Skip to main content

Polyglutamine Expansion Diseases – the Case of Machado-Joseph Disease

  • Chapter
Interaction Between Neurons and Glia in Aging and Disease

Polyglutamine expansion diseases are inherited neurodegenerative disorders caused by the expansion of CAG repeat mutations in the coding region of genes encoding for specific proteins, mostly of unknown function. One example is Machado-Joseph disease (MJD) or spinocerebellar ataxia 3, which was described in people of Portuguese descendents and is caused by expanded ataxin-3, a polyubiquitin-binding protein. Like other neurodegenerative diseases, MJD exhibits gradual progression of symptoms that finally result in the death of the patients. Despite the identification of the genetic defects, the molecular mechanisms by which the mutant protein initiates the pathogenic process remain to be elucidated. This chapter resumes some of the most important features of polyglutamine expansion diseases with a special emphasis on MJD pathogenesis. Particular relevance is given to ataxin-3 structure and function, the formation of aggregates of mutant ataxin-3, the characteristics of current disease animal models and the most recent therapeutic strategies proposed for the treatment of MJD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9.references

  • Albrecht, M., Golatta, M., Wullner, U. and Lengauer, T., 2004, Structural and functional analysis of ataxin-2 and ataxin-3. Eur. J. Biochem. 271: 3155.

    CAS  PubMed  Google Scholar 

  • Altschuler, E.L., Hud, N.V., Mazrimas, J.A. and Rupp, B., 1997, Random coil conformation for extended polyglutamine stretches in aqueous soluble monomeric peptides. J. Pept. Res. 50: 73.

    CAS  PubMed  Google Scholar 

  • Alves, S., Regulier, E., Deglon, N. and de Almeida, L.P., 2005, Lentiviral-based overexpression and silencing of the ataxin-3 gene. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005. Online. Program No. 427.9.

    Google Scholar 

  • Andersen, K.M., Hofmann, K. and Hartmann-Petersen, R., 2005, Ubiquitin-binding proteins: similar, but different. Essays Biochem. 41: 49.

    CAS  PubMed  Google Scholar 

  • Apostol, B.L., Kazantsev, A., Raffioni, S., Illes, K., Pallos, J., Bodai, L., Slepko, N., Bear, J.E., Gertler, F.B., Hersch, S., Housman, D.E., Marsh, J.L. and Thompson, L.M., 2003, A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila. Proc. Natl .Acad. Sci. USA 100: 5950.

    CAS  PubMed  Google Scholar 

  • Aronin, N., Kim, M., Laforet, G. and DiFiglia, M., 1999, Are there multiple pathways in the pathogenesis of Huntington’s disease? Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 995.

    CAS  PubMed  Google Scholar 

  • Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R. and Finkbeiner, S., 2004, Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431: 805.

    CAS  PubMed  Google Scholar 

  • Bates, G.P., 2001, Huntington’s disease. Exploiting expression. Nature 413: 691.

    CAS  PubMed  Google Scholar 

  • Bates, G., 2003, Huntingtin aggregation and toxicity in Huntington’s disease. Lancet 361: 1642.

    CAS  PubMed  Google Scholar 

  • Bennett, M.J., Sawaya, M.R. and Eisenberg, D., 2006, Deposition diseases and 3D domain swapping. Structure 14: 811.

    CAS  PubMed  Google Scholar 

  • Berke, S.J., Schmied, F.A., Brunt, E.R., Ellerby, L.M. and Paulson, H.L., 2004, Caspase-mediated proteolysis of the polyglutamine disease protein ataxin-3. J. Neurochem. 89: 908.

    CAS  PubMed  Google Scholar 

  • Berke, S.J., Chai, Y., Marrs, G.L., Wen, H. and Paulson, H.L., 2005, Defining the role of ubiquitin-interacting motifs in the polyglutamine disease protein, ataxin-3. J. Biol. Chem. 280: 32026.

    CAS  PubMed  Google Scholar 

  • Berthelier, V., Hamilton, J.B., Chen, S. and Wetzel, R., 2001, A microtiter plate assay for polyglutamine aggregate extension. Anal. Biochem. 295: 227.

    CAS  PubMed  Google Scholar 

  • Bevivino, A.E. and Loll, P.J., 2001, An expanded glutamine repeat destabilizes native ataxin-3 structure and mediates formation of parallel beta-fibrils. Proc. Natl. Acad. Sci. USA 98: 11955.

    CAS  PubMed  Google Scholar 

  • Bezprozvanny, I. and Hayden, M.R., 2004, Deranged neuronal calcium signaling and Huntington disease. Biochem. Biophys. Res. Commun. 322: 1310.

    CAS  PubMed  Google Scholar 

  • Boeddrich, A., Gaumer, S., Haacke, A., Tzvetkov, N., Albrecht, M., Evert, B.O., Muller, E.C., Lurz, R., Breuer, P., Schugardt, N., et al., 2006, An arginine/lysine-rich motif is crucial for VCP/p97-mediated modulation of ataxin-3 fibrillogenesis. EMBO J. 25: 1547.

    CAS  PubMed  Google Scholar 

  • Brooks, E., Arrasate, M., Cheung, K. and Finkbeiner, S.M., 2004, Using antibodies to analyze polyglutamine stretches. Methods. Mol. Biol. 277: 103.

    CAS  PubMed  Google Scholar 

  • Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C.M. and Stefani, M., 2002, Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416: 507.

    CAS  PubMed  Google Scholar 

  • Burnett, B.G. and Pittman, R.N., 2005, The polyglutamine neurodegenerative protein ataxin 3 regulates aggresome formation. Proc. Natl. Acad. Sci. USA 102: 4330.

    CAS  PubMed  Google Scholar 

  • Burnett, B., Li, F. and Pittman, R.N., 2003, The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum. Mol. Genet. 12: 3195.

    CAS  PubMed  Google Scholar 

  • Burright, E.N., Davidson, J.D., Duvick, L.A., Koshy, B., Zoghbi, H.Y. and Orr, H.T., 1997, Identification of a self-association region within the SCA1 gene product, ataxin-1. Hum. Mol. Genet. 6: 513.

    CAS  PubMed  Google Scholar 

  • Caplen, N.J., Taylor, J.P., Statham, V.S., Tanaka, F., Fire, A. and Morgan, R.A., 2002, Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference. Hum. Mol. Genet. 11: 175.

    CAS  PubMed  Google Scholar 

  • Caughey, B. and Lansbury, P.T., 2003, Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26: 267.

    CAS  PubMed  Google Scholar 

  • Cemal, C.K., Carroll, C.J., Lawrence, L., Lowrie, M.B., Ruddle, P., Al-Mahdawi, S., King, R.H., Pook, M.A., Huxley, C. and Chamberlain, S., 2002, YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum. Mol. Genet. 11: 1075.

    CAS  PubMed  Google Scholar 

  • Cha, J.H., 2000, Transcriptional dysregulation in Huntington’s disease. Trends Neurosci. 23: 387.

    CAS  PubMed  Google Scholar 

  • Chai, Y., Koppenhafer, S.L., Bonini, N.M. and Paulson, H.L., 1999a, Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J. Neurosci. 19: 10338.

    CAS  PubMed  Google Scholar 

  • Chai, Y., Koppenhafer, S.L., Shoesmith, S.J., Perez, M.K. and Paulson, H.L., 1999b, Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum. Mol. Genet. 8: 673.

    CAS  PubMed  Google Scholar 

  • Chai, Y., Berke, S.S., Cohen, R.E. and Paulson, H.L., 2004, Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways. J. Biol. Chem. 279: 3605.

    CAS  PubMed  Google Scholar 

  • Chan, H.Y., Warrick, J.M., Gray-Board, G.L., Paulson, H.L. and Bonini, N.M., 2000, Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum. Mol. Genet. 9: 2811.

    Google Scholar 

  • Chen, Y.W., Stott, K. and Perutz, M.F., 1999, Crystal structure of a dimeric chymotrypsin inhibitor 2 mutant containing an inserted glutamine repeat. Proc. Natl. Acad. Sci. USA 96: 1257.

