Neuroinflammation and Mitochondrial Dysfunction in Alzheimer's and Prion's Diseases

  • Paula Agostinho
  • Catarina R. Oliveira

Alzheimer’s disease (AD) and prion-related encephalopathies (PRE) are neurodegenerative disorders linked to the aberrant extracellular deposition of amyloidogenic proteins, amyloid-beta (A ), and pathogenic scrapie prion (PrPSc), respectively. In both disorders, cerebral amyloid deposits are associated with a local inflammatory response, which is initiated by the activation of microglia and recruitment of astrocytes. Activated microglia, particularly those in the vicinity of amyloid deposits can produce and release proinflammatory cytokines, chemokines, complement proteins, acute-phase proteins, and reactive oxygen and nitrogen species that can damage the neighboring neurons.


Prion Protein Amyloid Plaque Prion Disease Mitochondrion Permeability Transition Pore Mitochondrion Permeability Transition Pore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Abramov, A.Y., Canevari, L. and Duchen, M.R., 2004, Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J. Neurosci. 24: 565.PubMedGoogle Scholar
  2. Abramov, A.Y., Jacobson, J., Wientjes, F., Hothersall, J., Canevari, L. and Duchen, M.R., 2005, Expression and modulation of an NADPH oxidase in mammalian astrocytes. J. Neurosci. 25: 9176.PubMedGoogle Scholar
  3. Agostinho, P. and Oliveira, C.R., 2003, Involvement of calcineurin in the neurotoxic effects induced by amyloid-beta and prion peptides. Eur. J. Neurosci. 17: 1189.PubMedGoogle Scholar
  4. Aguzzi, A. and Haass, C., 2003, Games played by rogue proteins in prion disorders and Alzheimer’s disease. Science 302: 814.PubMedGoogle Scholar
  5. Aguzzi, A., Glatzel, M., Montrasio, F., Prinz, M. and Heppner, F.L., 2001, Interventional strategies against prion diseases. Nat. Rev. Neurosci. 2: 745.PubMedGoogle Scholar
  6. Aisen, P.S., 2002, The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol. 1: 279.PubMedGoogle Scholar
  7. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L., Finch, C.E., Frautschy, S., Griffin, W.S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I.R., McGeer, P.L., O'Banion, M.K., Pachter, J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F.L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, T., 2000, Inflammation and Alzheimer’s disease. Neurobiol Aging 21: 383.PubMedGoogle Scholar
  8. Aloe, L., Fiore, M., Probert, L., Turrini, P. and Tirassa, P., 1999, Overexpression of tumour necrosis factor-alpha in the brain of transgenic mice differentially alters nerve growth factor levels and choline acetyltransferase activity. Cytokine 11: 45.PubMedGoogle Scholar
  9. Anandatheerthavarada, H.K., Biswas, G., Robin, M.A. and Avadhani, N.G., 2003, Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J. Cell Biol. 161: 41.PubMedGoogle Scholar
  10. Andersen, J.M., Myhre, O., Aarnes, H., Vestad, T.A. and Fonnum, F., 2003, Identification of the hydroxyl radical and other reactive oxygen species in human neutrophil granulocytes exposed to a fragment of the amyloid beta peptide. Free Radic. Res. 37: 269.PubMedGoogle Scholar
  11. Bard, F., Cannon, C., Barbour, R., Burke, R.L., Games, D., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K., Kholodenko, D., Lee, M., Lieberburg, I., Motter, R., Nguyen, M., Soriano, F., Vasquez, N., Weiss, K., Welch, B., Seubert, P., Schenk, D. and Yednock, T., 2000, Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer’s disease. Nat. Med. 6: 916.PubMedGoogle Scholar
  12. Bianca, V.D., Dusi, S., Bianchini, E., Dal Pra, I. and Rossi, F., 1999, Beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J. Biol. Chem. 274: 15493.PubMedGoogle Scholar
  13. Blasko, I., Marx, F., Steiner, E., Hartmann, T. and Grubeck-Loebenstein, B., 1999, TNFalpha plus IFNgamma induce the production of Alzheimer beta-amyloid peptides and decrease the secretion of APPs. FASEB J. 13: 63.PubMedGoogle Scholar
