker, F., Steinparz, F.X., Windhager, E. and Maschek, W., 1995, Serum dehydroepiandrosterone and cortisol measurements in Huntington’s chorea. J. Neurol. Sci. 132: 76.PubMedGoogle Scholar
  121. Lecerf, J.M., Shirley, T.L., Zhu, Q., Kazantsev, A., Amersdorfer, P., Housman, D.E., Messer, A. and Huston, J.S., 2001, Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington’s disease. Proc. Natl. Acad. Sci.USA 98: 4764.PubMedGoogle Scholar
  122. Lee, W.C., Yoshihara, M. and Littleton, J.T., 2004, Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 101: 3224.PubMedGoogle Scholar
  123. Lewis, S.E., Mannion, R.J., White, F.A., Coggeshall, R.E., Beggs, S., Costigan, M., Martin, J.L., Dillmann, W.H. and Woolf, C.J., 1999, A role for HSP27 in sensory neuron survival. J. Neurosci. 19: 8945.PubMedGoogle Scholar
  124. Li, F., Macfarlan, T., Pittman, R.N. and Chakravarti, D., 2002, Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J. Biol. Chem. 277: 45004.PubMedGoogle Scholar
  125. Lieberman, A.P. and Fischbeck, K.H., 2000, Triplet repeat expansion in neuromuscular disease. Muscle Nerve 23: 843.PubMedGoogle Scholar
  126. Linhartova, I., Repitz, M., Draber, P., Nemec, M., Wiche, G. and Propst, F., 1999, Conserved domains and lack of evidence for polyglutamine length polymorphism in the chicken homolog of the Machado-Joseph disease gene product ataxin-3. Biochim. Biophys. Acta 1444: 299.PubMedGoogle Scholar
  127. Lunkes, A., Trottier, Y., Fagart, J., Schultz, P., Zeder-Lutz, G., Moras, D. and Mandel, J.L., 1999, Properties of polyglutamine expansion in vitro and in a cellular model for Huntington’s disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 1013.PubMedGoogle Scholar
  128. Maciel, P., Costa, M.C., Ferro, A., Rousseau, M., Santos, C.S., Gaspar, C., Barros, J., Rouleau, G.A., Coutinho, P. and Sequeiros, J., 2001, Improvement in the molecular diagnosis of Machado-Joseph disease. Arch. Neurol. 58: 1821.PubMedGoogle Scholar
  129. Mao, Y., Senic-Matuglia, F., Di Fiore, P.P., Polo, S., Hodsdon, M.E. and De Camilli, P., 2005, Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. Proc. Natl. Acad. Sci. USA 102: 12700.PubMedGoogle Scholar
  130. Marchal, S., Shehi, E., Harricane, M.C., Fusi, P., Heitz, F., Tortora, P. and Lange, R., 2003, Structural instability and fibrillar aggregation of non-expanded human ataxin-3 revealed under high pressure and temperature. J. Biol. Chem. 278: 31554.PubMedGoogle Scholar
  131. Markianos, M., Panas, M., Kalfakis, N. and Vassilopoulos, D., 2005, Plasma testosterone in male patients with Huntington’s disease: relations to severity of illness and dementia. Ann. Neurol. 57: 520.PubMedGoogle Scholar
  132. Masino, L. and Pastore, A., 2002, Glutamine repeats: structural hypotheses and neurodegeneration. Biochem. Soc. Trans. 30: 548.PubMedGoogle Scholar
  133. Masino, L., Kelly, G., Leonard, K., Trottier, Y. and Pastore, A., 2002, Solution structure of polyglutamine tracts in GST-polyglutamine fusion proteins. FEBS Lett. 513: 267.PubMedGoogle Scholar
  134. Masino, L., Musi, V., Menon, R.P., Fusi, P., Kelly, G., Frenkiel, T.A., Trottier, Y. and Pastore, A., 2003, Domain architecture of the polyglutamine protein ataxin-3: a globular domain followed by a flexible tail. FEBS Lett. 549: 21.PubMedGoogle Scholar