    CAS  PubMed  Google Scholar 

  • Chen, L., Shinde, U., Ortolan, T.G. and Madura, K., 2001a, Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep. 2: 933.

    CAS  PubMed  Google Scholar 

  • Chen, S., Berthelier, V., Yang, W. and Wetzel, R., 2001b, Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol. 311: 173.

    CAS  PubMed  Google Scholar 

  • Chen, S., Berthelier, V., Hamilton, J.B., O’Nuallain, B. and Wetzel, R., 2002a, Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41: 7391.

    CAS  PubMed  Google Scholar 

  • Chen, S., Ferrone, F.A. and Wetzel, R., 2002b, Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. USA 99: 11884.

    CAS  PubMed  Google Scholar 

  • Chevalier-Larsen, E.S., O’Brien, C.J., Wang, H., Jenkins, S.C., Holder, L., Lieberman, A.P. and Merry, D.E., 2004, Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. J. Neurosci. 24: 4778.

    CAS  PubMed  Google Scholar 

  • Chong, S.S., McCall, A.E., Cota, J., Subramony, S.H., Orr, H.T., Hughes, M.R. and Zoghbi, H.Y., 1995, Gametic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat. Genet. 10: 344.

    CAS  PubMed  Google Scholar 

  • Chou, A.H., Yeh, T.H., Kuo, Y.L., Kao, Y.C., Jou, M.J., Hsu, C.Y., Tsai, S.R., Kakizuka, A. and Wang, H.L., 2006, Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiol. Dis. 21: 333.

    CAS  PubMed  Google Scholar 

  • Chow, M.K., Ellisdon, A.M., Cabrita, L.D. and Bottomley, S.P., 2004a, Polyglutamine expansion in ataxin-3 does not affect protein stability: implications for misfolding and disease. J. Biol. Chem. 279: 47643.

    CAS  PubMed  Google Scholar 

  • Chow, M.K., Mackay, J.P., Whisstock, J.C., Scanlon, M.J. and Bottomley, S.P., 2004b, Structural and functional analysis of the Josephin domain of the polyglutamine protein ataxin-3. Biochem. Biophys. Res. Commun. 322: 387.

    CAS  PubMed  Google Scholar 

  • Chow, M.K., Paulson, H.L. and Bottomley, S.P., 2004c, Destabilization of a non-pathological variant of ataxin-3 results in fibrillogenesis via a partially folded intermediate: a model for misfolding in polyglutamine disease. J. Mol. Biol. 335: 333.

    CAS  PubMed  Google Scholar 

  • Clark, H.B., Burright, E.N., Yunis, W.S., Larson, S., Wilcox, C., Hartman, B., Matilla, A., Zoghbi, H.Y. and Orr, H.T., 1997, Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J. Neurosci. 17: 7385.

    CAS  PubMed  Google Scholar 

  • Colomer Gould, V.F., 2005, Mouse models of Machado-Joseph disease and other polyglutamine spinocerebellar ataxias. NeuroRx 2: 480.

    PubMed  Google Scholar 

  • Coutinho, P. and Andrade, C., 1978, Autosomal dominant system degeneration in Portuguese families of the Azores Islands. A new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology 28: 703.

    CAS  PubMed  Google Scholar 

  • Cummings, C.J. and Zoghbi, H.Y., 2000, Fourteen and counting: unraveling trinucleotide repeat diseases. Hum. Mol. Genet. 9: 909.

    CAS  PubMed  Google Scholar 

  • Davies, S.W., Turmaine, M., Cozens, B.A., DiFiglia, M., Sharp, A.H., Ross, C.A., Scherzinger, E., Wanker, E.E., Mangiarini, L. and Bates, G.P., 1997, Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90: 537.

    CAS  PubMed  Google Scholar 

  • de Almeida, L.P., Zala, D., Aebischer, P. and Deglon, N., 2001, Neuroprotective effect of a CNTF-expressing lentiviral vector in the quinolinic acid rat model of Huntington’s disease. Neurobiol. Dis. 8: 433.

    PubMed  Google Scholar 

  • de Chiara, C., Menon, R.P., Adinolfi, S., de Boer, J., Ktistaki, E., Kelly, G., Calder, L., Kioussis, D. and Pastore, A., 2005, The AXH domain adopts alternative folds the solution structure of HBP1 AXH. Structure (Camb.) 13: 743.

    Google Scholar 

  • Demuro, A., Mina, E., Kayed, R., Milton, S.C., Parker, I. and Glabe, C.G., 2005, Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem. 280: 17294.

    CAS  PubMed  Google Scholar 

  • Desai, U.A., Pallos, J., Ma, A.A., Stockwell, B.R., Thompson, L.M., Marsh, J.L. and Diamond, M.I., 2006, Biologically active molecules that reduce polyglutamine aggregation and toxicity. Hum. Mol. Genet. 15: 2114.

    CAS  PubMed  Google Scholar 

  • DiFiglia, M., Sapp, E., Chase, K.O., Davies, S.W., Bates, G.P., Vonsattel, J.P. and Aronin, N., 1997, Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990.

    CAS  PubMed  Google Scholar 

  • Djousse, L., Knowlton, B., Hayden, M., Almqvist, E.W., Brinkman, R., Ross, C., Margolis, R., Rosenblatt, A., Durr, A., Dode, C., Morrison, P.J., Novelletto, A., Frontali, M., Trent, R.J., McCusker, E., Gomez-Tortosa, E., Mayo, D., Jones, R., Zanko, A., Nance, M., Abramson, R., Suchowersky, O., Paulsen, J., Harrison, M., Yang, Q., Cupples, L.A., Gusella, J.F., MacDonald, M.E. and Myers, R.H., 2003, Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. Am. J. Med. Genet. A 119: 279.

    Google Scholar 

  • do Carmo Costa, M., Gomes-da-Silva, J., Miranda, C.J., Sequeiros, J., Santos, M.M. and Maciel, P., 2004, Genomic structure, promoter activity and developmental expression of the mouse homologue of the Machado-Joseph disease (MJD) gene. Genomics 84: 361.

    CAS  PubMed  Google Scholar 

  • Donaldson, K.M., Li, W., Ching, K.A., Batalov, S., Tsai, C.C. and Joazeiro, C.A., 2003, Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine aggregates. Proc. Natl. Acad. Sci. USA 100: 8892.

    CAS  PubMed  Google Scholar 

  • Doss-Pepe, E.W., Stenroos, E.S., Johnson, W.G. and Madura, K., 2003, Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol. Cell. Biol. 23: 6469.

    CAS  PubMed  Google Scholar 

  • Durr, A., Stevanin, G., Cancel, G., Duyckaerts, C., Abbas, N., Didierjean, O., Chneiweiss, H., Benomar, A., LyonCaen, O., Julien, J., Serdaru, M., Penet, C., Agid, Y. and Brice, A., 1996, Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular and neuropathological features. Ann. Neurol. 39: 490.

    CAS  PubMed  Google Scholar 

  • Echaniz-Laguna, A., Rousso, E., Anheim, M., Cossee, M. and Tranchant, C., 2005, A family with early-onset and rapidly progressive X-linked spinal and bulbar muscular atrophy. Neurology 64: 1458.

    CAS  PubMed  Google Scholar 

  • Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T., 2001, Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494.

    CAS  PubMed  Google Scholar 

  • Ellerby, L.M., Andrusiak, R.L., Wellington, C.L., Hackam, A.S., Propp, S.S., Wood, J.D., Sharp, A.H., Margolis, R.L., Ross, C.A., Salvesen, G.S., Hayden, M.R. and Bredesen, D.E., 1999, Cleavage of atrophin-1 at caspase site aspartic acid 109 modulates cytotoxicity. J. Biol. Chem. 274: 8730.

    CAS  PubMed  Google Scholar 

  • Ellisdon, A.M., Thomas, B. and Bottomley, S.P., 2006, The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step. J. Biol. Chem. 281: 16888.

