Advertisement

Metal Ions and Alzheimer's Disease

  • Paul A. Adlard
  • Ashley I. Bush

The role of metal ions in the evolution and progression of Alzheimer’s disease (AD) is becoming increasingly apparent. Indeed, the interactions of age-associated increases in metals with the amyloid precursor protein (APP) and its proteolytic enzymes and subsequent proteolytic fragments (such as -amyloid (A )) are well characterized. Likewise, the metal associated and age-related formation of free radicals, the subsequent generation of oxidative stress and its interactions on process whose dysfunction may contribute to the development of AD have also been highly characterized. Metal dyshomeostasis may thus initiate, and propogate, the development of AD. As science continues to gain greater resolution into the molecular underpinnings of AD, the potential for the use of metal-modulation in the treatment of this disorder is gaining greater acceptance.

Keywords

Inductively Couple Plasma Mass Spectrometry Mild Cognitive Impairment Amyloid Precursor Protein Cerebral Amyloid Angiopathy Copper Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12. References

  1. Abramov, A.Y., Canevari, L. and Duchen, M.R., 2003, Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci. 23: 5088.PubMedGoogle Scholar
  2. Adlard, P.A. and Cummings, B.J., 2004, Alzheimer’s disease - a sum greater than its parts? Neurobiol. Aging 25: 725.PubMedGoogle Scholar
  3. Adlard, P.A., West, A.K. and Vickers, J.C., 1998, Increased density of metallothionein I/II-immunopositive cortical glial cells in the early stages of Alzheimer’s disease. Neurobiol. Dis. 5: 349.PubMedGoogle Scholar
  4. Ahluwalia, N., Gordon, A., Handte, G., Mahlon, M., Li, N.Q., Beard, J.L., Weinstock, D. and Ross, A.C., 2000, Iron status and stores decline with age in Lewis rats. J. Nutr. 130: 2378.PubMedGoogle Scholar
  5. An, W.L., Bjorkdahl, C., Liu, R., Cowburn, R.F., Winblad, B. and Pei, J.J., 2005, Mechanism of zinc-induced phosphorylation of p70 S6 kinase and glycogen synthase kinase 3beta in SH-SY5Y neuroblastoma cells. J. Neurochem. 92: 1104.PubMedGoogle Scholar
  6. Angeletti, B., Waldron, K.J., Freeman, K.B., Bawagan, H., Hussain, I., Miller, C.C., Lau, K.F., Tennant, M.E., Dennison, C., Robinson, N.J. and Dingwall, C., 2005, BACE1 cytoplasmic domain interacts with the copper chaperone for superoxide dismutase-1 and binds copper. J. Biol. Chem. 280: 17930.PubMedGoogle Scholar
  7. Arlt, S., Beisiegel, U. and Kontush, A., 2002, Lipid peroxidation in neurodegeneration: new insights into Alzheimer’s disease. Curr. Opin. Lipidol. 13: 289.PubMedGoogle Scholar
  8. Armendariz, A.D., Gonzalez, M., Loguinov, A.V. and Vulpe, C.D., 2004, Gene expression profiling in chronic copper overload reveals upregulation of Prnp and App. Physiol. Genomics. 20: 45.PubMedGoogle Scholar
  9. Atwood, C.S., Moir, R.D., Huang, X., Scarpa, R.C., Bacarra, N.M., Romano, D.M., Hartshorn, M.A., Tanzi, R.E. and Bush, A.I., 1998, Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions represent-ting physiological acidosis. J. Biol. Chem. 273: 12817.PubMedGoogle Scholar
  10. Atwood, C.S., Huang, X., Khatri, A., Scarpa, R.C., Kim, Y.S., Moir, R.D., Tanzi, R.E., Roher, A.E. and Bush, A.I., 2000a, Copper catalyzed oxidation of Alzheimer Abeta. Cell Mol. Biol. (Noisy-le-grand) 46: 777.Google Scholar
  11. Atwood, C.S., Scarpa, R.C., Huang, X., Moir, R.D., Jones, W.D., Fairlie, D.P., Tanzi, R.E. and Bush, A.I., 2000b, Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J. Neurochem. 75: 1219.PubMedGoogle Scholar
  12. Atwood, C.S., Perry, G., Zeng, H., Kato, Y., Jones, W.D., Ling, K.Q., Huang, X., Moir, R.D., Wang, D., Sayre, L.M., Smith, M.A., Chen, S.G. and Bush, A.I., 2004, Copper mediates dityrosine cross-linking of Alzheimer’s amyloid-beta. Biochemistry 43: 560.PubMedGoogle Scholar
  13. Augustinack, J.C., Schneider, A., Mandelkow, E.M. and Hyman, B.T., 2002, Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol. (Berl). 103: 26.Google Scholar
  14. Barnham, K.J., McKinstry, W.J., Multhaup, G., Galatis, D., Morton, C.J., Curtain, C.C., Williamson, N.A., White, A.R., Hinds, M.G., Norton, R.S., Beyreuther, K., Masters, C.L., Parker, M.W. and Cappai, R., 2003a, Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J. Biol. Chem. 278: 17401.PubMedGoogle Scholar
  15. Barnham, K.J., Ciccotosto, G.D., Tickler, A.K., Ali, F.E., Smith, D.G., Williamson, N.A., Lam, Y.H., Carrington, D., Tew, D., Kocak, G., Volitakis, I., Separovic, F., Barrow, C.J., Wade, J.D., Masters, C.L., Cherny, R.A., Curtain, C.C., Bush, A.I. and Cappai, R., 2003b, Neurotoxic, redox-competent Alzheimer’s beta-amyloid is released from lipid membrane by methionine oxidation. J. Biol. Chem. 278: 42959.PubMedGoogle Scholar
  16. Barnham, K.J., Haeffner, F., Ciccotosto, G.D., Curtain, C.C., Tew, D., Mavros, C., Beyreuther, K., Carrington, D., Masters, C.L., Cherny, R.A., Cappai, R. and Bush, A.I., 2004, Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease beta-amyloid. FASEB J. 18: 1427.PubMedGoogle Scholar
  17. Basha, M.R., Wei, W., Bakheet, S.A., Benitez, N., Siddiqi, H.K., Ge, Y.W., Lahiri, D.K. and Zawia, N.H., 2005a, The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J. Neurosci. 25: 823.PubMedGoogle Scholar
  18. Basha, M.R., Murali, M., Siddiqi, H.K., Ghosal, K., Siddiqi, O.K., Lashuel, H.A., Ge, Y.W., Lahiri, D.K. and Zawia, N.H., 2005b, Lead (Pb) exposure and its effect on APP proteolysis and Abeta aggregation. FASEB J. 19: 2083.PubMedGoogle Scholar
  19. Basun, H.L., Forssell, G., Wetterberg, L. and Winblad, B., 1991, Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J. Neural Transm. Park. Dis. Dement. Sect. 3: 231.PubMedGoogle Scholar
  20. Bayer, T.A., Schafer, S., Simons, A., Kemmling, A., Kamer, T., Tepest, R., Eckert, A., Schussel, K., Eikenberg, O., Sturchler-Pierrat, C., Abramowski, D., Staufenbiel, M. and Multhaup, G., 2003, Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc. Natl. Acad. Sci. USA 100: 14187.PubMedGoogle Scholar
  21. Behl, C., Davis, J.B., Lesley, R. and Schubert, D., 1994, Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77: 817.PubMedGoogle Scholar
  22. Bellingham, S.A., Lahiri, D.K., Maloney, B., La Fontaine, S., Multhaup, G. and Camakaris, J., 2004a, Copper depletion down-regulates expression of the Alzheimer’s disease amyloid-beta precursor protein gene. J. Biol. Chem. 279: 20378.PubMedGoogle Scholar
  23. Bellingham, S.A., Ciccotosto, G.D., Needham, B.E., Fodero, L.R., White, A.R., Masters, C.L., Cappai, R. and Camakaris, J., 2004b, Gene knockout of amyloid precursor protein and amyloid precursor-like protein-2 increases cellular copper levels in primary mouse cortical neurons and embryonic fibroblasts. J. Neurochem. 91: 423.PubMedGoogle Scholar
  24. Bishop, G.M., Robinson, S.R., Liu, Q., Perry, G., Atwood, C.S. and Smith, M.A., 2002, Iron: a pathological mediator of Alzheimer disease? Dev. Neurosci. 24: 184.PubMedGoogle Scholar
  25. Bjorkdahl, C., Sjogren, M.J., Winblad, B. and Pei, J.J., 2005, Zinc induces neurofilament phosphorylation independent of p70 S6 kinase in N2a cells. Neuroreport 16: 591.PubMedGoogle Scholar