  135. Masino, L., Nicastro, G., Menon, R.P., Dal Piaz, F., Calder, L. and Pastore, A., 2004, Characterization of the structure and the amyloidogenic properties of the Josephin domain of the polyglutamine-containing protein ataxin-3. J. Mol. Biol. 344: 1021.PubMedGoogle Scholar
  136. Matsumoto, M., Yada, M., Hatakeyama, S., Ishimoto, H., Tanimura, T., Tsuji, S., Kakizuka, A., Kitagawa, M. and Nakayama, K.I., 2004, Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO J. 23: 659.PubMedGoogle Scholar
  137. Matsumura, R., Futamura, N., Fujimoto, Y., Yanagimoto, S., Horikawa, H., Suzumura, A. and Takayanagi, T., 1997, Spinocerebellar ataxia type 6. Molecular and clinical features of 35 Japanese patients including one homozygous for the CAG repeat expansion. Neurology 49: 1238.PubMedGoogle Scholar
  138. Matsuyama, Z., Izumi, Y., Kameyama, M., Kawakami, H. and Nakamura, S., 1999, The effect of CAT trinucleotide interruptions on the age at onset of spinocerebellar ataxia type 1 (SCA1). J. Med. Genet. 36: 546.PubMedGoogle Scholar
  139. McCampbell, A., Taylor, J.P., Taye, A.A., Robitschek, J., Li, M., Walcott, J., Merry, D., Chai, Y., Paulson, H., Sobue, G. and Fischbeck, K.H., 2000, CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9: 2197.PubMedGoogle Scholar
  140. McGowan, D.P., van Roon-Mom, W., Holloway, H., Bates, G.P., Mangiarini, L., Cooper, G.J., Faull, R.L. and Snell, R.G., 2000, Amyloid-like inclusions in Huntington’s disease. Neuroscience 100: 677.PubMedGoogle Scholar
  141. Michalik, A. and Van Broeckhoven, C., 2003, Pathogenesis of polyglutamine disorders: aggregation revisited. Hum. Mol. Genet. 12 (Suppl. 2): R173.PubMedGoogle Scholar
  142. Miller, V.M., Xia, H., Marrs, G.L., Gouvion, C.M., Lee, G., Davidson, B.L. and Paulson, H.L., 2003, Allele-specific silencing of dominant disease genes. Proc. Natl. Acad. Sci. USA 100: 7195.PubMedGoogle Scholar
  143. Miller, V.M., Nelson, R.F., Gouvion, C.M., Williams, A., Rodriguez-Lebron, E., Harper, S.Q., Davidson, B.L., Rebagliati, M.R. and Paulson, H.L., 2005a, CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J. Neurosci. 25: 9152.PubMedGoogle Scholar
  144. Miller, T.W., Zhou, C., Gines, S., MacDonald, M.E., Mazarakis, N.D., Bates, G.P., Huston, J.S. and Messer, A., 2005b, A human single-chain Fv intrabody preferentially targets amino-terminal Huntingtin’s fragments in striatal models of Huntington’s disease. Neurobiol. Dis. 19: 47.PubMedGoogle Scholar
  145. Misaghi, S., Galardy, P.J., Meester, W.J.N., Ovaa, H., Ploegh, H.L. and Gaudet, R., 2005, Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. J. Biol. Chem. 280: 1512.PubMedGoogle Scholar
  146. Monoi, H., 1995, New tubular single-stranded helix of poly-L-amino acids suggested by molecular mechanics calculations: I. Homopolypeptides in isolated environments. Biophys. J. 69: 1130.PubMedGoogle Scholar
  147. Monoi, H., Futaki, S., Kugimiya, S., Minakata, H. and Yoshihara, K., 2000, Poly-L-glutamine forms cation channels: relevance to the pathogenesis of the polyglutamine diseases. Biophys. J. 78: 2892.PubMedGoogle Scholar
  148. Myers, R.H., Madden, J.J., Teague, J.L. and Falek, A., 1982, Factors related to onset age of Huntington disease. Am. J. Hum. Genet. 34: 481.PubMedGoogle Scholar
  149. Nagai, Y., Fujikake, N., Ohno, K., Higashiyama, H., Popiel, H., Rahadian, J., Yamaguchi, M., Strittmatter, W., Burke, J. and Toda, T., 2003, Prevention of polyglutamine oligomerization and neurodegeneration by the peptide inhibitor QBP1 in Drosophila. Hum. Mol. Genet. 12: 1253.PubMedGoogle Scholar