    CAS  PubMed  Google Scholar 

  • Evert, B.O., Wullner, U., Schulz, J.B., Weller, M., Groscurth, P., Trottier, Y., Brice, A. and Klockgether, T., 1999, High level expression of expanded full-length ataxin-3 in vitro causes cell death and formation of intranuclear inclusions in neuronal cells. Hum. Mol. Genet. 8: 1169.

    CAS  PubMed  Google Scholar 

  • Evert, B.O., Vogt, I.R., Kindermann, C., Ozimek, L., de Vos, R.A., Brunt, E.R., Schmitt, I., Klockgether, T. and Wullner, U., 2001, Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains. J. Neurosci. 21: 5389.

    CAS  PubMed  Google Scholar 

  • Fan, X., Dion, P., Laganiere, J., Brais, B. and Rouleau, G.A., 2001, Oligomerization of polyalanine expanded PABPN1 facilitates nuclear protein aggregation that is associated with cell death. Hum. Mol. Genet. 10: 2341.

    CAS  PubMed  Google Scholar 

  • Farrer, L. A., 1985, Diabetes mellitus in Huntington disease. Clin. Genet. 27: 62.

    Article  CAS  PubMed  Google Scholar 

  • Ferrigno, P. and Silver, P.A., 2000, Polyglutamine expansions: proteolysis, chaperones, and the dangers of promiscuity. Neuron 26: 9.

    CAS  PubMed  Google Scholar 

  • Filipek, R., Rzychon, M., Oleksy, A., Gruca, M., Dubin, A., Potempa, J. and Bochtler, M., 2003, The Staphostatin-staphopain complex: a forward binding inhibitor in complex with its target cysteine protease. J. Biol. Chem. 278: 40959.

    CAS  PubMed  Google Scholar 

  • Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C., 1998, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806.

    CAS  PubMed  Google Scholar 

  • Fujigasaki, H., Uchihara, T., Koyano, S., Iwabuchi, K., Yagishita, S., Makifuchi, T., Nakamura, A., Ishida, K., Toru, S., Hirai, S., et al., 2000, Ataxin-3 is translocated into the nucleus for the formation of intranuclear inclusions in normal and Machado-Joseph disease brains. Exp. Neurol. 165: 248.

    CAS  PubMed  Google Scholar 

  • Fujigasaki, H., Uchihara, T., Takahashi, J., Matsushita, H., Nakamura, A., Koyano, S., Iwabuchi, K., Hirai, S. and Mizusawa, H., 2001, Preferential recruitment of ataxin-3 independent of expanded polyglutamine: an immunohistochemical study on Marinesco bodies. J. Neurol. Neurosurg. Psychiatry 71: 518.

    CAS  PubMed  Google Scholar 

  • Furusho, K., Yoshizawa, T., Hara, J., Yamanaka, A., Sakurai, T., Goto, K. and Shoji, S., 2005a, Effects of intraperitoneal administration of ectoine on the cell death produced by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch in the ataxin-3/orexin transgenic mice. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005. Online Program No. 427.12.

    Google Scholar 

  • Furusho, K., Yoshizawa, T. and Shoji, S., 2005b, Ectoine alters subcellular localization of inclusions and reduces apoptotic cell death induced by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol. Dis. 20: 170.

    CAS  PubMed  Google Scholar 

  • Gales, L., Cortes, L., Almeida, C., Melo, C.V., do Carmo Costa, M., Maciel, P., Clarke, D.T., Damas, A.M. and Macedo-Ribeiro, S., 2005, Towards a structural understanding of the fibrillization pathway in Machado-Joseph’s disease: trapping early oligomers of non-expanded ataxin-3. J. Mol. Biol. 353: 642.

    CAS  PubMed  Google Scholar 

  • Gardian, G., Browne, S.E., Choi, D.K., Klivenyi, P., Gregorio, J., Kubilus, J.K., Ryu, H., Langley, B., Ratan, R.R., Ferrante, R.J., et al., 2005, Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J. Biol. Chem. 280: 556.

    CAS  PubMed  Google Scholar 

  • Gauthier, L.R., Charrin, B.C., Borrell-Pages, M., Dompierre, J.P., Rangone, H., Cordelieres, F.P., De, M.J., MacDonald, M.E., Lessmann, V., Humbert, S. and Saudou, F., 2004, Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118: 127.

    CAS  PubMed  Google Scholar 

  • Gilman, S., Sima, A.A., Junck, L., Kluin, K.J., Koeppe, R.A., Lohman, M.E. and Little, R., 1996, Spinocerebellar ataxia type 1 with multiple system degeneration and glial cytoplasmic inclusions. Ann. Neurol. 39: 241.

    CAS  PubMed  Google Scholar 

  • Glabe, C.G. and Kayed, R., 2006, Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology 66: S74.

    CAS  PubMed  Google Scholar 

  • Gordon-Smith, D.J., Carbajo, R.J., Stott, K. and Neuhaus, D., 2001, Solution studies of chymotrypsin inhibitor-2 glutamine insertion mutants show no interglutamine interactions. Biochem. Biophys. Res. Commun. 280: 855.

    CAS  PubMed  Google Scholar 

  • Goti, D., Katzen, S.M., Mez, J., Kurtis, N., Kiluk, J., Ben-Haiem, L., Jenkins, N.A., Copeland, N.G., Kakizuka, A., Sharp, A.H., et al., 2004, A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J. Neurosci. 24: 10266.

    CAS  PubMed  Google Scholar 

  • Goto, J., Watanabe, M., Ichikawa, Y., Yee, S.B., Ihara, N., Endo, K., Igarashi, S., Takiyama, Y., Gaspar, C., Maciel, P., et al., 1997, Machado-Joseph disease gene products carrying different carboxyl termini. Neurosci. Res. 28: 373.

    CAS  PubMed  Google Scholar 

  • Gouw, L.G., Castaneda, M.A., McKenna, C.K., Digre, K.B., Pulst, S.M., Perlman, S., Lee, M.S., Gomez, C., Fischbeck, K., Gagnon, D., Storey, E., Bird, T., Jeri, F.R. and Ptacek, L.J., 1998, Analysis of the dynamic mutation in the SCA7 gene shows marked parental effects on CAG repeat transmission. Hum. Mol. Genet. 7: 525.

    CAS  PubMed  Google Scholar 

  • Griffin, J.L., Cemal, C.K. and Pook, M.A., 2004, Defining a metabolic phenotype in the brain of a transgenic mouse model of spinocerebellar ataxia 3. Physiol. Genomics 16: 334.

    CAS  PubMed  Google Scholar 

  • Gunawardena, S., Her, L.S., Brusch, R.G., Laymon, R.A., Niesman, I.R., Gordesky-Gold, B., Sintasath, L., Bonini, N.M. and Goldstein, L.S., 2003, Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40: 25.

    CAS  PubMed  Google Scholar 

  • Guo, Z. and Eisenberg, D., 2006, Runaway domain swapping in amyloid-like fibrils of T7 endonuclease I. Proc. Natl. Acad. Sci. USA 103: 8042.

    CAS  PubMed  Google Scholar 

  • Gusella, J.F. and MacDonald, M.E., 2000, Molecular genetics: unmasking polyglutamine triggers in neuro-degenerative disease. Nat. Rev. Neurosci. 1: 109.

    CAS  PubMed  Google Scholar 

  • Gwinn-Hardy, K., Singleton, A., O’Suilleabhain, P., Boss, M., Nicholl, D., Adam, A., Hussey, J., Critchley, P., Hardy, J. and Farrer, M., 2001, Spinocerebellar ataxia type 3 phenotypically resembling Parkinson’s disease in a black family. Arch. Neurol. 58: 296.

    CAS  PubMed  Google Scholar 

  • Haacke, A., Broadley, S.A., Boteva, R., Tzvetkov, N., Hartl, F.U. and Breuer, P., 2006, Proteolytic cleavage of polyglutamine-expanded ataxin-3 is critical for aggregation and sequestration of non-expanded ataxin-3. Hum. Mol. Genet. 15: 555.