  26. Blasko, I., Stampfer-Kountchev, M., Robatscher, P., Veerhuis, R., Eikelenboom, P. and Grubeck-Loebenstein, B., 2004, How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell 3: 169.PubMedGoogle Scholar
  27. Bleecker, M.L., Ford, D.P., Lindgren, K.N., Hoese, V.M., Walsh, K.S. and Vaughan, C.G., 2005, Differential effects of lead exposure on components of verbal memory. Occup. Environ. Med. 62: 181.PubMedGoogle Scholar
  28. Borchardt, T., Camakaris, J., Cappai, R.C., Masters, L., Beyreuther, K. and Multhaup, G., 1999, Copper inhibits beta-amyloid production and stimulates the nonamyloidogenic pathway of amyloid-precursor-protein secretion. Biochem. J. 344: 461.PubMedGoogle Scholar
  29. Bouras, C., Giannakopoulos, P., Good, P.F., Hsu, A., Hof, P.R. and Perl, D.P., 1997, A laser microprobe mass analysis of brain aluminum and iron in dementia pugilistica: comparison with Alzheimer’s disease. Eur. Neurol. 38: 53.PubMedGoogle Scholar
  30. Braak, H., Braak, E., Bohl, J. and Bratzke, H., 1998, Evolution of Alzheimer’s disease related cortical lesions. J. Neural Transm. Suppl. 54: 106.Google Scholar
  31. Brookmeyer, R., Gray, S. and Kawas, C., 1998, Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health 88: 1337.PubMedGoogle Scholar
  32. Brown, A.M., Tummolo, D.M., Rhodes, K.J., Hofmann, J.R., Jacobsen, J.S. and Sonnenberg-Reines, J., 1997, Selective aggregation of endogenous beta-amyloid peptide and soluble amyloid precursor protein in cerebrospinal fluid by zinc. J. Neurochem. 69: 1204.PubMedGoogle Scholar
  33. Buckley, C.A., Rouhani, F.N., Kaler, M., Adamik, B., Hawari, F.I. and Levine, S.J., 2005, Amino-terminal TACE prodomain attenuates TNFR2 cleavage independently of the cysteine switch. Am. J. Physiol. Lung Cell Mol. Physiol. 288: L1132.PubMedGoogle Scholar
  34. Bunker, V.W., Hinks, L.J., Stansfield, M.F., Lawson, M.S. and Clayton, B.E., 1987, Metabolic balance studies for zinc and copper in housebound elderly people and the relationship between zinc balance and leukocyte zinc concentrations. Am. J. Clin. Nutr. 46: 353.PubMedGoogle Scholar
  35. Bush, A.I., Multhaup, G., Moir, R.D., Williamson, T.G., Small, D.H., Rumble, B., Pollwein, P., Beyreuther, K. and Masters, C.L., 1993, A novel zinc(II) binding site modulates the function of the beta A4 amyloid protein precursor of Alzheimer’s disease. J. Biol. Chem. 268: 16109.PubMedGoogle Scholar
  36. Bush, A.I., Pettingell, W.H., Jr., de Paradis, M., Tanzi, R.E. and Wasco, W., 1994a, The amyloid beta-protein precursor and its mammalian homologues. Evidence for a zinc-modulated heparin-binding superfamily. J. Biol. Chem. 269: 26618.PubMedGoogle Scholar
  37. Bush, A.I., Pettingell, W.H., Multhaup, G., Paradis, M., Vonsattel, J.P., Gusella, J.F., Beyreuther, K., Masters, C.L. and Tanzi, R.E., 1994b, Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265: 1464.PubMedGoogle Scholar
  38. Bush, A.I., Pettingell, W.H., Jr., Paradis, M.D. and Tanzi, R.E., 1994c, Modulation of A beta adhesiveness and secretase site cleavage by zinc. J. Biol. Chem. 269: 12152.PubMedGoogle Scholar
  39. Butterfield, D.A., Castegna, A., Lauderback, C.M. and Drake, J., 2002, Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol. Aging 23: 655.PubMedGoogle Scholar
  40. Buxbaum, J.D., Liu, K.N., Luo, Y., Slack, J.L., Stocking, K.L., Peschon, J.J., Johnson, R.S., Castner, B.J., Cerretti, D.P. and Black, R.A., 1998, Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273: 27765.PubMedGoogle Scholar
  41. Caccamo, A., Oddo, S., Sugarman, M.C., Akbari, Y. and LaFerla, F.M., 2005, Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders. Neurobiol. Aging 26: 645.PubMedGoogle Scholar
  42. Cai, H., Wang, Y., McCarthy, D., Wen, H., Borchelt, D.R., Price, D.L. and Wong, P.C., 2001, BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat. Neurosci. 4: 233.PubMedGoogle Scholar
  43. Campbell, A.M., Smith, A., Sayre, L.M., Bondy, S.C. and Perry, G., 2001, Mechanisms by which metals promote events connected to neurodegenerative diseases. Brain Res. Bull. 55: 125.Google Scholar
  44. Cardoso, S.M., Proenca, M.T., Santos, S., Santana, I. and Oliveira, C.R., 2004, Cytochrome c oxidase is decreased in Alzheimer’s disease platelets. Neurobiol. Aging 25: 105.PubMedGoogle Scholar
  45. Carson, J.A. and Turner, A.J., 2002, Beta-amyloid catabolism: roles for neprilysin(NEP) and other metallopeptidases? J. Neurochem. 81: 1.PubMedGoogle Scholar
  46. Cerpa, W., Varela-Nallar, L., Reyes, A.E., Minniti, A.N. and Inestrosa, N.C., 2005, Is there a role for copper in neurodegenerative diseases? Mol. Aspects Med. 26: 405.PubMedGoogle Scholar
  47. Cherny, R.A., Legg, J.T., McLean, C.A., Fairlie, D.P., Huang, X., Atwood, C.S., Beyreuther, K., Tanzi, R.E., Masters, C.L. and Bush, A.I., 1999, Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion. J. Biol. Chem. 274: 23223.PubMedGoogle Scholar
  48. Cherny, R.A., Atwood, C.S., Xilinas, M.E., Gray, D.N., Jones, W.D., McLean, C.A., Barnham, K.J., Volitakis, I., Fraser, F.W., Kim, Y., Huang, X., Goldstein, L.E., Moir, R.D., Lim, J., Beyreuther, T.K., Zheng, H., Tanzi, R.E., Masters, C.L. and Bush, A.I., 2001, Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30: 665.PubMedGoogle Scholar
  49. Chong, M.S. and Sahadevan, S., 2005, Preclinical Alzheimer’s disease: diagnosis and prediction of progression. Lancet Neurol. 4: 576.PubMedGoogle Scholar
  50. Chung, R.S., Adlard, P.A., Dittmann, J., Vickers, J.C., Chuah, M. and West, A., 2004, Neuron-glia communication: metallothionein expression is specifically upregulated by astrocytes in response to neuronal injury. J. Neurochem. 88: 454.PubMedGoogle Scholar
  51. Ciccotosto, G.D., Tew, D., Curtain, C.C., Smith, D., Carrington, D., Masters, C.L., Bush, A.I., Cherny, R.A., Cappai, R. and Barnham, K.J., 2004, Enhanced toxicity and cellular binding of a modified amyloid beta peptide with a methionine to valine substitution. J. Biol. Chem. 279: 42528.PubMedGoogle Scholar
  52. Citron, M., 2004, Strategies for disease modification in Alzheimer’s disease. Nat. Rev. Neurosci. 5: 677.PubMedGoogle Scholar
  53. Ciuculescu, E.D., Mekmouche, Y. and Faller, P., 2005, Metal-binding properties of the peptide APP(170-188): a model of the Zn(II)-binding site of amyloid precursor protein (APP). Chemistry 11: 903.PubMedGoogle Scholar
  54. Coleman, P., Federoff, H. and Kurlan, R., 2004, A focus on the synapse for neuroprotection in Alzheimer’s disease and other dementias. Neurology 63: 1155.PubMedGoogle Scholar
  55. Connor, J.R., Tucker, P., Johnson, M. and Snyder, B., 1993, Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer’s disease. Neurosci. Lett. 159: 88.PubMedGoogle Scholar
  56. Cottrell, D.A., Blakely, E.L., Johnson, M.A., Ince, P.G. and Turnbull, D.M., 2001, Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology 57: 260.PubMedGoogle Scholar
  57. Cross, J.B., Duca, J.S., Kaminski, J.J. and Madison, V.S., 2002, The active site of a zinc-dependent metalloproteinase influences the computed pK(a) of ligands coordinated to the catalytic zinc ion. J. Am. Chem. Soc. 124: 11004.PubMedGoogle Scholar