  150. Nakamura, K., Jeong, S.Y., Uchihara, T., Anno, M., Nagashima, K., Nagashima, T., Ikeda, S., Tsuji, S. and Kanazawa, I., 2001, SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum. Mol. Genet. 10: 1441.PubMedGoogle Scholar
  151. Nicastro, G., Menon, R.P., Masino, L., Knowles, P.P., McDonald, N.Q. and Pastore, A., 2005, The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc. Natl. Acad. Sci. USA 102: 10493.PubMedGoogle Scholar
  152. Ogawa, M., 2004, Pharmacological treatments of cerebellar ataxia. Cerebellum 3: 107.PubMedGoogle Scholar
  153. Okazawa, H., 2003, Polyglutamine diseases: a transcription disorder? Cell. Mol. Life. Sci. 60: 1427.PubMedGoogle Scholar
  154. O’Nuallain, B. and Wetzel, R., 2002, Conformational Abs recognizing a generic amyloid fibril epitope. Proc. Natl. Acad. Sci. USA 99: 1485.PubMedGoogle Scholar
  155. Ordway, J.M., Cearley, J.A. and Detloff, P.J., 1999, CAG-polyglutamine-repeat mutations: independence from gene context. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 1083.PubMedGoogle Scholar
  156. Orr, H.T., 2001, Beyond the Qs in the polyglutamine diseases. Genes Dev. 15: 925.PubMedGoogle Scholar
  157. Paulson, H.L., 1999, Protein fate in neurodegenerative proteinopathies: polyglutamine diseases join the (mis)fold. Am. J. Hum. Genet. 64: 339.PubMedGoogle Scholar
  158. Paulson, H., 2003, Polyglutamine neurodegeneration: minding your Ps and Qs. Nat. Med. 9: 825.PubMedGoogle Scholar
  159. Paulson, H.L., Das, S.S., Crino, P.B., Perez, M.K., Patel, S.C., Gotsdiner, D., Fischbeck, K.H. and Pittman, R.N., 1997a, Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann. Neurol. 41: 453.PubMedGoogle Scholar
  160. Paulson, H.L., Perez, M.K., Trottier, Y., Trojanowski, J.Q., Subramony, S.H., Das, S.S., Vig, P., Mandel, J.L., Fischbeck, K.H. and Pittman, R.N., 1997b, Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19: 333.PubMedGoogle Scholar
  161. Perez, M.K., Paulson, H.L., Pendse, S.J., Saionz, S.J., Bonini, N.M. and Pittman, R.N., 1998, Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J. Cell. Biol. 143: 1457.PubMedGoogle Scholar
  162. Perez, M.K., Paulson, H.L. and Pittman, R.N., 1999, Ataxin-3 with an altered conformation that exposes the polyglutamine domain is associated with the nuclear matrix. Hum. Mol. Genet. 8: 2377.PubMedGoogle Scholar
  163. Perutz, M., 1994, Polar zippers: their role in human disease. Protein Sci. 3: 1629.PubMedGoogle Scholar
  164. Perutz, M.F., 1999, Glutamine repeats and neurodegenerative diseases. Brain Res. Bull. 50: 467.Google Scholar
  165. Perutz, M.F., Johnson, T., Suzuki, M. and Finch, J.T., 1994, Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 91: 5355.PubMedGoogle Scholar
  166. Perutz, M.F., Finch, J.T., Berriman, J. and Lesk, A., 2002, Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. USA 99: 5591.PubMedGoogle Scholar
  167. Peters-Libeu, C., Newhouse, Y., Krishnan, P., Cheung, K., Brooks, E., Weisgraber, K. and Finkbeiner, S., 2005, Crystallization and diffraction properties of the Fab fragment of 3B5H10, an antibody specific for disease-causing polyglutamine stretches. Acta Crystallograph. Sect. F. Struct. Biol. Cryst. Commun. 61: 1065.Google Scholar
  168. Poirier, M.A., Li, H., Macosko, J., Cai, S., Amzel, M. and Ross, C.A., 2002, Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J. Biol. Chem. 277: 41032.PubMedGoogle Scholar