    CAS  PubMed  Google Scholar 

  • Hagenah, J.M., Zuhlke, C., Hellenbroich, Y., Heide, W. and Klein, C., 2004, Focal dystonia as a presenting sign of spinocerebellar ataxia 17. Mov. Disord. 19: 217.

    PubMed  Google Scholar 

  • Hara, J., Beuckmann, C.T., Nambu, T., Willie, J.T., Chemelli, R.M., Sinton, C.M., Sugiyama, F., Yagami, K., Goto, K., Yanagisawa, M. and Sakurai, T., 2001, Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30: 345.

    CAS  PubMed  Google Scholar 

  • Harper, S.Q., Staber, P.D., He, X., Eliason, S.L., Martins, I.H., Mao, Q., Yang, L., Kotin, R.M., Paulson, H.L. and Davidson, B.L., 2005, RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc. Natl. Acad. Sci. USA 102: 5820.

    CAS  PubMed  Google Scholar 

  • Hayashi, Y., Kakita, A., Yamada, M., Koide, R., Igarashi, S., Takano, H., Ikeuchi, T., Wakabayashi, K., Egawa, S., Tsuji, S. and Takahashi, H., 1998, Hereditary dentatorubral-pallidoluysian atrophy: detection of widespread ubiquitinated neuronal and glial intranuclear inclusions in the brain. Acta Neuropathol. (Berl.) 96: 547.

    CAS  Google Scholar 

  • HDCRG, 1993, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72: 971.

    Google Scholar 

  • Heiser, V., Scherzinger, E., Boeddrich, A., Nordhoff, E., Lurz, R., Schugardt, N., Lehrach, H. and Wanker, E.E., 2000, Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc. Natl. Acad. Sci. USA 97: 6739.

    CAS  PubMed  Google Scholar 

  • Heiser, V., Engemann, S., Brocker, W., Dunkel, I., Boeddrich, A., Waelter, S., Nordhoff, E., Lurz, R., Schugardt, N., Rautenberg, S., et al., 2002, Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington’s disease by using an automated filter retardation assay. Proc. Natl. Acad. Sci. USA 99 (suppl. 4): 16400.

    CAS  PubMed  Google Scholar 

  • Heuser, I.J., Chase, T.N. and Mouradian, M.M., 1991, The limbic-hypothalamic-pituitary-adrenal axis in Huntington’s disease. Biol. Psychiatry 30: 943.

    CAS  PubMed  Google Scholar 

  • Higashiyama, H., Hirose, F., Yamaguchi, M., Inoue, Y.H., Fujikake, N., Matsukage, A. and Kakizuka, A., 2002, Identification of ter94, Drosophila VCP, as a modulator of polyglutamine-induced neurodegeneration. Cell Death Differ. 9: 264.

    CAS  PubMed  Google Scholar 

  • Hirabayashi, M., Inoue, K., Tanaka, K., Nakadate, K., Ohsawa, Y., Kamei, Y., Popiel, A.H., Sinohara, A., Iwamatsu, A., Kimura, Y., et al., 2001, VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death Differ. 8: 977.

    CAS  PubMed  Google Scholar 

  • Hockly, E., Richon, V.M., Woodman, B., Smith, D.L., Zhou, X., Rosa, E., Sathasivam, K., Ghazi-Noori, S., Mahal, A., Lowden, P.A., et al., 2003, Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 100: 2041.

    CAS  PubMed  Google Scholar 

  • Huang, C.C., Faber, P.W., Persichetti, F., Mittal, V., Vonsattel, J.P., MacDonald, M.E. and Gusella, J.F., 1998, Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat. Cell Mol. Genet. 24: 217.

    CAS  PubMed  Google Scholar 

  • Ichikawa, Y., Goto, J., Hattori, M., Toyoda, A., Ishii, K., Jeong, S.Y., Hashida, H., Masuda, N., Ogata, K., Kasai, F., Hirai, M., Maciel, P., Rouleau, G.A., Sakaki, Y. and Kanazawa, I., 2001, The genomic structure and expression of MJD, the Machado-Joseph disease gene. J. Hum. Genet. 46: 413.

    CAS  PubMed  Google Scholar 

  • Ikeda, H., Yamaguchi, M., Sugai, S., Aze, Y., Narumiya, S. and Kakizuka, A., 1996, Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat. Genet. 13: 196.

    CAS  PubMed  Google Scholar 

  • Imbert, G., Saudou, F., Yvert, G., Devys, D., Trottier, Y., Garnier, J.M., Weber, C., Mandel, J.L., Cancel, G., Abbas, N., Durr, A., Didierjean, O., Stevanin, G., Agid, Y. and Brice, A., 1996, Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat. Genet. 14: 285.

    CAS  PubMed  Google Scholar 

  • Jana, N.R., Dikshit, P., Goswami, A., Kotliarova, S., Murata, S., Tanaka, K. and Nukina, N., 2005, Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J. Biol. Chem. 280: 11635.

    CAS  PubMed  Google Scholar 

  • Janowski, R., Kozak, M., Abrahamson, M., Grubb, A. and Jaskolski, M., 2005, A3D domain-swapped human cystatin C with amyloid like intermolecular beta-sheets. Proteins 61: 570.

    CAS  PubMed  Google Scholar 

  • Johnston, S.C., Riddle, S.M., Cohen, R.E. and Hill, C.P., 1999, Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J. 18: 3877.

    CAS  PubMed  Google Scholar 

  • Kagan, B.L., 2005, Amyloidosis and protein folding. Science 307: 42.

    CAS  PubMed  Google Scholar 

  • Kagan, B.L., Hirakura, Y., Azimov, R. and Azimova, R., 2001, The channel hypothesis of Huntington’s disease. Brain. Res. Bull. 56: 281.

    CAS  PubMed  Google Scholar 

  • Kanazawa, I., 1998, Dentatorubral-pallidoluysian atrophy or Naito-Oyanagi disease. Neurogenetics 2: 1.

    CAS  PubMed  Google Scholar 

  • Kanazawa, I., 1999, Molecular pathology of dentatorubral-pallidoluysian atrophy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 1069.

    CAS  PubMed  Google Scholar 

  • Kato, T., Tanaka, F., Yamamoto, M., Yosida, E., Indo, T., Watanabe, H., Yoshiwara, T., Doyu, M. and Sobue, G., 2000, Sisters homozygous for the spinocerebellar ataxia type 6 (SCA6)/CACNA1A gene associated with different clinical phenotypes. Clin. Genet. 58: 69.

    CAS  PubMed  Google Scholar 

  • Katsuno, M., Adachi, H., Doyu, M., Minamiyama, M., Sang, C., Kobayashi, Y., Inukai, A. and Sobue, G., 2003, Leuprorelin rescues polyglutamine-dependent phenotypes in a transgenic mouse model of spinal and bulbar muscular atrophy. Nat. Med. 9: 768.

    CAS  PubMed  Google Scholar 

  • Katsuno, M., Adachi, H., Waza, M., Banno, H., Suzuki, K., Tanaka, F., Doyu, M. and Sobue, G., 2006, Pathogenesis, animal models and therapeutics in Spinal and bulbar muscular atrophy (SBMA). Exp. Neurol. 200: 8.

    CAS  PubMed  Google Scholar 

  • Kawaguchi, Y., Okamoto, T., Taniwaki, M., Aizawa, M., Inoue, M., Katayama, S., Kawakami, H., Nakamura, S., Nishimura, M., Akiguchi, I., et al., 1994, CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat. Genet. 8: 221.

    CAS  PubMed  Google Scholar 

  • Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W. and Glabe, C.G., 2003, Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300: 486.

    CAS  PubMed  Google Scholar 

  • Kazlauskaite, J., Young, A., Gardner, C.E., Macpherson, J.V., Venien-Bryan, C. and Pinheiro, T.J., 2005, An unusual soluble beta-turn-rich conformation of prion is involved in fibril formation and toxic to neuronal cells. Biochem. Biophys. Res. Commun. 328: 292.