  58. Cuajungco, M.P., Goldstein, L.E., Nunomura, A., Smith, M.A., Lim, J.T., Atwood, C.S., Huang, X., Farrag, Y.W., Perry, G. and Bush, A.I., 2000, Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. J. Biol. Chem. 275: 19439.PubMedGoogle Scholar
  59. Curtain, C.C., Ali, F., Volitakis, I., Cherny, R.A., Norton, R.S., Beyreuther, K., Barrow, C.J., Masters, C.L., Bush, A.I. and Barnham, K.J., 2001, Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276: 20466.PubMedGoogle Scholar
  60. Curtain, C.C., Ali, F.E., Smith, D.G., Bush, A.I., Masters, C.L. and Barnham, K.J., 2003, Metal ions, pH, and cholesterol regulate the interactions of Alzheimer’s disease amyloid-beta peptide with membrane lipid. J. Biol. Chem. 278: 2977.PubMedGoogle Scholar
  61. Dahlgren, K.N., Manelli, A.M., Stine, W.B., Jr., Baker, L.K., Krafft, G.A. and LaDu, M.J., 2002, Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J. Biol. Chem. 277: 32046.PubMedGoogle Scholar
  62. Danscher, G., Jensen, K.B., Frederickson, C.J., Kemp, K., Andreasen, A., Juhl, S., Stoltenberg, M. and Ravid, R., 1997, Increased amount of zinc in the hippocampus and amygdala of Alzheimer’s diseased brains: a proton-induced X-ray emission spectroscopic analysis of cryostat sections from autopsy material. J. Neurosci. Methods 76: 53.PubMedGoogle Scholar
  63. Davis, C.D., Milne, D.B. and Nielsen, F.H., 2000, Changes in dietary zinc and copper affect zinc-status indicators of postmenopausal women, notably, extracellular superoxide dismutase and amyloid precursor proteins. Am. J. Clin. Nutr. 71: 781.PubMedGoogle Scholar
  64. De Deyn, P.P., Hiramatsu, M., Borggreve, F., Goeman, J., D’Hooge, R., Saerens, J. and Mori, A., 1998, Superoxide dismutase activity in cerebrospinal fluid of patients with dementia and some other neurological disorders. Alzheimer Dis. Assoc. Disord. 12: 26.PubMedGoogle Scholar
  65. de Silva, R., Lashley, T., Gibb, G., Hanger, D., Hope, A., Reid, A., Bandopadhyay, R., Utton, M., Strand, C., Jowett, T., Khan, N., Anderton, B., Wood, N., Holton, J., Revesz, T. and Lees, A., 2003, Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathol. Appl. Neurobiol. 29: 288.PubMedGoogle Scholar
  66. De Strooper, B., 2003, Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 38: 9.PubMedGoogle Scholar
  67. Deibel, M.A., Ehmann, W.D. and Markesbery, W.R., 1996, Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J. Neurol. Sci. 143: 137.PubMedGoogle Scholar
  68. Dermaut, B., Kumar-Singh, S., Engelborghs, S., Theuns, J., Rademakers, R., Saerens, J., Pickut, B.A., Peeters, K., van den Broeck, M., Vennekens, K., Claes, S., Cruts, M., Cras, P., Martin, J.J., Van Broeckhoven, C. and De Deyn, P.P., 2004, A novel presenilin 1 mutation associated with Pick’s disease but not beta-amyloid plaques. Ann. Neurol. 55: 617.PubMedGoogle Scholar
  69. Desai, A.K. and Grossberg, G.T., 2005, Diagnosis and treatment of Alzheimer’s disease. Neurology 64: S34.PubMedGoogle Scholar
  70. Dickson, T.C. and Vickers, J.C., 2001, The morphological phenotype of beta-amyloid plaques and associated neuritic changes in Alzheimer’s disease. Neuroscience 105: 99.PubMedGoogle Scholar
  71. Dong, J., Atwood, C.S., Anderson, V.E., Siedlak, S.L., Smith, M.A., Perry, G. and Carey, P.R., 2003, Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 42: 2768.PubMedGoogle Scholar
  72. Eagle, G.R., Zombola, R.R. and Himes, R.H., 1983, Tubulin-zinc interactions: binding and polymerization studies. Biochemistry 22: 221.PubMedGoogle Scholar
  73. Egana, J.T., Zambrano, C., Nunez, M.T., Gonzalez-Billault, C. and Maccioni, R.B., 2003, Iron-induced oxidative stress modify tau phosphorylation patterns in hippocampal cell cultures. Biometals 16: 215.PubMedGoogle Scholar
  74. Ekmekcioglu, C., 2001, The role of trace elements for the health of elderly individuals. Nahrung 45: 309.PubMedGoogle Scholar
  75. Farris, W., Mansourian, S., Chang, Y., Lindsley, L., Eckman, E.A., Frosch, M.P., Eckman, C.B., Tanzi, R.E., Selkoe, D.J. and Guenette, S., 2003, Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. USA 100: 4162.PubMedGoogle Scholar
  76. Ferretti, G., Bacchetti, T., Moroni, C., Vignini, A. and Curatola, G., 2003, Copper-induced oxidative damage on astrocytes: protective effect exerted by human high density lipoproteins. Biochim. Biophys. Acta 1635: 48.PubMedGoogle Scholar
  77. Forbes, W.F. and Hill, G.B., 1998, Is exposure to aluminum a risk factor for the development of Alzheimer’s disease? - Yes. Arch. Neurol. 55: 740.Google Scholar
  78. Frausto da Silva, J.J.R. and Williams, R.J.P., 2001, The Biological Chemistry of the Elements, Oxford University Press, Oxford.Google Scholar
  79. Friedhoff, P., von Bergen, M., Mandelkow, E.M., Davies, P. and Mandelkow, E., 1998, A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc. Natl. Acad. Sci. USA 95: 15712.PubMedGoogle Scholar
  80. Friedhoff, P., von Bergen, M., Mandelkow, E.M. and Mandelkow, E., 2000, Structure of tau protein and assembly into paired helical filaments. Biochim. Biophys. Acta 1502: 122.PubMedGoogle Scholar
  81. Friedlich, A.L., Lee, J.Y., van Groen, T., Cherny, R.A., Volitakis, I., Cole, T.B., Palmiter, R.D., Koh, J.Y. and Bush, A.I., 2004, Neuronal zinc exchange with the blood vessel wall promotes cerebral amyloid angiopathy in an animal model of Alzheimer’s disease. J. Neurosci. 24: 3453.PubMedGoogle Scholar
  82. Frisoni, G.B., Padovani, A. and Wahlund, L.O., 2004, The predementia diagnosis of Alzheimer’s disease. Alzheimer Dis. Assoc. Disord. 18: 51.Google Scholar
  83. Gabbita, S.P., Lovell, M.A. and Markesbery, W.R., 1998, Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J. Neurochem. 71: 2034.PubMedCrossRefGoogle Scholar
  84. Gandy, S., 2005, The role of cerebral amyloid beta accumulation in common forms of Alzheimer’s disease. J. Clin. Invest. 115: 1121.PubMedGoogle Scholar
  85. Garzon-Rodriguez, W., Yatsimirsky, A.K. and Glabe, C.G., 1999, Binding of Zn(II), Cu(II), and Fe(II) ions to Alzheimer’s A beta peptide studied by fluorescence. Bioorg. Med. Chem. Lett. 9: 2243.PubMedGoogle Scholar
  86. Gaskin, F., 1981, In vitro microtubule assembly regulation by divalent cations and nucleotides. Biochemistry 20: 1318.PubMedGoogle Scholar
  87. Gaskin, F. and Kress, Y., 1977, Zinc ion-induced assembly of tubulin. J. Biol. Chem. 252: 6918.PubMedGoogle Scholar
  88. Gaskin, F. and Shelanski, M.L., 1976, Microtubules and intermediate filaments. Essays Biochem. 12: 115.PubMedGoogle Scholar
  89. Geschwind, D.H., 2003, Tau phosphorylation, tangles, and neurodegeneration: the chicken or the egg? Neuron 40: 457.PubMedGoogle Scholar
  90. Gomis-Ruth, F.X., 2003, Structural aspects of the metzincin clan of metalloendopeptidases. Mol. Biotechnol. 24: 157.PubMedGoogle Scholar
  91. Gonzales, P.E., Solomon, A., Miller, A.B., Leesnitzer, M.A., Sagi, I. and Milla, M.E., 2004, Inhibition of the tumor necrosis factor-alpha-converting enzyme by its prodomain. J. Biol. Chem. 279: 31638.PubMedGoogle Scholar