  14. Blasko, I., Stampfer-Kountchev, M., Robatscher, P., Veerhuis, R., Eikelenboom, P. and Grubeck-Loebenstein, B., 2004, How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell. 3: 169.PubMedGoogle Scholar
  15. Blass, J.P., 2002, Glucose/mitochondria in neurological conditions. Int. Rev. Neurobiol. 51: 325.PubMedGoogle Scholar
  16. Block, M.L. and Hong, J.-S., 2005, Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76: 77.PubMedGoogle Scholar
  17. Brown, D.R., Herms, J. and Kretzschmar, H.A., 1994, Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5: 2057.PubMedGoogle Scholar
  18. Brown, D.R., Qin, K., Herms, J.W., Madlung, A., Manson, J., Strome, R., Fraser, P.E., Kruck, T., von Bohlen, A., Schulz-Schaeffer, W., Giese, A., Westaway, D. and Kretzschmar, H., 1997, The cellular prion protein binds copper in vivo. Nature 390: 684.PubMedGoogle Scholar
  19. Brown, G.C. and Bal-Price, A., 2003, Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol. Neurobiol. 27: 325.PubMedGoogle Scholar
  20. Burwinkel, M., Riemer, C., Schwarz, A., Schultz, J., Neidhold, S., Bamme, T. and Baier, M., 2004, Role of cytokines and chemokines in prion infections of the central nervous system. Int. J. Dev. Neurosci. 22: 497.PubMedGoogle Scholar
  21. Cardoso, S.M., Santos, S., Swerdlow, R.H. and Oliveira, C.R., 2001, Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB J. 15: 1439.PubMedGoogle Scholar
  22. Cartier, L., Hartley, O., Dubois-Dauphin, M. and Krause, K.H., 2005, Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res. Brain Res. Rev. 48: 16.PubMedGoogle Scholar
  23. Choi, S.I., Ju, W.K., Choi, E.K., Kim, J., Lea, H.Z., Carp, R.I., Wisniewski, H.M. and Kim, Y.S., 1998, Mitochondrial dysfunction induced by oxidative stress in the brains of hamsters infected with the 263 K scrapie agent Acta Neuropathol. (Berl). 96: 279.Google Scholar
  24. Ciesielski-Treska, J., Grant, N.J., Ulrich, G., Corrotte, M., Bailly, Y., Haeberle, A.M., Chasserot-Golaz, S. and Bader, M.F., 2004, Fibrillar prion peptide (106-126) and scrapie prion protein hamper phagocytosis in microglia. Glia 46: 101.PubMedGoogle Scholar
  25. Colton, C.A., Chernyshev, O.N., Gilbert, D.L. and Vitek, M.P., 2000, Microglial contribution to oxidative stress in Alzheimer’s disease. Ann. NY Acad. Sci. 899: 292.PubMedCrossRefGoogle Scholar
  26. Combs, C.K., Johnson, D.E., Cannady, S.B., Lehman, T.M. and Landreth, G.E., 1999, Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J. Neurosci. 19: 928.PubMedGoogle Scholar
  27. Cottrell, D.A., Borthwick, G.M., Johnson, M.A., Ince, P.G., and Turnbull, D.M., 2002, The role of cytochrome c oxidase deficient hippocampal neurones in Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 28: 390.PubMedGoogle Scholar
  28. D'Andrea, M.R., Cole, G.M. and Ard, M.D., 2004, The microglial phagocytic role with specific plaque types in the Alzheimer’s disease brain. Neurobiol. Aging 25: 675.PubMedGoogle Scholar
  29. Deininger, M.H., Bekure-Nemariam, K., Trautmann, K., Morgalla, M., Meyermann, R. and Schluesener, H.J., 2003, Cyclooxygenase-1 and -2 in brains of patients who died with sporadic Creutzfeldt-Jakob disease. J. Mol. Neurosci. 20: 25.PubMedGoogle Scholar
  30. DeMattos, R.B., Bales, K.R., Cummins, D.J., Paul, S.M. and Holtzman, D.M., 2002, Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 295: 2264.PubMedGoogle Scholar
  31. Dringen, R., 2005, Oxidative and antioxidative potential of brain microglial cells. Antioxid. Redox Signal 7: 1223.PubMedGoogle Scholar
  32. Eckert, A., Keil, U., Marques, C.A., Bonert, A., Frey, C., Schussel, K. and Muller, W.E., 2003, Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease. Biochem. Pharmacol. 66: 1627.PubMedGoogle Scholar
  33. Eikelenboom, P. and van Gool, W.A., 2004, Neuroinflammatory perspectives on the two faces of Alzheimer’s disease. J. Neural Transm. 111: 281.PubMedGoogle Scholar
  34. Eikelenboom, P., Zhan, S.S., van Gool, W.A. and Allsop, D., 1994, Inflammatory mechanisms in Alzheimer’s disease. Trends Pharmacol. Sci. 15: 447.PubMedGoogle Scholar