    CAS  PubMed  Google Scholar 

  • Kettner, M., Willwohl, D., Hubbard, G.B., Rub, U., Dick, E.J., Jr., Cox, A.B., Trottier, Y., Auburger, G., Braak, H. and Schultz, C., 2002, Intranuclear aggregation of nonexpanded ataxin-3 in marinesco bodies of the nonhuman primate substantia nigra. Exp. Neurol. 176: 117.

    CAS  PubMed  Google Scholar 

  • Kim, Y.T., Shin, S.M., Lee, W.Y., Kim, G.M. and Jin, D.K., 2004, Expression of expanded polyglutamine protein induces behavioral changes in Drosophila (polyglutamine-induced changes in Drosophila). Cell Mol. Neurobiol. 24: 109.

    CAS  PubMed  Google Scholar 

  • Koide, R., Kobayashi, S., Shimohata, T., Ikeuchi, T., Maruyama, M., Saito, M., Yamada, M., Takahashi, H. and Tsuji, S., 1999, A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum. Mol. Genet. 8: 2047.

    CAS  PubMed  Google Scholar 

  • Kumada, S., Hayashi, M., Mizuguchi, M., Nakano, I., Morimatsu, Y. and Oda, M., 2000, Cerebellar degeneration in hereditary dentatorubral-pallidoluysian atrophy and Machado-Joseph disease. Acta Neuropathol. (Berl.) 99: 48.

    CAS  Google Scholar 

  • La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. and Fischbeck, K.H., 1991, Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352: 77.

    CAS  PubMed  Google Scholar 

  • La Spada, A.R., Paulson, H.L. and Fischbeck, K.H., 1994, Trinucleotide repeat expansion in neurological disease. Ann. Neurol. 36: 814.

    CAS  PubMed  Google Scholar 

  • Leblhuber, F., Peichl, M., Neubauer, C., Reisecker, F., Steinparz, F.X., Windhager, E. and Maschek, W., 1995, Serum dehydroepiandrosterone and cortisol measurements in Huntington’s chorea. J. Neurol. Sci. 132: 76.

    CAS  PubMed  Google Scholar 

  • Lecerf, J.M., Shirley, T.L., Zhu, Q., Kazantsev, A., Amersdorfer, P., Housman, D.E., Messer, A. and Huston, J.S., 2001, Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington’s disease. Proc. Natl. Acad. Sci.USA 98: 4764.

    CAS  PubMed  Google Scholar 

  • Lee, W.C., Yoshihara, M. and Littleton, J.T., 2004, Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 101: 3224.

    CAS  PubMed  Google Scholar 

  • Lewis, S.E., Mannion, R.J., White, F.A., Coggeshall, R.E., Beggs, S., Costigan, M., Martin, J.L., Dillmann, W.H. and Woolf, C.J., 1999, A role for HSP27 in sensory neuron survival. J. Neurosci. 19: 8945.

    CAS  PubMed  Google Scholar 

  • Li, F., Macfarlan, T., Pittman, R.N. and Chakravarti, D., 2002, Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J. Biol. Chem. 277: 45004.

    CAS  PubMed  Google Scholar 

  • Lieberman, A.P. and Fischbeck, K.H., 2000, Triplet repeat expansion in neuromuscular disease. Muscle Nerve 23: 843.

    CAS  PubMed  Google Scholar 

  • Linhartova, I., Repitz, M., Draber, P., Nemec, M., Wiche, G. and Propst, F., 1999, Conserved domains and lack of evidence for polyglutamine length polymorphism in the chicken homolog of the Machado-Joseph disease gene product ataxin-3. Biochim. Biophys. Acta 1444: 299.

    CAS  PubMed  Google Scholar 

  • Lunkes, A., Trottier, Y., Fagart, J., Schultz, P., Zeder-Lutz, G., Moras, D. and Mandel, J.L., 1999, Properties of polyglutamine expansion in vitro and in a cellular model for Huntington’s disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 1013.

    CAS  PubMed  Google Scholar 

  • Maciel, P., Costa, M.C., Ferro, A., Rousseau, M., Santos, C.S., Gaspar, C., Barros, J., Rouleau, G.A., Coutinho, P. and Sequeiros, J., 2001, Improvement in the molecular diagnosis of Machado-Joseph disease. Arch. Neurol. 58: 1821.

    CAS  PubMed  Google Scholar 

  • Mao, Y., Senic-Matuglia, F., Di Fiore, P.P., Polo, S., Hodsdon, M.E. and De Camilli, P., 2005, Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. Proc. Natl. Acad. Sci. USA 102: 12700.

    CAS  PubMed  Google Scholar 

  • Marchal, S., Shehi, E., Harricane, M.C., Fusi, P., Heitz, F., Tortora, P. and Lange, R., 2003, Structural instability and fibrillar aggregation of non-expanded human ataxin-3 revealed under high pressure and temperature. J. Biol. Chem. 278: 31554.

    CAS  PubMed  Google Scholar 

  • Markianos, M., Panas, M., Kalfakis, N. and Vassilopoulos, D., 2005, Plasma testosterone in male patients with Huntington’s disease: relations to severity of illness and dementia. Ann. Neurol. 57: 520.

    CAS  PubMed  Google Scholar 

  • Masino, L. and Pastore, A., 2002, Glutamine repeats: structural hypotheses and neurodegeneration. Biochem. Soc. Trans. 30: 548.

    CAS  PubMed  Google Scholar 

  • Masino, L., Kelly, G., Leonard, K., Trottier, Y. and Pastore, A., 2002, Solution structure of polyglutamine tracts in GST-polyglutamine fusion proteins. FEBS Lett. 513: 267.

    CAS  PubMed  Google Scholar 

  • Masino, L., Musi, V., Menon, R.P., Fusi, P., Kelly, G., Frenkiel, T.A., Trottier, Y. and Pastore, A., 2003, Domain architecture of the polyglutamine protein ataxin-3: a globular domain followed by a flexible tail. FEBS Lett. 549: 21.

    CAS  PubMed  Google Scholar 

  • Masino, L., Nicastro, G., Menon, R.P., Dal Piaz, F., Calder, L. and Pastore, A., 2004, Characterization of the structure and the amyloidogenic properties of the Josephin domain of the polyglutamine-containing protein ataxin-3. J. Mol. Biol. 344: 1021.

    CAS  PubMed  Google Scholar 

  • Matsumoto, M., Yada, M., Hatakeyama, S., Ishimoto, H., Tanimura, T., Tsuji, S., Kakizuka, A., Kitagawa, M. and Nakayama, K.I., 2004, Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO J. 23: 659.

    CAS  PubMed  Google Scholar 

  • Matsumura, R., Futamura, N., Fujimoto, Y., Yanagimoto, S., Horikawa, H., Suzumura, A. and Takayanagi, T., 1997, Spinocerebellar ataxia type 6. Molecular and clinical features of 35 Japanese patients including one homozygous for the CAG repeat expansion. Neurology 49: 1238.

    CAS  PubMed  Google Scholar 

  • Matsuyama, Z., Izumi, Y., Kameyama, M., Kawakami, H. and Nakamura, S., 1999, The effect of CAT trinucleotide interruptions on the age at onset of spinocerebellar ataxia type 1 (SCA1). J. Med. Genet. 36: 546.

    CAS  PubMed  Google Scholar 

  • McCampbell, A., Taylor, J.P., Taye, A.A., Robitschek, J., Li, M., Walcott, J., Merry, D., Chai, Y., Paulson, H., Sobue, G. and Fischbeck, K.H., 2000, CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9: 2197.

    CAS  PubMed  Google Scholar 

  • McGowan, D.P., van Roon-Mom, W., Holloway, H., Bates, G.P., Mangiarini, L., Cooper, G.J., Faull, R.L. and Snell, R.G., 2000, Amyloid-like inclusions in Huntington’s disease. Neuroscience 100: 677.