  92. Goode, B.L., Chau, M., Denis, P.E. and Feinstein, S.C., 2000, Structural and functional differences between 3-repeat and 4-repeat tau isoforms. Implications for normal tau function and the onset of neurodegenetative disease. J. Biol. Chem. 275: 38182.PubMedGoogle Scholar
  93. Grundke-Iqbal, I., Fleming, J., Tung, Y.C., Lassmann, H., Iqbal, K. and Joshi, J.G., 1990, Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathol. (Berl) 81: 105.Google Scholar
  94. Gupta, V.B., Anitha, S., Hegde, M.L., Zecca, L.R., Garruto, M., Ravid, R., Shankar, S.K., Stein, R., Shanmugavelu, P. and Jagannatha Rao, K.S., 2005, Aluminium in Alzheimer’s disease: are we still at a crossroad? Cell Mol. Life Sci. 62: 143.PubMedGoogle Scholar
  95. Halliwell, B. and Gutteridge, J.M., 1984, Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1.PubMedGoogle Scholar
  96. Harris, F.M., Brecht, W.J., Xu, Q., Mahley, R.W. and Huang, Y., 2004, Increased tau phosphorylation in apolipoprotein E4 transgenic mice is associated with activation of extracellular signal-regulated kinase: modulation by zinc. J. Biol. Chem. 279: 44795.PubMedGoogle Scholar
  97. Hasan, M.R., Morishima, D., Tomita, K., Katsuki, M. and Kotani, S., 2005, Identification of a 250 kDa putative microtubule-associated protein as bovine ferritin. Evidence for a ferritin-microtubule interaction. FEBS J. 272: 822.PubMedGoogle Scholar
  98. Haydon, P.G., 2001, GLIA: listening and talking to the synapse. Nat. Rev. Neurosci. 2: 185.PubMedGoogle Scholar
  99. Head, E., Garzon-Rodriguez, W., Johnson, J.K., Lott, I.T., Cotman, C.W. and Glabe, C., 2001, Oxidation of Abeta and plaque biogenesis in Alzheimer’s disease and Down syndrome. Neurobiol. Dis. 8: 792.PubMedGoogle Scholar
  100. Heber, S., Herms, J., Gajic, V., Hainfellner, J., Aguzzi, A., Rulicke, T., von Kretzschmar, H., von Koch, C., Sisodia, S., Tremml, P., Lipp, H.P., Wolfer, D.P. and Muller, U., 2000, Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J. Neurosci. 20: 7951.PubMedGoogle Scholar
  101. Hesketh, J.E., 1982, Zinc-stimulated microtubule assembly and evidence for zinc binding to tubulin. Int. J. Biochem. 14: 983.PubMedGoogle Scholar
  102. Hesse, L., Beher, D., Masters, C.L. and Multhaup, G., 1994, The beta A4 amyloid precursor protein binding to copper. FEBS Lett. 349: 109.PubMedGoogle Scholar
  103. Hoke, D.E., Tan, J.L., Ilaya, N.T., Culvenor, J.G., Smith, S.J., White, A.R., Masters, C.L. and Evin, G.M., 2005, In vitro gamma-secretase cleavage of the Alzheimer’s amyloid precursor protein correlates to a subset of presenilin complexes and is inhibited by zinc. FEBS J. 272: 5544.PubMedGoogle Scholar
  104. Huang, X., Atwood, C.S., Moir, R.D., Hartshorn, M.A., Vonsattel, J.P., Tanzi, R.E. and Bush, A.I., 1997, Zinc-induced Alzheimer’s Abeta1-40 aggregation is mediated by conformational factors. J. Biol. Chem. 272: 26464.PubMedGoogle Scholar
  105. Huang, X., Atwood, C.S., Hartshorn, M.A., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Cuajungco, M.P., Gray, D.N., Lim, J., Moir, R.D., Tanzi, R.E. and Bush, A.I., 1999a, The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38: 7609.PubMedGoogle Scholar
  106. Huang, X., Cuajungco, M.P., Atwood, C.S., Hartshorn, M.A., Tyndall, J.D., Hanson, G.R., Stokes, K.C., Leopold, M., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Saunders, A.J., Lim, J., Moir, R.D., Glabe, C., Bowden, E.F., Masters, C.L., Fairlie, D.P., Tanzi, R.E. and Bush, A.I., 1999b, Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J. Biol. Chem. 274: 37111.PubMedGoogle Scholar
  107. Huang, X., Atwood, C.S., Moir, R.D., Hartshorn, M.A., Tanzi, R.E. and Bush, A.I., 2004, Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Abeta peptides. J. Biol. Inorg. Chem. 9: 954.PubMedGoogle Scholar
  108. Hyman, B.T., Augustinack, J.C. and Ingelsson, M., 2005, Transcriptional and conformational changes of the tau molecule in Alzheimer’s disease. Biochim. Biophys. Acta 1739: 150.PubMedGoogle Scholar
  109. Inestrosa, N.C., Cerpa, W. and Varela-Nallar, L., 2005, Copper brain homeostasis: role of amyloid precursor protein and prion protein. IUBMB Life 57: 645.PubMedGoogle Scholar
  110. Ischiropoulos, H. and Beckman, J.S., 2003, Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J. Clin. Invest. 111: 163.PubMedGoogle Scholar
  111. Iskra, M., Patelski, J. and Majewski, W., 1993, Concentrations of calcium, magnesium, zinc and copper in relation to free fatty acids and cholesterol in serum of atherosclerotic men. J. Trace Elem. Electrolytes Health Dis. 7: 185.PubMedGoogle Scholar
  112. Iwata, N., Tsubuki, S., Takaki, Y., Watanabe, K., Sekiguchi, M., Hosoki, E., Kawashima-Morishima, M., Lee, H.J., Hama, E., Sekine-Aizawa, Y. and Saido, T.C., 2000, Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat. Med. 6: 143.PubMedGoogle Scholar
  113. Iwata, N., Tsubuki, S., Takaki, Y., Shirotani, K., Lu, B., Gerard, N.P., Gerard, C., Hama, E., Lee, H.J. and Saido, T.C., 2001, Metabolic regulation of brain Abeta by neprilysin. Science 292: 1550.PubMedGoogle Scholar
  114. Kanemitsu, H., Tomiyama, T. and Mori, H., 2003, Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci. Lett. 350: 113.PubMedGoogle Scholar
  115. Karr, J.W., Akintoye, H., Kaupp, L.J. and Szalai, V.A., 2005, N-Terminal deletions modify the Cu2+ binding site in amyloid-beta. Biochemistry 44: 5478.PubMedGoogle Scholar
  116. Ke, Y., Chang, Z., Duan, X.L., Du, J.R., Zhu, L., Wang, K., Yang, X.D., Ho, K.P. and Qian, Z.M., 2005, Age-dependent and iron-independent expression of two mRNA isoforms of divalent metal transporter 1 in rat brain. Neurobiol. Aging 26: 739.PubMedGoogle Scholar
  117. Keen, C.L., Hanna, L.A., Lanoue, L., Uriu-Adams, J.Y., Rucker, R.B. and Clegg, M.S., 2003, Developmental consequences of trace mineral deficiencies in rodents: acute and long-term effects. J. Nutr. 133: 1477S.PubMedGoogle Scholar
  118. Kim, S.U. and de Vellis, J., 2005, Microglia in health and disease. J. Neurosci. Res. 81: 302.PubMedGoogle Scholar
  119. Kim, N.H. and Kang, J.H., 2003, Oxidative modification of neurofilament-L by copper-catalyzed reaction. J. Biochem. Mol. Biol. 36: 488.PubMedGoogle Scholar
  120. Kim, N.H., Jeong, M.S., Choi, S.Y. and Hoon Kang, J., 2004, Oxidative modification of neurofilament-L by the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Biochimie 86: 553.PubMedGoogle Scholar
  121. Klatzo, I., Wisniewski, H. and Streicher, E., 1965, Experimental production of neurofibrillary degeneration. I. Light microscopic observations. J. Neuropathol. Exp. Neurol. 24: 187.PubMedGoogle Scholar
  122. Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C. and Fahrenholz, F., 1999, Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. USA 96: 3922.PubMedGoogle Scholar
  123. Lanphear, B.P., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D.C., Canfield, R.L., Dietrich, K.N., Bornschein, R., Greene, T., Rothenberg, S.J., Needleman, H.L., Schnaas, L., Wasserman, G., Graziano, J. and Roberts, R., 2005, Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ. Health Perspect. 113: 894.PubMedCrossRefGoogle Scholar