  169. Pollitt, S.K., Pallos, J., Shao, J., Desai, U.A., Ma, A.A., Thompson, L.M., Marsh, J.L. and Diamond, M.I., 2003, A rapid cellular FRET assay of polyglutamine aggregation identifies a novel inhibitor. Neuron 40: 685.PubMedGoogle Scholar
  170. Pulst, S.M., Nechiporuk, A., Nechiporuk, T., Gispert, S., Chen, X.N., Lopes-Cendes, I., Pearlman, S., Starkman, S., Orozco-Diaz, G., Lunkes, A., DeJong, P., Rouleau, G.A., Auburger, G., Korenberg, J.R., Figueroa, C. and Sahba, S., 1996, Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat. Genet. 14: 269.PubMedGoogle Scholar
  171. Ranum, L.P., Lundgren, J.K., Schut, L.J., Ahrens, M.J., Perlman, S., Aita, J., Bird, T.D., Gomez, C. and Orr, H.T., 1995, Spinocerebellar ataxia type 1 and Machado-Joseph disease: incidence of CAG expansions among adult-onset ataxia patients from 311 families with dominant, recessive, or sporadic ataxia. Am. J. Hum. Genet. 57: 603.PubMedGoogle Scholar
  172. Rego, A.C. and de Almeida, L.P., 2005, Molecular targets and therapeutic strategies in Huntington’s disease. Curr. Drug Targets CNS Neurol. Disord. 4: 361.PubMedGoogle Scholar
  173. Riess, O., Bichelmeier, U., Boy, J., Schmidt, T., Hbner, J., Holzmann, C., Ibrahim, S., Schmidt, I., Zimmermann, F. and Wilbertz, J., 2005, Transgenic mouse models of SCA3 implicate the nucleus as subcellular site of pathogenesis. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005. Online. Program No. 427.11.Google Scholar
  174. Rosenberg, R.N., 1984, Joseph disease: an autosomal dominant motor system degeneration. Adv. Neurol. 41: 179.PubMedGoogle Scholar
  175. Ross, C.A., Wood, J.D., Schilling, G., Peters, M.F., Nucifora, F.C., Jr., Cooper, J.K., Sharp, A.H., Margolis, R.L. and Borchelt, D.R., 1999, Polyglutamine pathogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 1005.PubMedGoogle Scholar
  176. Ross, C.A., Poirier, M.A., Wanker, E.E. and Amzel, M., 2003, Polyglutamine fibrillogenesis: the pathway unfolds. Proc. Natl. Acad. Sci. USA 100: 1.PubMedGoogle Scholar
  177. Sambashivan, S., Liu, Y., Sawaya, M.R., Gingery, M. and Eisenberg, D., 2005, Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 437: 266.PubMedGoogle Scholar
  178. Sanchez, I., Mahlke, C. and Yuan, J., 2003, Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421: 373.PubMedGoogle Scholar
  179. Schaffar, G., Breuer, P., Boteva, R., Behrends, C., Tzvetkov, N., Strippel, N., Sakahira, H., Siegers, K., Hayer-Hartl, M. and Hartl, F.U., 2004, Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell. 15: 95.PubMedGoogle Scholar
  180. Schauber, C., Chen, L., Tongaonkar, P., Vega, I., Lambertson, D., Potts, W. and Madura, K., 1998, Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391: 715.PubMedGoogle Scholar
  181. Scheel, H., Tomiuk, S. and Hofmann, K., 2003, Elucidation of ataxin-3 and ataxin-7 function by integrative bioinformatics. Hum. Mol. Genet. 12: 2845.PubMedGoogle Scholar
  182. Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G.P., Davies, S.W., Lehrach, H. and Wanker, E.E., 1997, Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90: 549.PubMedGoogle Scholar
  183. Schmitt, I., Brattig, T., Gossen, M. and Riess, O., 1997, Characterization of the rat spinocerebellar ataxia type 3 gene. Neurogenetics 1: 103.PubMedGoogle Scholar