    CAS  PubMed  Google Scholar 

  • Michalik, A. and Van Broeckhoven, C., 2003, Pathogenesis of polyglutamine disorders: aggregation revisited. Hum. Mol. Genet. 12 (Suppl. 2): R173.

    CAS  PubMed  Google Scholar 

  • Miller, V.M., Xia, H., Marrs, G.L., Gouvion, C.M., Lee, G., Davidson, B.L. and Paulson, H.L., 2003, Allele-specific silencing of dominant disease genes. Proc. Natl. Acad. Sci. USA 100: 7195.

    CAS  PubMed  Google Scholar 

  • Miller, V.M., Nelson, R.F., Gouvion, C.M., Williams, A., Rodriguez-Lebron, E., Harper, S.Q., Davidson, B.L., Rebagliati, M.R. and Paulson, H.L., 2005a, CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J. Neurosci. 25: 9152.

    CAS  PubMed  Google Scholar 

  • Miller, T.W., Zhou, C., Gines, S., MacDonald, M.E., Mazarakis, N.D., Bates, G.P., Huston, J.S. and Messer, A., 2005b, A human single-chain Fv intrabody preferentially targets amino-terminal Huntingtin’s fragments in striatal models of Huntington’s disease. Neurobiol. Dis. 19: 47.

    CAS  PubMed  Google Scholar 

  • Misaghi, S., Galardy, P.J., Meester, W.J.N., Ovaa, H., Ploegh, H.L. and Gaudet, R., 2005, Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. J. Biol. Chem. 280: 1512.

    CAS  PubMed  Google Scholar 

  • Monoi, H., 1995, New tubular single-stranded helix of poly-L-amino acids suggested by molecular mechanics calculations: I. Homopolypeptides in isolated environments. Biophys. J. 69: 1130.

    CAS  PubMed  Google Scholar 

  • Monoi, H., Futaki, S., Kugimiya, S., Minakata, H. and Yoshihara, K., 2000, Poly-L-glutamine forms cation channels: relevance to the pathogenesis of the polyglutamine diseases. Biophys. J. 78: 2892.

    CAS  PubMed  Google Scholar 

  • Myers, R.H., Madden, J.J., Teague, J.L. and Falek, A., 1982, Factors related to onset age of Huntington disease. Am. J. Hum. Genet. 34: 481.

    CAS  PubMed  Google Scholar 

  • Nagai, Y., Fujikake, N., Ohno, K., Higashiyama, H., Popiel, H., Rahadian, J., Yamaguchi, M., Strittmatter, W., Burke, J. and Toda, T., 2003, Prevention of polyglutamine oligomerization and neurodegeneration by the peptide inhibitor QBP1 in Drosophila. Hum. Mol. Genet. 12: 1253.

    CAS  PubMed  Google Scholar 

  • Nakamura, K., Jeong, S.Y., Uchihara, T., Anno, M., Nagashima, K., Nagashima, T., Ikeda, S., Tsuji, S. and Kanazawa, I., 2001, SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum. Mol. Genet. 10: 1441.

    CAS  PubMed  Google Scholar 

  • Nicastro, G., Menon, R.P., Masino, L., Knowles, P.P., McDonald, N.Q. and Pastore, A., 2005, The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc. Natl. Acad. Sci. USA 102: 10493.

    CAS  PubMed  Google Scholar 

  • Ogawa, M., 2004, Pharmacological treatments of cerebellar ataxia. Cerebellum 3: 107.

    CAS  PubMed  Google Scholar 

  • Okazawa, H., 2003, Polyglutamine diseases: a transcription disorder? Cell. Mol. Life. Sci. 60: 1427.

    CAS  PubMed  Google Scholar 

  • O’Nuallain, B. and Wetzel, R., 2002, Conformational Abs recognizing a generic amyloid fibril epitope. Proc. Natl. Acad. Sci. USA 99: 1485.

    PubMed  Google Scholar 

  • Ordway, J.M., Cearley, J.A. and Detloff, P.J., 1999, CAG-polyglutamine-repeat mutations: independence from gene context. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 1083.

    CAS  PubMed  Google Scholar 

  • Orr, H.T., 2001, Beyond the Qs in the polyglutamine diseases. Genes Dev. 15: 925.

    CAS  PubMed  Google Scholar 

  • Paulson, H.L., 1999, Protein fate in neurodegenerative proteinopathies: polyglutamine diseases join the (mis)fold. Am. J. Hum. Genet. 64: 339.

    CAS  PubMed  Google Scholar 

  • Paulson, H., 2003, Polyglutamine neurodegeneration: minding your Ps and Qs. Nat. Med. 9: 825.

    CAS  PubMed  Google Scholar 

  • Paulson, H.L., Das, S.S., Crino, P.B., Perez, M.K., Patel, S.C., Gotsdiner, D., Fischbeck, K.H. and Pittman, R.N., 1997a, Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann. Neurol. 41: 453.

    CAS  PubMed  Google Scholar 

  • Paulson, H.L., Perez, M.K., Trottier, Y., Trojanowski, J.Q., Subramony, S.H., Das, S.S., Vig, P., Mandel, J.L., Fischbeck, K.H. and Pittman, R.N., 1997b, Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19: 333.

    CAS  PubMed  Google Scholar 

  • Perez, M.K., Paulson, H.L., Pendse, S.J., Saionz, S.J., Bonini, N.M. and Pittman, R.N., 1998, Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J. Cell. Biol. 143: 1457.

    CAS  PubMed  Google Scholar 

  • Perez, M.K., Paulson, H.L. and Pittman, R.N., 1999, Ataxin-3 with an altered conformation that exposes the polyglutamine domain is associated with the nuclear matrix. Hum. Mol. Genet. 8: 2377.

    CAS  PubMed  Google Scholar 

  • Perutz, M., 1994, Polar zippers: their role in human disease. Protein Sci. 3: 1629.

    CAS  PubMed  Google Scholar 

  • Perutz, M.F., 1999, Glutamine repeats and neurodegenerative diseases. Brain Res. Bull. 50: 467.

    CAS  Google Scholar 

  • Perutz, M.F., Johnson, T., Suzuki, M. and Finch, J.T., 1994, Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 91: 5355.

    CAS  PubMed  Google Scholar 

  • Perutz, M.F., Finch, J.T., Berriman, J. and Lesk, A., 2002, Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. USA 99: 5591.

    CAS  PubMed  Google Scholar 

  • Peters-Libeu, C., Newhouse, Y., Krishnan, P., Cheung, K., Brooks, E., Weisgraber, K. and Finkbeiner, S., 2005, Crystallization and diffraction properties of the Fab fragment of 3B5H10, an antibody specific for disease-causing polyglutamine stretches. Acta Crystallograph. Sect. F. Struct. Biol. Cryst. Commun. 61: 1065.

    Google Scholar 

  • Poirier, M.A., Li, H., Macosko, J., Cai, S., Amzel, M. and Ross, C.A., 2002, Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J. Biol. Chem. 277: 41032.

    CAS  PubMed  Google Scholar 

  • Pollitt, S.K., Pallos, J., Shao, J., Desai, U.A., Ma, A.A., Thompson, L.M., Marsh, J.L. and Diamond, M.I., 2003, A rapid cellular FRET assay of polyglutamine aggregation identifies a novel inhibitor. Neuron 40: 685.

    CAS  PubMed  Google Scholar 

  • Pulst, S.M., Nechiporuk, A., Nechiporuk, T., Gispert, S., Chen, X.N., Lopes-Cendes, I., Pearlman, S., Starkman, S., Orozco-Diaz, G., Lunkes, A., DeJong, P., Rouleau, G.A., Auburger, G., Korenberg, J.R., Figueroa, C. and Sahba, S., 1996, Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat. Genet. 14: 269.

    CAS  PubMed  Google Scholar 

  • Ranum, L.P., Lundgren, J.K., Schut, L.J., Ahrens, M.J., Perlman, S., Aita, J., Bird, T.D., Gomez, C. and Orr, H.T., 1995, Spinocerebellar ataxia type 1 and Machado-Joseph disease: incidence of CAG expansions among adult-onset ataxia patients from 311 families with dominant, recessive, or sporadic ataxia. Am. J. Hum. Genet. 57: 603.