  124. Lee, J.Y., Cole, T.B., Palmiter, R.D., Suh, S.W. and Koh, J.Y., 2002, Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc. Natl. Acad. Sci. USA 99: 7705.PubMedGoogle Scholar
  125. Lee, J.Y., Friedman, J.E., Angel, I., Kozak, A. and Koh, J.Y., 2004, The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human beta-amyloid precursor protein transgenic mice. Neurobiol. Aging 25: 1315.PubMedGoogle Scholar
  126. Leissring, M.A., Farris, W., Chang, A.Y., Walsh, D.M., Wu, X., Sun, X., Frosch, M.P. and Selkoe, D.J., 2003, Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40: 1087.PubMedGoogle Scholar
  127. LeVine, S.M., 1997, Iron deposits in multiple sclerosis and Alzheimer’s disease brains. Brain Res. 760: 298.PubMedGoogle Scholar
  128. Liliom, K., Wagner, G., Kovacs, J., Comin, B., Cascante, M., Orosz, F. and Ovadi, J., 1999, Combined enhancement of microtubule assembly and glucose metabolism in neuronal systems in vitro: decreased sensitivity to copper toxicity. Biochem. Biophys. Res. Commun. 264: 605.PubMedGoogle Scholar
  129. Lind, S.E., McDonagh, J.R. and Smith, C.J., 1993, Oxidative inactivation of plasmin and other serine proteases by copper and ascorbate. Blood 82: 1522.PubMedGoogle Scholar
  130. Lindeman, R.D., Clark, M.L. and Colmore, J.P., 1971, Influence of age and sex on plasma and red-cell zinc concentrations. J. Gerontol. 26: 358.PubMedGoogle Scholar
  131. Ling, Y., Morgan, K. and Kalsheker, N., 2003, Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer’s disease. Int. J. Biochem. Cell Biol. 35: 1505.PubMedGoogle Scholar
  132. Liu, S.T., Howlett, G. and Barrow, C.J., 1999, Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the A beta peptide of Alzheimer’s disease. Biochemistry 38: 9373.PubMedGoogle Scholar
  133. Liu, W.K., Le, T.V., Adamson, J., Baker, M., Cookson, N., Hardy, J., Hutton, M., Yen, S.H. and Dickson, D.W., 2001, Relationship of the extended tau haplotype to tau biochemistry and neuropathology in progressive supranuclear palsy. Ann. Neurol. 50: 494.PubMedGoogle Scholar
  134. Loeffler, D.A., LeWitt, P.A., Juneau, P.L., Sima, A.A., Nguyen, H.U., DeMaggio, A.J., Brickman, C.M., Brewer, G.J., Dick, R.D., Troyer, M.D. and Kanaley, L., 1996, Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders. Brain Res. 738: 265.PubMedGoogle Scholar
  135. Loske, C., Gerdemann, A., Schepl, W., Wycislo, M., Schinzel, R., Palm, D., Riederer, P. and Munch, G., 2000, Transition metal-mediated glycoxidation accelerates cross-linking of beta-amyloid peptide. Eur. J. Biochem. 267: 4171.PubMedGoogle Scholar
  136. Lovell, M.A., Robertson, J.D., Teesdale, W.J., Campbell, J.L. and Markesbery, W.R., 1998, Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158: 47.PubMedGoogle Scholar
  137. Lovell, M.A., Smith, J.L., Xiong, S. and Markesbery, W.R., 2005, Alterations in zinc transporter protein-1 (ZnT-1) in the brain of subjects with mild cognitive impairment, early, and late-stage Alzheimer’s disease. Neurotox. Res. 7: 265.PubMedGoogle Scholar
  138. Lue, L.F., Kuo, Y.M., Roher, A.E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J.H., Rydel, R.E. and Rogers, J., 1999, Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am. J. Pathol. 155: 853.PubMedGoogle Scholar
  139. Luo, Y., Bolon, B., Kahn, S., Bennett, B.D., Babu-Khan, S., Denis, P., Fan, W., Kha, H., Zhang, J., Gong, Y., Martin, L.J., Louis, C., Yan, Q., Richards, W.G., Citron, M. and Vassar, R., 2001, Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat. Neurosci. 4: 231.PubMedGoogle Scholar
  140. Lutsenko, S. and Petris, M.J., 2003, Function and regulation of the mammalian copper-transporting ATPases: insights from biochemical and cell biological approaches. J. Membr. Biol. 191: 1.PubMedGoogle Scholar
  141. Ma, Q.F., Li, Y.M., Du, J.T., Kanazawa, K., Nemoto, T., Nakanishi, H. and Zhao, Y.F., 2005, Binding of copper (II) ion to an Alzheimer’s tau peptide as revealed by MALDI-TOF MS, CD, and NMR. Biopolymers 79: 74.PubMedGoogle Scholar
  142. Ma, Q., Li, Y., Du, J., Liu, H., Kanazawa, K., Nemoto, T., Nakanishi, H. and Zhao, Y., 2006, Copper binding properties of a tau peptide associated with Alzheimer’s disease studied by CD, NMR, and MALDI-TOF MS. Peptides 27: 841.PubMedGoogle Scholar
  143. Madaric, A., Ginter, E. and Kadrabova, J., 1994, Serum copper, zinc, and copper/zinc ratio in males: influence of aging. Physiol. Res. 43: 107PubMedGoogle Scholar
  144. Mandelkow, E.M., Biernat, J., Drewes, G., Gustke, N., Trinczek, B. and Mandelkow, E., 1995, Tau domains, phosphorylation, and interactions with microtubules. Neurobiol. Aging 16: 355.PubMedGoogle Scholar
  145. Martinez Lista, E., Sole, J., Arola, L. and Mas, A., 1993, Changes in plasma copper and zinc during rat development. Biol. Neonate. 64: 47.PubMedGoogle Scholar
  146. Mattson, M.P., 2004, Pathways toward and away from Alzheimer’s disease. Nature 430: 631.PubMedGoogle Scholar
  147. Maurer, I., Zierz, S. and Moller, H.J., 2000, A selective defect of cytochrome c oxidase is present in brain of Alzheimer’s disease patients. Neurobiol. Aging 21: 455.PubMedGoogle Scholar
  148. Maynard, C.J., Cappai, R., Volitakis, I., Cherny, R.A., White, A.R., Beyreuther, K., Masters, C.L., Bush, A.I. and Li, Q.X., 2002, Overexpression of Alzheimer’s disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J. Biol. Chem. 277: 44670.PubMedGoogle Scholar
  149. McLean, C.A., Cherny, R.A., Fraser, F.W., Fuller, S.J., Smith, M.J., Beyreuther, K., Bush, A.I. and Masters, C.L., 1999, Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46: 860.PubMedGoogle Scholar
  150. McMaster, D., McCrum, E., Patterson, C.C., Kerr, M.M., O'Reilly, D., Evans, A.E. and Love, A.H., 1992, Serum copper and zinc in random samples of the population of Northern Ireland. Am. J. Clin. Nutr. 56: 440.PubMedGoogle Scholar
  151. Mekmouche, Y., Coppel, Y., Hochgrafe, K., Guilloreau, L., Talmard, C., Mazarguil, H. and Faller, P., 2005, Characterization of the ZnII binding to the peptide amyloid-beta1-16 linked to Alzheimer’s disease. Chembiochem 6: 1663.PubMedGoogle Scholar
  152. Menditto, A., Morisi, G., Alimonti, A., Caroli, S., Petrucci F., Spagnolo, A. and Menotti, A., 1993, Association of serum copper and zinc with serum electrolytes and with selected risk factors for cardiovascular disease in men aged 55-75 years. NFR Study Group. J. Trace Elem. Electrolytes Health Dis. 7: 251.PubMedGoogle Scholar
  153. Milne, D.B. and Johnson, P.E., 1993, Assessment of copper status: effect of age and gender on reference ranges in healthy adults. Clin. Chem. 39: 883.PubMedGoogle Scholar
  154. Miura, T., Suzuki, K., Kohata, N. and Takeuchi, H., 2000, Metal binding modes of Alzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes. Biochemistry 39: 7024.PubMedGoogle Scholar
  155. Molina, J.A., Jimenez-Jimenez, F.J., Aguilar, M.V., Meseguer, I., Mateos-Vega, C.J., Gonzalez-Munoz, M.J., de Bustos, F., Porta, J., Orti-Pareja, M., Zurdo, M., Barrios, E. and Martinez-Para, M.C., 1998, Cerebrospinal fluid levels of transition metals in patients with Alzheimer’s disease. J. Neural Transm. 105: 479.PubMedGoogle Scholar