  184. Sharma, D., Sharma, S., Pasha, S. and Brahmachari, S.K., 1999, Peptide models for inherited neurodegenerative disorders: conformation and aggregation properties of long polyglutamine peptides with and without interruptions. FEBS Lett. 456: 181.PubMedGoogle Scholar
  185. Sharma, D., Shinchuk, L.M., Inouye, H., Wetzel, R. and Kirschner, D.A., 2005, Polyglutamine homopolymers having 8-45 residues form slablike beta-crystallite assemblies. Proteins 61: 398.PubMedGoogle Scholar
  186. Shehi, E., Fusi, P., Secundo, F., Pozzuolo, S., Bairati, A. and Tortora, P., 2003, Temperature-dependent, irreversible formation of amyloid fibrils by a soluble human ataxin-3 carrying a moderately expanded polyglutamine stretch (Q36). Biochemistry 42: 14626.PubMedGoogle Scholar
  187. Shinotoh, H., Thiessen, B., Snow, B.J., Hashimoto, S., MacLeod, P., Silveira, I., Rouleau, G.A., Schulzer, M. and Calne, D.B., 1997, Fluorodopa and raclopride PET analysis of patients with Machado-Joseph disease. Neurology 49: 1133.PubMedGoogle Scholar
  188. Sikorski, P. and Atkins, E., 2005, New model for crystalline polyglutamine assemblies and their connection with amyloid fibrils. Biomacromolecules 6: 425.PubMedGoogle Scholar
  189. Singer, S.J. and Dewji, N.N., 2006, Evidence that Perutz’s double-beta-stranded subunit structure for beta-amyloids also applies to their channel-forming structures in membranes. Proc. Natl. Acad. Sci. USA 103: 1546.PubMedGoogle Scholar
  190. Soong, B., Cheng, C., Liu, R. and Shan, D., 1997, Machado-Joseph disease: clinical, molecular and metabolic characterization in Chinese kindreds. Ann. Neurol. 41: 446.PubMedGoogle Scholar
  191. Stevanin, G., Durr, A. and Brice, A., 2000, Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur. J. Hum. Genet. 8: 4.PubMedGoogle Scholar
  192. Stevanin, G., Fujigasaki, H., Lebre, A.S., Camuzat, A., Jeannequin, C., Dode, C., Takahashi, J., San, C., Bellance, R., Brice, A. and Durr, A., 2003, Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain 126: 1599.PubMedGoogle Scholar
  193. Stott, K., Blackburn, J.M., Butler, P.J. and Perutz, M., 1995, Incorporation of glutamine repeats makes protein oligomerize: implications for neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 92: 6509.PubMedGoogle Scholar
  194. Sudarsky, L. and Coutinho, P., 1995, Machado-Joseph disease. Clin. Neurosci. 3: 17.PubMedGoogle Scholar
  195. Sugars, K.L. and Rubinsztein, D.C., 2003, Transcriptional abnormalities in Huntington disease. Trends Genet. 19: 233.PubMedGoogle Scholar
  196. Tait, D., Riccio, M., Sittler, A., Scherzinger, E., Santi, S., Ognibene, A., Maraldi, N.M., Lehrach, H. and Wanker, E.E., 1998, Ataxin-3 is transported into the nucleus and associates with the nuclear matrix. Hum. Mol. Genet. 7: 991.PubMedGoogle Scholar
  197. Tanaka, M., Morishima, I., Akagi, T., Hashikawa, T. and Nukina, N., 2001, Intra- and intermolecular beta-pleated sheet formation in glutamine-repeat inserted myoglobin as a model for polyglutamine diseases. J. Biol. Chem. 276: 45470.PubMedGoogle Scholar
  198. Tanaka, M., Machida, Y., Nishikawa, Y., Akagi, T., Hashikawa, T., Fujisawa, T. and Nukina, N., 2003, Expansion of polyglutamine induces the formation of quasi-aggregate in the early stage of protein fibrillization. J. Biol. Chem. 278: 34717.PubMedGoogle Scholar
  199. Tanaka, M., Machida, Y. and Nukina, N., 2005, A novel therapeutic strategy for polyglutamine diseases by stabilizing aggregation-prone proteins with small molecules. J. Mol. Med. 83: 343.PubMedGoogle Scholar