    CAS  PubMed  Google Scholar 

  • Rego, A.C. and de Almeida, L.P., 2005, Molecular targets and therapeutic strategies in Huntington’s disease. Curr. Drug Targets CNS Neurol. Disord. 4: 361.

    CAS  PubMed  Google Scholar 

  • Riess, O., Bichelmeier, U., Boy, J., Schmidt, T., Hbner, J., Holzmann, C., Ibrahim, S., Schmidt, I., Zimmermann, F. and Wilbertz, J., 2005, Transgenic mouse models of SCA3 implicate the nucleus as subcellular site of pathogenesis. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005. Online. Program No. 427.11.

    Google Scholar 

  • Rosenberg, R.N., 1984, Joseph disease: an autosomal dominant motor system degeneration. Adv. Neurol. 41: 179.

    CAS  PubMed  Google Scholar 

  • Ross, C.A., Wood, J.D., Schilling, G., Peters, M.F., Nucifora, F.C., Jr., Cooper, J.K., Sharp, A.H., Margolis, R.L. and Borchelt, D.R., 1999, Polyglutamine pathogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 1005.

    CAS  PubMed  Google Scholar 

  • Ross, C.A., Poirier, M.A., Wanker, E.E. and Amzel, M., 2003, Polyglutamine fibrillogenesis: the pathway unfolds. Proc. Natl. Acad. Sci. USA 100: 1.

    CAS  PubMed  Google Scholar 

  • Sambashivan, S., Liu, Y., Sawaya, M.R., Gingery, M. and Eisenberg, D., 2005, Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 437: 266.

    CAS  PubMed  Google Scholar 

  • Sanchez, I., Mahlke, C. and Yuan, J., 2003, Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421: 373.

    CAS  PubMed  Google Scholar 

  • Schaffar, G., Breuer, P., Boteva, R., Behrends, C., Tzvetkov, N., Strippel, N., Sakahira, H., Siegers, K., Hayer-Hartl, M. and Hartl, F.U., 2004, Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell. 15: 95.

    CAS  PubMed  Google Scholar 

  • Schauber, C., Chen, L., Tongaonkar, P., Vega, I., Lambertson, D., Potts, W. and Madura, K., 1998, Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391: 715.

    CAS  PubMed  Google Scholar 

  • Scheel, H., Tomiuk, S. and Hofmann, K., 2003, Elucidation of ataxin-3 and ataxin-7 function by integrative bioinformatics. Hum. Mol. Genet. 12: 2845.

    CAS  PubMed  Google Scholar 

  • Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G.P., Davies, S.W., Lehrach, H. and Wanker, E.E., 1997, Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90: 549.

    CAS  PubMed  Google Scholar 

  • Schmitt, I., Brattig, T., Gossen, M. and Riess, O., 1997, Characterization of the rat spinocerebellar ataxia type 3 gene. Neurogenetics 1: 103.

    CAS  PubMed  Google Scholar 

  • Sharma, D., Sharma, S., Pasha, S. and Brahmachari, S.K., 1999, Peptide models for inherited neurodegenerative disorders: conformation and aggregation properties of long polyglutamine peptides with and without interruptions. FEBS Lett. 456: 181.

    CAS  PubMed  Google Scholar 

  • Sharma, D., Shinchuk, L.M., Inouye, H., Wetzel, R. and Kirschner, D.A., 2005, Polyglutamine homopolymers having 8-45 residues form slablike beta-crystallite assemblies. Proteins 61: 398.

    CAS  PubMed  Google Scholar 

  • Shehi, E., Fusi, P., Secundo, F., Pozzuolo, S., Bairati, A. and Tortora, P., 2003, Temperature-dependent, irreversible formation of amyloid fibrils by a soluble human ataxin-3 carrying a moderately expanded polyglutamine stretch (Q36). Biochemistry 42: 14626.

    CAS  PubMed  Google Scholar 

  • Shinotoh, H., Thiessen, B., Snow, B.J., Hashimoto, S., MacLeod, P., Silveira, I., Rouleau, G.A., Schulzer, M. and Calne, D.B., 1997, Fluorodopa and raclopride PET analysis of patients with Machado-Joseph disease. Neurology 49: 1133.

    CAS  PubMed  Google Scholar 

  • Sikorski, P. and Atkins, E., 2005, New model for crystalline polyglutamine assemblies and their connection with amyloid fibrils. Biomacromolecules 6: 425.

    CAS  PubMed  Google Scholar 

  • Singer, S.J. and Dewji, N.N., 2006, Evidence that Perutz’s double-beta-stranded subunit structure for beta-amyloids also applies to their channel-forming structures in membranes. Proc. Natl. Acad. Sci. USA 103: 1546.

    CAS  PubMed  Google Scholar 

  • Soong, B., Cheng, C., Liu, R. and Shan, D., 1997, Machado-Joseph disease: clinical, molecular and metabolic characterization in Chinese kindreds. Ann. Neurol. 41: 446.

    CAS  PubMed  Google Scholar 

  • Stevanin, G., Durr, A. and Brice, A., 2000, Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur. J. Hum. Genet. 8: 4.

    CAS  PubMed  Google Scholar 

  • Stevanin, G., Fujigasaki, H., Lebre, A.S., Camuzat, A., Jeannequin, C., Dode, C., Takahashi, J., San, C., Bellance, R., Brice, A. and Durr, A., 2003, Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain 126: 1599.

    PubMed  Google Scholar 

  • Stott, K., Blackburn, J.M., Butler, P.J. and Perutz, M., 1995, Incorporation of glutamine repeats makes protein oligomerize: implications for neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 92: 6509.

    CAS  PubMed  Google Scholar 

  • Sudarsky, L. and Coutinho, P., 1995, Machado-Joseph disease. Clin. Neurosci. 3: 17.

    CAS  PubMed  Google Scholar 

  • Sugars, K.L. and Rubinsztein, D.C., 2003, Transcriptional abnormalities in Huntington disease. Trends Genet. 19: 233.

    CAS  PubMed  Google Scholar 

  • Tait, D., Riccio, M., Sittler, A., Scherzinger, E., Santi, S., Ognibene, A., Maraldi, N.M., Lehrach, H. and Wanker, E.E., 1998, Ataxin-3 is transported into the nucleus and associates with the nuclear matrix. Hum. Mol. Genet. 7: 991.

    CAS  PubMed  Google Scholar 

  • Tanaka, M., Morishima, I., Akagi, T., Hashikawa, T. and Nukina, N., 2001, Intra- and intermolecular beta-pleated sheet formation in glutamine-repeat inserted myoglobin as a model for polyglutamine diseases. J. Biol. Chem. 276: 45470.

    CAS  PubMed  Google Scholar 

  • Tanaka, M., Machida, Y., Nishikawa, Y., Akagi, T., Hashikawa, T., Fujisawa, T. and Nukina, N., 2003, Expansion of polyglutamine induces the formation of quasi-aggregate in the early stage of protein fibrillization. J. Biol. Chem. 278: 34717.

    CAS  PubMed  Google Scholar 

  • Tanaka, M., Machida, Y. and Nukina, N., 2005, A novel therapeutic strategy for polyglutamine diseases by stabilizing aggregation-prone proteins with small molecules. J. Mol. Med. 83: 343.

    CAS  PubMed  Google Scholar 

  • Taniwaki, T., Sakai, T., Kobayashi, T., Kuwabara, Y., Otsuka, M., Ichiya, Y., Masuda, K. and Goto, I., 1997, Positron emission tomography (PET) in Machado-Joseph disease. J. Neurol. Sci. 145: 63.

    CAS  PubMed  Google Scholar 

  • Tarlac, V. and Storey, E., 2003, Role of proteolysis in polyglutamine disorders. J. Neurosci. Res. 74: 406.