  156. Monget, A.L., Galan, P., Preziosi, P., Keller, H., Bourgeois, C., Arnaud, J., Favier, A. and Hercberg, S., 1996, Micronutrient status in elderly people. Geriatrie/Min. Vit. Aux Network. Int. J. Vitam. Nutr. Res. 66: 71.Google Scholar
  157. Moreira, P.I., Siedlak, S.L., Aliev, G., Zhu, X., Cash, A.D., Smith, M.A. and Perry, G., 2005, Oxidative stress mechanisms and potential therapeutics in Alzheimer’s disease. J. Neural Transm. 112: 921.PubMedGoogle Scholar
  158. Morris, C.M., Kerwin, J.M. and Edwardson, J.A., 1994, Nonhaem iron histochemistry of the normal and Alzheimer’s disease hippocampus. Neurodegeneration 3: 267.PubMedGoogle Scholar
  159. Moskovitz, J., Bar-Noy, S., Williams, W.M., Requena, J., Berlett, B.S. and Stadtman, E.R., 2001, Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc. Natl. Acad. Sci. USA 98: 12920.PubMedGoogle Scholar
  160. Mrak, R.E. and Griffin, S.W., 2005, Glia and their cytokines in progression of neurodegeneration. Neurobiol. Aging 26: 349.PubMedGoogle Scholar
  161. Muller, U., Cristina, N., Li, Z.W., Wolfer, D.P., Lipp, H.P., Rulicke, T., Brandner, S., Aguzzi, A. and Weissmann, C., 1994, Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell 79: 755.PubMedGoogle Scholar
  162. Multhaup, G., Bush, A.I., Pollwein, P. and Masters, C.L., 1994, Interaction between the zinc (II) and the heparin binding site of the Alzheimer’s disease beta A4 amyloid precursor protein (APP). FEBS Lett. 355: 151.PubMedGoogle Scholar
  163. Multhaup, G., Schlicksupp, A., Hesse, L., Beher, D., Ruppert, T., Masters, C.L. and Beyreuther, K., 1996, The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science 271: 1406.PubMedGoogle Scholar
  164. Munoz, D.G., 1998, Is exposure to aluminum a risk factor for the development of Alzheimer disease? - No. Arch. Neurol. 55: 737.Google Scholar
  165. Munro, H.N., Suter, P.M. and Russell, R.M., 1987, Nutritional requirements of the elderly. Annu. Rev. Nutr. 7: 23.PubMedGoogle Scholar
  166. Nagele, R.G., D’Andrea, M.R., Lee, H., Venkataraman, V. and Wang, H.Y., 2003, Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer’s disease brains. Brain Res. 971: 197.PubMedGoogle Scholar
  167. Nagele, R.G., Wegiel, J., Venkataraman, V., Imaki, H. and Wang, K.C., 2004, Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol. Aging 25: 663.PubMedGoogle Scholar
  168. Omar, R.A., Chyan, Y.J., Andorn, A.C., Poeggeler, B., Robakis, N.K. and Pappolla, M.A., 1999, Increased expression but reduced activity of antioxidant enzymes in Alzheimer’s disease. J. Alzheimers Dis. 1: 139.PubMedGoogle Scholar
  169. Opazo, C., Ruiz, F.H. and Inestrosa, N.C., 2000, Amyloid-beta-peptide reduces copper(II) to copper(I) independent of its aggregation state. Biol. Res. 33: 125.PubMedGoogle Scholar
  170. Opazo, C., Huang, X., Cherny, R.A., Moir, R.D., Roher, A.E., White, A.R., Cappai, R., Masters, C.L., Tanzi, R.E., Inestrosa, N.C. and Bush, A.I., 2002, Metalloenzyme-like activity of Alzheimer’s disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2. J. Biol. Chem. 277: 40302.PubMedGoogle Scholar
  171. Opazo, C., Luza, S., Villemagne, V.L., Volitakis, I., Rowe, C., Barnham, K.J., Strozyk, D., Masters, C.L., Cherny, R.A. and Bush, A.I., 2006, Radioiodinated clioquinol as a biomarker for ß-amyloid:Zn2+ complexes in Alzheimer’s disease. Aging Cell 5: 69.PubMedGoogle Scholar
  172. Oteiza, P.I., Cuellar, S., Lonnerdal, B., Hurley, L.S. and Keen, C.L., 1990a, Influence of maternal dietary zinc intake on in vitro tubulin polymerization in fetal rat brain. Teratology 41: 97.PubMedGoogle Scholar
  173. Oteiza, P.I., Hurley, L.S., Lonnerdal, B. and Keen, C.L., 1990b, Effects of marginal zinc deficiency on microtubule polymerization in the developing rat brain. Biol. Trace Elem. Res. 24: 13.PubMedGoogle Scholar
  174. Pappolla, M.A., Omar, R.A., Kim, K.S. and Robakis, N.K., 1992, Immunohistochemical evidence of oxidative (corrected) stress in Alzheimer’s disease. Am. J. Pathol. 140: 621.PubMedGoogle Scholar
  175. Park, I.H., Jung, M.W., Mori, H. and Mook-Jung, I., 2001, Zinc enhances synthesis of presenilin 1 in mouse primary cortical culture. Biochem. Biophys Res. Commun. 285: 680.PubMedGoogle Scholar
  176. Perez, M., Valpuesta, J.M., de Garcini, E.M., Quintana, C., Arrasate, M., Lopez Carrascosa, J.L., Rabano, A., Garcia de Yebenes, J. and Avila, J., 1998, Ferritin is associated with the aberrant tau filaments present in progressive supranuclear palsy. Am. J. Pathol. 152: 1531.PubMedGoogle Scholar
  177. Perry, G., Cash, A.D. and Smith, M.A., 2002, Alzheimer’s disease and oxidative stress. J. Biomed. Biotechnol. 2: 120.PubMedGoogle Scholar
  178. Petersen, R.C., 2004, Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256: 183.PubMedGoogle Scholar
  179. Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G. and Kokmen, E., 1999, Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56: 303.PubMedGoogle Scholar
  180. Phinney, A.L., Drisaldi, B., Schmidt, S.D., Lugowski, S., Coronado, V., Liang, Y., Horne, P., Yang, J., Sekoulidis, J., Coomaraswamy, J., Chishti, M.A., Cox, D.W., Mathews, P.M., Nixon, R.A., Carlson, G.A., St GeorgeHyslop, P. and Westaway, D., 2003, In vivo reduction of amyloid-beta by a mutant copper transporter. Proc. Natl. Acad. Sci. USA 100: 14193.PubMedGoogle Scholar
  181. Pierson, K.B. and Evenson, M.A., 1988, Kd neurofilament protein binds Al, Cu, and Zn. Biochem. Biophys. Res. Commun. 152: 598.PubMedGoogle Scholar
  182. Plantin, L.-O., Lysing-Tunnell, U. and Kristensson, K., 1987, Trace elements in the human central nervous system studied with neutron activation analysis. Biol. Trace Elem. Res. 13: 69.Google Scholar
  183. Prasad, A.S., Fitzgerald, J.T., Hess, J.W., Kaplan, J., Pelen, F. and Dardenne, M., 1993, Zinc deficiency in elderly patients. Nutrition 9: 218.PubMedGoogle Scholar
  184. Prohaska, J.R. and Gybina, A.A., 2004, Intracellular copper transport in mammals. J. Nutr. 134: 1003.PubMedGoogle Scholar
  185. Puglielli, L., Friedlich, A.L., Setchell, K.D., Nagano, S., Opazo, C., Cherny, R.A., Barnham, K.J., Wade, J.D., Melov, S., Kovacs, D.M. and Bush, A.I., 2005, Alzheimer disease beta-amyloid activity mimics cholesterol oxidase. J. Clin. Invest. 115: 2556.PubMedGoogle Scholar
  186. Quinta-Ferreira, M.E. and Matias, C.M., 2005, Tetanically released zinc inhibits hippocampal mossy fiber calcium, zinc, and synaptic responses. Brain Res. 1047: 1.PubMedGoogle Scholar
  187. Rae, T.D., Schmidt, P.J., Pufahl, R.A., Culotta, V.C. and O’Halloran, T.V., 1999, Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284: 805.PubMedGoogle Scholar
  188. Rajan, M.T., Jagannatha Rao, K.S., Mamatha, B.M., Rao, R.V., Shanmugavelu, P., Menon, R.B. and Pavithran, M.V., 1997, Quantification of trace elements in normal human brain by inductively coupled plasma atomic emission spectrometry. J. Neurol. Sci. 146: 153.PubMedGoogle Scholar
  189. Raman, B., Ban, T., Yamaguchi, K., Sakai, M., Kawai, T., Naiki, H. and Goto, Y., 2005, Metal ion-dependent effects of clioquinol on the fibril growth of an amyloid-beta peptide. J. Biol. Chem. 280: 16157.PubMedGoogle Scholar