  200. Taniwaki, T., Sakai, T., Kobayashi, T., Kuwabara, Y., Otsuka, M., Ichiya, Y., Masuda, K. and Goto, I., 1997, Positron emission tomography (PET) in Machado-Joseph disease. J. Neurol. Sci. 145: 63.PubMedGoogle Scholar
  201. Tarlac, V. and Storey, E., 2003, Role of proteolysis in polyglutamine disorders. J. Neurosci. Res. 74: 406.PubMedGoogle Scholar
  202. Taroni, F. and DiDonato, S., 2004, Pathways to motor incoordination: the inherited ataxias, Nat. Rev. Neurosci. 5: 641.PubMedGoogle Scholar
  203. Taylor, J.P., Hardy, J. and Fischbeck, K.H., 2002, Toxic proteins in neurodegenerative disease. Science 296: 1991.PubMedGoogle Scholar
  204. Temussi, P.A., Masino, L. and Pastore, A., 2003, From Alzheimer to Huntington: why is a structural understanding so difficult? EMBO J. 22: 355.PubMedGoogle Scholar
  205. Thakur, A.K. and Wetzel, R., 2002, Mutational analysis of the structural organization of polyglutamine aggregates. Proc. Natl. Acad. Sci. USA 99: 17014.PubMedGoogle Scholar
  206. Trottier, Y., Cancel, G., An-Gourfinkel, I., Lutz, Y., Weber, C., Brice, A., Hirsch, E. and Mandel, J.L., 1998, Heterogeneous intracellular localization and expression of ataxin-3. Neurobiol. Dis. 5: 335.PubMedGoogle Scholar
  207. Tsai, H.F., Tsai, H.J. and Hsieh, M., 2004, Full-length expanded ataxin-3 enhances mitochondrial-mediated cell death and decreases Bcl-2 expression in human neuroblastoma cells. Biochem. Biophys. Res. Commun. 324: 1274.PubMedGoogle Scholar
  208. Uchihara, T., Fujigasaki, H., Koyano, S., Nakamura, A., Yagishita, S. and Iwabuchi, K., 2001, Non-expanded polyglutamine proteins in intranuclear inclusions of hereditary ataxias-triple-labeling immunofluorescence study. Acta. Neuropathol. (Berl.) 102: 149.Google Scholar
  209. Vonsattel, J.P. and DiFiglia, M., 1998, Huntington disease. J. Neuropathol. Exp. Neurol. 57: 369.PubMedGoogle Scholar
  210. Walsh, D.M. and Selkoe, D.J., 2004, Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept. Lett. 11: 213.PubMedGoogle Scholar
  211. Wang, G., Sawai, N., Kotliarova, S., Kanazawa, I. and Nukina, N., 2000, Ataxin-3, the MJD1 gene product, interacts with the two human homologs of yeast DNA repair protein RAD23, HHR23A and HHR23B. Hum. Mol. Genet. 9: 1795.PubMedGoogle Scholar
  212. Warrick, J.M., Paulson, H.L., Gray-Board, G.L., Bui, Q.T., Fischbeck, K.H., Pittman, R.N. and Bonini, N.M., 1998, Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93: 939.Google Scholar
  213. Warrick, J.M., Chan, H.Y., Gray-Board, G.L., Chai, Y., Paulson, H.L. and Bonini, N.M., 1999, Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23: 425.Google Scholar
  214. Warrick, J.M., Morabito, L.M., Bilen, J., Gordesky-Gold, B., Faust, L.Z., Paulson, H.L. and Bonini, N.M., 2005, Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. Mol. Cell. 18: 37.PubMedGoogle Scholar
  215. Watkins, J.F., Sung, P., Prakash, L. and Prakash, S., 1993, The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol. Cell. Biol. 13: 7757.PubMedGoogle Scholar
  216. Wellington, C.L., Ellerby, L.M., Hackam, A.S., Margolis, R.L., Trifiro, M.A., Singaraja, R., McCutcheon, K., Salvesen, G.S., Propp, S.S., Bromm, M., et al., 1998, Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 273: 9158.PubMedGoogle Scholar