    CAS  PubMed  Google Scholar 

  • Taroni, F. and DiDonato, S., 2004, Pathways to motor incoordination: the inherited ataxias, Nat. Rev. Neurosci. 5: 641.

    CAS  PubMed  Google Scholar 

  • Taylor, J.P., Hardy, J. and Fischbeck, K.H., 2002, Toxic proteins in neurodegenerative disease. Science 296: 1991.

    CAS  PubMed  Google Scholar 

  • Temussi, P.A., Masino, L. and Pastore, A., 2003, From Alzheimer to Huntington: why is a structural understanding so difficult? EMBO J. 22: 355.

    CAS  PubMed  Google Scholar 

  • Thakur, A.K. and Wetzel, R., 2002, Mutational analysis of the structural organization of polyglutamine aggregates. Proc. Natl. Acad. Sci. USA 99: 17014.

    CAS  PubMed  Google Scholar 

  • Trottier, Y., Cancel, G., An-Gourfinkel, I., Lutz, Y., Weber, C., Brice, A., Hirsch, E. and Mandel, J.L., 1998, Heterogeneous intracellular localization and expression of ataxin-3. Neurobiol. Dis. 5: 335.

    CAS  PubMed  Google Scholar 

  • Tsai, H.F., Tsai, H.J. and Hsieh, M., 2004, Full-length expanded ataxin-3 enhances mitochondrial-mediated cell death and decreases Bcl-2 expression in human neuroblastoma cells. Biochem. Biophys. Res. Commun. 324: 1274.

    CAS  PubMed  Google Scholar 

  • Uchihara, T., Fujigasaki, H., Koyano, S., Nakamura, A., Yagishita, S. and Iwabuchi, K., 2001, Non-expanded polyglutamine proteins in intranuclear inclusions of hereditary ataxias-triple-labeling immunofluorescence study. Acta. Neuropathol. (Berl.) 102: 149.

    CAS  Google Scholar 

  • Vonsattel, J.P. and DiFiglia, M., 1998, Huntington disease. J. Neuropathol. Exp. Neurol. 57: 369.

    CAS  PubMed  Google Scholar 

  • Walsh, D.M. and Selkoe, D.J., 2004, Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept. Lett. 11: 213.

    CAS  PubMed  Google Scholar 

  • Wang, G., Sawai, N., Kotliarova, S., Kanazawa, I. and Nukina, N., 2000, Ataxin-3, the MJD1 gene product, interacts with the two human homologs of yeast DNA repair protein RAD23, HHR23A and HHR23B. Hum. Mol. Genet. 9: 1795.

    CAS  PubMed  Google Scholar 

  • Warrick, J.M., Paulson, H.L., Gray-Board, G.L., Bui, Q.T., Fischbeck, K.H., Pittman, R.N. and Bonini, N.M., 1998, Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93: 939.

    Google Scholar 

  • Warrick, J.M., Chan, H.Y., Gray-Board, G.L., Chai, Y., Paulson, H.L. and Bonini, N.M., 1999, Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23: 425.

    Google Scholar 

  • Warrick, J.M., Morabito, L.M., Bilen, J., Gordesky-Gold, B., Faust, L.Z., Paulson, H.L. and Bonini, N.M., 2005, Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. Mol. Cell. 18: 37.

    CAS  PubMed  Google Scholar 

  • Watkins, J.F., Sung, P., Prakash, L. and Prakash, S., 1993, The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol. Cell. Biol. 13: 7757.

    CAS  PubMed  Google Scholar 

  • Wellington, C.L., Ellerby, L.M., Hackam, A.S., Margolis, R.L., Trifiro, M.A., Singaraja, R., McCutcheon, K., Salvesen, G.S., Propp, S.S., Bromm, M., et al., 1998, Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 273: 9158.

    CAS  PubMed  Google Scholar 

  • Wen, F.C., Li, Y.H., Tsai, H.F., Lin, C.H., Li, C., Liu, C.S., Lii, C.K., Nukina, N. and Hsieh, M., 2003, Down-regulation of heat shock protein 27 in neuronal cells and non-neuronal cells expressing mutant ataxin-3. FEBS Lett. 546: 307.

    CAS  PubMed  Google Scholar 

  • Wolfgang, W.J., Miller, T.W., Webster, J.M., Huston, J.S., Thompson, L.M., Marsh, J.L. and Messer, A., 2005, Suppression of Huntington’s disease pathology in Drosophila by human single-chain Fv antibodies. Proc. Natl. Acad. Sci. USA 102: 11563.

    CAS  PubMed  Google Scholar 

  • Wullner, U., Reimold, M., Abele, M., Burk, K., Minnerop, M., Dohmen, B.M., Machulla, H.J., Bares, R. and Klockgether, T., 2005, Dopamine transporter positron emission tomography in spinocerebellar ataxias type 1, 2, 3, and 6. Arch. Neurol. 62: 1280.

    PubMed  Google Scholar 

  • Xia, H., Mao, Q., Eliason, S.L., Harper, S.Q., Martins, I.H., Orr, H.T., Paulson, H.L., Yang, L., Kotin, R.M. and Davidson, B.L., 2004, RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med. 10: 816.

    CAS  PubMed  Google Scholar 

  • Yang, W., Dunlap, J.R., Andrews, R.B. and Wetzel, R., 2002, Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11: 2905.

    CAS  PubMed  Google Scholar 

  • Ye, Y., Meyer, H.H. and Rapoport, T.A., 2003, Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell. Biol. 162: 71.

    CAS  PubMed  Google Scholar 

  • Yen, T.C., Lu, C.S., Tzen, K.Y., Wey, S.P., Chou, Y.H., Weng, Y.H., Kao, P.F. and Ting, G., 2000, Decreased dopamine transporter binding in Machado-Joseph disease. J. Nucl. Med. 41: 994.

    CAS  PubMed  Google Scholar 

  • Yen, T.C., Tzen, K.Y., Chen, M.C., Chou, Y.H., Chen, R.S., Chen, C.J., Wey, S.P., Ting, G. and Lu, C.S., 2002, Dopamine transporter concentration is reduced in asymptomatic Machado-Joseph disease gene carriers. J. Nucl. Med. 43: 153.

    CAS  PubMed  Google Scholar 

  • Yoshida, H., Yoshizawa, T., Shibasaki, F., Shoji, S. and Kanazawa, I., 2002, Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol. Dis. 10: 88.

    CAS  PubMed  Google Scholar 

  • Yoshizawa, T., Yamagishi, Y., Koseki, N., Goto, J., Yoshida, H., Shibasaki, F., Shoji, S. and Kanazawa, I., 2000, Cell cycle arrest enhances the in vitro cellular toxicity of the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Hum. Mol. Genet. 9: 69.

    CAS  PubMed  Google Scholar 

  • Zhu, M., Shao, F., Innes, R.W., Dixon, J.E. and Xu, Z., 2004, The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Proc. Natl. Acad. Sci. USA 101: 302.

    CAS  PubMed  Google Scholar 

  • Zoghbi, H.Y. and Orr, H.T., 2000, Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23: 217.

    CAS  PubMed  Google Scholar 

  • Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B.R., Goffredo, D., Conti, L., MacDonald, M.E., Friedlander, R.M., Silani, V., Hayden, M.R., Timmusk, T., Sipione, S. and Cattaneo, E., 2001, Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293: 493.

    CAS  PubMed  Google Scholar 

  • Zuhlke, C., Hellenbroich, Y., Dalski, A., Kononowa, N., Hagenah, J., Vieregge, P., Riess, O., Klein, C. and Schwinger, E., 2001, Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur. J. Hum. Genet. 9: 160.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ribeiro, S.M., Almeida, L.P.d., Carvalho, A.L., Rego, A.C. (2007). Polyglutamine Expansion Diseases – the Case of Machado-Joseph Disease. In: Malva, J.O., Rego, A.C., Cunha, R.A., Oliveira, C.R. (eds) Interaction Between Neurons and Glia in Aging and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-70830-0_18

Download citation

Publish with us

Policies and ethics