  190. Rao, K.S.J., Rao, R.V., Shanmugavelu, P. and Menon, R.B., 1999, Trace elements in Alzheimer’s disease brain: A new hypothesis. Alzheimers Rep. 241.Google Scholar
  191. Ravaglia, G., Forti, P., Maioli, F., Nesi, B., Pratelli, L., Savarino, L., Cucinotta, D. and Cavalli, G., 2000, Blood micronutrient and thyroid hormone concentrations in the oldest-old. J. Clin. Endocrinol. Metab. 85: 2260.PubMedGoogle Scholar
  192. Reinhard, C., Hebert, S.S. and De Strooper, B., 2005, The amyloid-beta precursor protein: integrating structure with biological function. EMBO J. 24: 3996.PubMedGoogle Scholar
  193. Ritchie, C.W., Bush, A.I., Mackinnon, A., Macfarlane, S., Mastwyk, M., MacGregor, L., Kiers, L., Cherny, R., Li, Q.X., Tammer, A., Carrington, D., Mavros, C., Volitakis, I., Xilinas, I.M., Ames, D., Davis, S., Beyreuther, K., Tanzi, R.E. and Masters, C.L., 2003, Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer’s disease: a pilot phase 2 clinical trial. Arch. Neurol 60: 1685.PubMedGoogle Scholar
  194. Rogers, J.T., Randall, J.D., Cahill, C.M., Eder, P.S., Huang, X., Gunshin, H., Leiter, L., McPhee, J., Sarang, S.S., Utsuki, T., Greig, N.H., Lahiri, D.K., Tanzi, R.E., Bush, A.I., Giordano, T. and Gullans, S.R., 2002, An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J. Biol. Chem. 277: 45518.PubMedGoogle Scholar
  195. Rosenberg, P.B., 2005, Clinical aspects of inflammation in Alzheimer’s disease. Int. Rev. Psychiatry 17: 503.PubMedGoogle Scholar
  196. Rottkamp, C.A., Raina, A.K., Zhu, X., Gaier, E., Bush, A.I., Atwood, C.S., Chevion, M., Perry, G. and Smith, M.A., 2001, Redox-active iron mediates amyloid-beta toxicity. Free. Radic. Biol. Med. 30: 447.PubMedGoogle Scholar
  197. Ruiz, F.H., Gonzalez, M., Bodini, M., Opazo, C. and Inestrosa, N.C., 1999, Cysteine 144 is a key residue in the copper reduction by the beta-amyloid precursor protein. J. Neurochem. 73: 1288.PubMedGoogle Scholar
  198. Sagara, Y., Dargusch, R., Klier, F.G., Schubert, D. and Behl, C., 1996, Increased antioxidant enzyme activity in amyloid beta protein-resistant cells. J. Neurosci. 16: 497.PubMedGoogle Scholar
  199. Sayre, L.M., Perry, G., Harris, P.L., Liu, Y., Schubert, K.A. and Smith, M.A., 2000, In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J. Neurochem. 74: 270.PubMedGoogle Scholar
  200. Scheuermann, S., Hambsch, B., Hesse, L., Stumm, J., Schmidt, C., Beher, D., Bayer, T.A., Beyreuther, K. and Multhaup, G., 2001, Homodimerization of amyloid precursor protein and its implication in the amyloidogenic pathway of Alzheimer’s disease. J. Biol. Chem. 276: 33923.PubMedGoogle Scholar
  201. Schlief, M.L., Craig, A.M. and Gitlin, J.D., 2005, NMDA receptor activation mediates copper homeostasis in hippocampal neurons. J. Neurosci. 25: 239.PubMedGoogle Scholar
  202. Schonheit, B., Zarski, R. and Ohm, T.G., 2004, Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology. Neurobiol. Aging 25: 697.PubMedGoogle Scholar
  203. Schubert, D. and Chevion, M., 1995, The role of iron in beta amyloid toxicity. Biochem. Biophys. Res. Commun. 216: 702.PubMedGoogle Scholar
  204. Schuessel, K., Schafer, S., Bayer, T.A., Czech, C., Pradier, L., Muller-Spahn, F., Muller, W.E. and Eckert, A., 2005, Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice. Neurobiol. Dis. 18: 89.PubMedGoogle Scholar
  205. Selley, M.L., Close, D.R. and Stern, S.E., 2002, The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiol. Aging 23: 383.PubMedGoogle Scholar
  206. Serrano, L., Dominguez, J.E. and Avila, J., 1988, Identification of zinc-binding sites of proteins: zinc binds to the amino-terminal region of tubulin. Anal. Biochem. 172: 210.PubMedGoogle Scholar
  207. Shinall, H., Song, E.S. and Hersh, L.B., 2005, Susceptibility of amyloid ß peptide degrading enzymes to oxidative damage: a potential Alzheimer’s disease spiral. Biochemistry 44: 15345.PubMedGoogle Scholar
  208. Shivers, B.D., Hilbich, C., Multhaup, G., Salbaum, M., Beyreuther, K. and Seeburg, P.H., 1988, Alzheimer’s disease amyloidogenic glycoprotein: expression pattern in rat brain suggests a role in cell contact. EMBO J. 7: 1365.PubMedGoogle Scholar
  209. Simons, A., Ruppert, T., Schmidt, C., Schlicksupp, A., Pipkorn, R., Reed, J., Masters, C.L., White, A.R., Cappai, R., Beyreuther, K., Bayer, T.A. and Multhaup, G., 2002, Evidence for a copper-binding superfamily of the amyloid precursor protein. Biochemistry 41: 9310.PubMedGoogle Scholar
  210. Sinha, S., Anderson, J.P., Barbour, R., Basi, G.S., Caccavello, R., Davis, D., Doan, M., Dovey, H.F., Frigon, N., Hong, J., Jacobson-Croak, K., Jewett, N., Keim, P., Knops, J., Lieberburg, I., Power, M., Tan, H., Tatsuno, G., Tung, J., Schenk, D., Seubert, P., Suomensaari, S.M., Wang, S., Walker, D., Zhao, J., McConlogue, L. and John, V., 1999, Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402: 537.PubMedGoogle Scholar
  211. Smith, M.A., Wehr, K., Harris, P.L., Siedlak, S.L., Connor, J.R. and Perry, G., 1998, Abnormal localization of iron regulatory protein in Alzheimer’s disease. Brain Res. 788: 232.PubMedGoogle Scholar
  212. Sparks, D.L. and Schreurs, B.G., 2003, Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 100: 11065.PubMedGoogle Scholar
  213. Squier, T.C., 2001, Oxidative stress and protein aggregation during biological aging. Exp. Gerontol. 36: 1539.PubMedGoogle Scholar
  214. Squitti, R., Lupoi, D., Pasqualetti, P., Dal Forno, G., Vernieri, F., Chiovenda, P., Rossi, L., Cortesi, M., Cassetta, E. and Rossini, P.M., 2002, Elevation of serum copper levels in Alzheimer’s disease. Neurology 59: 1153.PubMedGoogle Scholar
  215. Squitti, R., Cassetta, E., Dal Forno, G., Lupoi, D., Lippolis, G., Pauri, F., Vernieri, F., Cappa, A. and Rossini, P.M., 2004, Copper perturbation in 2 monozygotic twins discordant for degree of cognitive impairment. Arch. Neurol. 61: 738.PubMedGoogle Scholar
  216. Streit, W.J., 2004, Microglia and Alzheimer’s disease pathogenesis. J. Neurosci. Res. 77: 1.PubMedGoogle Scholar
  217. Suh, S.W., Jensen, K.B., Jensen, M.S., Silva, D.S., Kesslak, P.J., Danscher, G. and Frederickson, C.J., 2000, Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains. Brain Res. 852: 274.PubMedGoogle Scholar
  218. Suh, Y.H. and Checler, F., 2002, Amyloid precursor protein, presenilins, and alpha-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer’s disease. Pharmacol. Rev. 54: 469.PubMedGoogle Scholar
  219. Sullivan, P.G. and Brown, M.R., 2005, Mitochondrial aging and dysfunction in Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 29: 407.PubMedGoogle Scholar
  220. Syme, C.D., Nadal, R.C., Rigby, S.E. and Viles, J.H., 2004, Copper binding to the amyloid-beta (Abeta) peptide associated with Alzheimer’s disease: folding, coordination geometry, pH dependence, stoichiometry, and affinity of Abeta-(1-28): insights from a range of complementary spectroscopic techniques. J. Biol. Chem. 279: 18169.PubMedGoogle Scholar
  221. Tanzi, R.E. and Bertram, L., 2005, Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120: 545.PubMedGoogle Scholar