  217. Wen, F.C., Li, Y.H., Tsai, H.F., Lin, C.H., Li, C., Liu, C.S., Lii, C.K., Nukina, N. and Hsieh, M., 2003, Down-regulation of heat shock protein 27 in neuronal cells and non-neuronal cells expressing mutant ataxin-3. FEBS Lett. 546: 307.PubMedGoogle Scholar
  218. Wolfgang, W.J., Miller, T.W., Webster, J.M., Huston, J.S., Thompson, L.M., Marsh, J.L. and Messer, A., 2005, Suppression of Huntington’s disease pathology in Drosophila by human single-chain Fv antibodies. Proc. Natl. Acad. Sci. USA 102: 11563.PubMedGoogle Scholar
  219. Wullner, U., Reimold, M., Abele, M., Burk, K., Minnerop, M., Dohmen, B.M., Machulla, H.J., Bares, R. and Klockgether, T., 2005, Dopamine transporter positron emission tomography in spinocerebellar ataxias type 1, 2, 3, and 6. Arch. Neurol. 62: 1280.PubMedGoogle Scholar
  220. Xia, H., Mao, Q., Eliason, S.L., Harper, S.Q., Martins, I.H., Orr, H.T., Paulson, H.L., Yang, L., Kotin, R.M. and Davidson, B.L., 2004, RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med. 10: 816.PubMedGoogle Scholar
  221. Yang, W., Dunlap, J.R., Andrews, R.B. and Wetzel, R., 2002, Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11: 2905.PubMedGoogle Scholar
  222. Ye, Y., Meyer, H.H. and Rapoport, T.A., 2003, Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell. Biol. 162: 71.PubMedGoogle Scholar
  223. Yen, T.C., Lu, C.S., Tzen, K.Y., Wey, S.P., Chou, Y.H., Weng, Y.H., Kao, P.F. and Ting, G., 2000, Decreased dopamine transporter binding in Machado-Joseph disease. J. Nucl. Med. 41: 994.PubMedGoogle Scholar
  224. Yen, T.C., Tzen, K.Y., Chen, M.C., Chou, Y.H., Chen, R.S., Chen, C.J., Wey, S.P., Ting, G. and Lu, C.S., 2002, Dopamine transporter concentration is reduced in asymptomatic Machado-Joseph disease gene carriers. J. Nucl. Med. 43: 153.PubMedGoogle Scholar
  225. Yoshida, H., Yoshizawa, T., Shibasaki, F., Shoji, S. and Kanazawa, I., 2002, Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol. Dis. 10: 88.PubMedGoogle Scholar
  226. Yoshizawa, T., Yamagishi, Y., Koseki, N., Goto, J., Yoshida, H., Shibasaki, F., Shoji, S. and Kanazawa, I., 2000, Cell cycle arrest enhances the in vitro cellular toxicity of the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Hum. Mol. Genet. 9: 69.PubMedGoogle Scholar
  227. Zhu, M., Shao, F., Innes, R.W., Dixon, J.E. and Xu, Z., 2004, The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Proc. Natl. Acad. Sci. USA 101: 302.PubMedGoogle Scholar
  228. Zoghbi, H.Y. and Orr, H.T., 2000, Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23: 217.PubMedGoogle Scholar
  229. Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B.R., Goffredo, D., Conti, L., MacDonald, M.E., Friedlander, R.M., Silani, V., Hayden, M.R., Timmusk, T., Sipione, S. and Cattaneo, E., 2001, Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293: 493.PubMedGoogle Scholar
  230. Zuhlke, C., Hellenbroich, Y., Dalski, A., Kononowa, N., Hagenah, J., Vieregge, P., Riess, O., Klein, C. and Schwinger, E., 2001, Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur. J. Hum. Genet. 9: 160.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sandra Macedo- Ribeiro
    • 1
  • Luís Pereira de Almeida
    • 1
  • Ana Luísa Carvalho
    • 1
  • Ana Cristina Rego
    • 2
  1. 1.Division of Clinical NeurosciencesUniversity of SouthamptonBassett Crescent EastUK
  2. 2.Center for Neuroscience and Cell Biology, Institute of BiochemistryUniversity of CoimbraPortugal

Personalised recommendations