  222. Tarohda, T., Yamamoto, M. and Amamo, R., 2004, Regional distribution of manganese, iron, copper, and zinc in the rat brain during development. Anal. Bioanal. Chem. 380: 240.PubMedGoogle Scholar
  223. Terry, R.D., 1996, The pathogenesis of Alzheimer’s disease: an alternative to the amyloid hypothesis. J. Neuropathol. Exp. Neurol. 55: 1023.PubMedGoogle Scholar
  224. Terry, R.D. and Wisniewski, H.M., 1975, Structural and chemical changes of the aged human brain. Psychopharmacol. Bull. 11: 46.PubMedGoogle Scholar
  225. Treiber, C., Simons, A., Strauss, M., Hafner, M., Cappai, R., Bayer, T.A. and Multhaup, G., 2004, Clioquinol mediates copper uptake and counteracts copper efflux activities of the amyloid precursor protein of Alzheimer’s disease. J. Biol. Chem. 279: 51958.PubMedGoogle Scholar
  226. Uchida, Y., Takio, K., Titani, K., Ihara, Y. and Tomonaga, M., 1991, The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron 7: 337.PubMedGoogle Scholar
  227. Valensin, D.F., Mancini, M., Luczkowski, M., Janicka, A., Wisniewska, K., Gaggelli, E., Valensin, G., Lankiewicz, L. and Kozlowski, H., 2004, Identification of a novel high affinity copper binding site in the APP(145-155) fragment of amyloid precursor protein. Dalton Trans. 1: 16.PubMedGoogle Scholar
  228. Valko, M., Morris, H. and Cronin, M.T., 2005, Metals, toxicity, and oxidative stress. Curr. Med. Chem. 12: 1161.PubMedGoogle Scholar
  229. Vassar, R., Bennett, B.D., Babu-Khan, S., Kahn, S., Mendiaz, E.A., Denis, P., Teplow, D.B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosinski, M.A., Biere, A.L., Curran, E., Burgess, T., Louis, J.C., Collins, F., Treanor, J., Rogers, G. and Citron, M., 1999, Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286: 735.PubMedGoogle Scholar
  230. Venti, A., Giordano, T., Eder, P., Bush, A.I., Lahiri, D.K., Greig, N.H. and Rogers, J.T., 2004, The integrated role of desferrioxamine and phenserine targeted to an iron-responsive element in the APP-mRNA 5′-untranslated region. Ann. NY Acad. Sci. 1035: 34.PubMedGoogle Scholar
  231. Vickers, J.C., Dickson, T.C., Adlard, P.A., Saunders, H.L., King, C.E. and McCormack, G., 2000, The cause of neuronal degeneration in Alzheimer’s disease. Prog. Neurobiol. 60: 139.PubMedGoogle Scholar
  232. Walsh, J.S., Welch, H.G. and Larson, E.B., 1990, Survival of outpatients with Alzheimer-type dementia. Ann. Intern. Med. 113: 429.PubMedGoogle Scholar
  233. Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J. and Selkoe, D.J., 2002a, Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416: 535.PubMedGoogle Scholar
  234. Walsh, D.M., Klyubin, I., Fadeeva, J.V., Rowan, M.J. and Selkoe, D.J., 2002b, Amyloid-beta oligomers: their production, toxicity, and therapeutic inhibition. Biochem. Soc. Trans. 30: 552.PubMedGoogle Scholar
  235. Wang, J., Dickson, D.W., Trojanowski, J.Q. and Lee, V.M., 1999, The levels of soluble versus insoluble brain Abeta distinguish Alzheimer’s disease from normal and pathologic aging. Exp. Neurol. 158: 328.PubMedGoogle Scholar
  236. Wang, D.S., Iwata, N., Hama, E., Saido, T.C. and Dickson, D.W., 2003, Oxidized neprilysin in aging and Alzheimer’s disease brains. Biochem. Biophys Res. Commun. 310: 236.PubMedGoogle Scholar
  237. Wang, Q., Woltjer, R.L., Cimino, P.J., Pan, C., Montine, K.S., Zhang, J. and Montine, T.J., 2005, Proteomic analysis of neurofibrillary tangles in Alzheimer’s disease identifies GAPDH as a detergent-insoluble paired helical filament tau binding protein. FASEB J. 19: 869.PubMedGoogle Scholar
  238. Weisenberg, R.C., 1972, Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177: 1104.PubMedGoogle Scholar
  239. Weisskopf, M.G., Wright, R.O., Schwartz, J., Spiro, A. 3rd, Sparrow, D., Aro, A. and Hu, H., 2004, Cumulative lead exposure and prospective change in cognition among elderly men: the VA normative aging study. Am. J. Epidemiol. 160: 1184.PubMedGoogle Scholar
  240. Wender, M., Szczech, J., Hoffmann, S. and Hilczer, W., 1992, Electron paramagnetic resonance analysis of heavy metals in the aging human brain. Neuropatol. Pol. 30: 65.PubMedGoogle Scholar
  241. White, A.R., Reyes, R., Mercer, J.F., Camakaris, J., Zheng, H., Bush, A.I., Multhaup, G., Beyreuther, K., Masters, C.L. and Cappai, R., 1999, Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res. 842: 439.PubMedGoogle Scholar
  242. Wille, H., Drewes, G., Biernat, J., Mandelkow, E.M. and Mandelkow, E., 1992, Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J. Cell Biol. 118: 573.PubMedGoogle Scholar
  243. Wojtera, M., Sikorska, B., Sobow, T. and Liberski, P.P., 2005, Microglial cells in neurodegenerative disorders. Folia Neuropathol. 43: 311.PubMedGoogle Scholar
  244. Yamamoto, A., Shin, R.W., Hasegawa, K., Naiki, H., Sato, H., Yoshimasu, F. and Kitamoto, T., 2002, Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J. Neurochem. 82: 1137.PubMedCrossRefGoogle Scholar
  245. Yan, R., Bienkowski, M.J., Shuck, M.E., Miao, H., Tory, M.C., Pauley, A.M., Brashier, J.R., Stratman, N.C., Mathews, W.R., Buhl, A.E., Carter, D.B., Tomasselli, A.G., Parodi, L.A., Heinrikson, R.L. and Gurney, M.E., 1999, Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402: 533.PubMedGoogle Scholar
  246. Yang, D.S., McLaurin, J., Qin, K., Westaway, D. and Fraser, P.E., 2000, Examining the zinc binding site of the amyloid-beta peptide. Eur. J. Biochem. 267: 6692.PubMedGoogle Scholar
  247. Yong, V.W., Krekoski, C.A., Forsyth, P.A., Bell, R. and Edwards, D.R., 1998, Matrix metalloproteinases and diseases of the CNS. Trends Neurosci. 21: 75.PubMedGoogle Scholar
  248. Yoshiike, Y., Tanemura, K., Murayama, O., Akagi, T., Murayama, M., Sato, S., Sun, X., Tanaka, N. and Takashima, A., 2001, New insights on how metals disrupt amyloid beta-aggregation and their effects on amyloid-beta cytotoxicity. J. Biol. Chem. 276: 32293.PubMedGoogle Scholar
  249. Yu, W.H., Lukiw, W.J., Bergeron, C., Niznik, H.B. and Fraser, P.E., 2001, Metallothionein III is reduced in Alzheimer’s disease. Brain Res. 894: 37.PubMedGoogle Scholar
  250. Zemlan, F.P., Thienhaus, O.J. and Bosmann, H.B., 1989, Superoxide dismutase activity in Alzheimer’s disease: possible mechanism for paired helical filament formation. Brain Res. 476: 160.PubMedGoogle Scholar
  251. Zhao, G., Cui, M.Z., Mao, G., Dong, Y., Tan, J., Sun, L. and Xu, X., 2005, Gamma-cleavage is dependent on zeta-cleavage during the proteolytic processing of amyloid precursor protein within its transmembrane domain. J. Biol. Chem. 280: 37689.PubMedGoogle Scholar
  252. Zheng, H., Jiang, M., Trumbauer, M.E., Sirinathsinghji, D.J., Hopkins, R., Smith, D.W., Heavens, R.P., Dawson, G.R., Boyce, S., Conner, M.W., Stevens, K.A., Slunt, H.H., Sisoda, S.S., Chen, H.Y. and Van der Ploeg, L.H., 1995, Abeta-Amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81: 525.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Paul A. Adlard
    • 1
  • Ashley I. Bush
    • 2
  1. 1.The Oxidation Disorders LaboratoryThe Mental Health Research Institute of VictoriaParkvilleAustralia
  2. 2.Genetics and Aging Research UnitMassachusetts General HospitalCharlestownUSA

Personalised recommendations