  35. Eikelenboom, P., Bate, C., van Gool, W.A., Hoozemans, J.J., Rozemuller, J.M., Veerhuis, R. and Williams, A., 2002, Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40: 232.PubMedGoogle Scholar
  36. Emmerling, M.R., Watson, M.D., Raby, C.A. and Spiegel, K., 2000, The role of complement in Alzheimer’s disease pathology. Biochim. Biophys. Acta 1502: 158.PubMedGoogle Scholar
  37. Enari, M., Flechsig, E. and Weissmann, C., 2001, Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl Acad. Sci. USA 98: 9295.PubMedGoogle Scholar
  38. Farris, W., Mansourian, S., Chang, Y., Lindsley, L., Eckman, E.A., Frosch, M.P., Eckman, C.B., Tanzi, R.E., Selkoe, D.J. and Guenette, S., 2003, Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc. Natl Acad. Sci. USA 100: 4162.PubMedGoogle Scholar
  39. Felton, L.M., Cunningham, C., Rankine, E.L., Waters, S., Boche, D. and Perry, V.H., 2005, MCP-1 and murine prion disease: separation of early behavioural dysfunction from overt clinical disease. Neurobiol. Dis. 20: 283.PubMedGoogle Scholar
  40. Freixes, M., Rodriguez, A., Dalfo, E. and Ferrer, I., 2006, Oxidation, glycoxidation, lipoxidation, nitration, and responses to oxidative stress in the cerebral cortex in Creutzfeldt-Jakob disease. Neurobiol. Aging 27: 1807.PubMedGoogle Scholar
  41. Garção, P., Oliveira, C.R. and Agostinho P., 2006, A comparative study of microglia activation induced by amyloid-beta and prion peptides. The role in neurodegeneration. J. Neurosci. Res. 84: 182.PubMedGoogle Scholar
  42. Gelinas, D.S., DaSilva, K., Fenili, D., George-Hyslop, P. and McLaurin, J., 2004, Immunotherapy for Alzheimer’s disease. Proc. Natl Acad. Sci. USA 101 (suppl. 2): 14657.PubMedGoogle Scholar
  43. Giovannini, M.G., Scali, C., Prosperi, C., Bellucci, A., Pepeu, G. and Casamenti, F., 2003, Experimental brain inflammation and neurodegeneration as model of Alzheimer’s disease: protective effects of selective COX-2 inhibitors. Int. J. Immunopathol. Pharmacol. 16 (suppl. 2): 31.PubMedGoogle Scholar
  44. Guénette, S.Y., 2003, Mechanisms of Abeta clearance and catabolism. Neuromolecular Med. 4: 147.PubMedGoogle Scholar
  45. Guentchev, M., Voigtlander, T., Haberler, C., Groschup, M.H. and Budka, H., 2000, Evidence for oxidative stress in experimental prion disease. Neurobiol. Dis. 7: 270.PubMedGoogle Scholar
  46. Hanisch, U.-K., 2002, Microglia as a source and target of cytokines. Glia 40: 140.PubMedGoogle Scholar
  47. Hansson, C.A., Frykman, S., Farmery, M.R., Tjernberg, L.O., Nilsberth, C., Pursglove, S.E., Ito, A., Winblad, B., Cowburn, R.F., Thyberg, J. and Ankarcrona, M., 2004, Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J. Biol. Chem. 279: 51654.PubMedGoogle Scholar
  48. Hirai, K., Aliev, G., Nunomura, A., Fujioka, H., Russell, R.L., Atwood, C.S., Johnson, A.B., Kress, Y., Vinters, H.V., Tabaton, M., Shimohama, S., Cash, A.D., Siedlak, S.L., Harris, P.L., Jones, P.K., Petersen, R.B., Perry, G. and Smith, M.A., 2001, Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci. 21: 3017.PubMedGoogle Scholar
  49. Hock, C., Konietzko, U., Streffer, J.R., Tracy, J., Signorell, A., Muller-Tillmanns, B., Lemke, U., Henke, K., Moritz, E., Garcia, E., Wollmer, M.A., Umbricht, D., de Quervain, D.J., Hofmann, M., Maddalena, A., Papassotiropoulos, A. and Nitsch, R.M., 2003, Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38: 547.PubMedGoogle Scholar
  50. Hoozemans, J.J. and O’Banion, M.K., 2005, The role of COX-1 and COX-2 in Alzheimer’s disease pathology and the therapeutic potentials of nonsteroidal anti-inflammatory drugs. Curr. Drug Targets CNS Neurol. Disord. 4: 307.PubMedGoogle Scholar
  51. Hurley, S.D., Olschowka, J.A. and O’Banion, M.K., 2002, Cyclooxygenase inhibition as a strategy to ameliorate brain injury. J. Neurotrauma. 19: 1.PubMedGoogle Scholar
  52. Husemann, J., Loike, J.D., Kodama, T. and Silverstein, S.C., 2001, Scavenger receptor class B type I (SR-BI) mediates adhesion of neonatal murine microglia to fibrillar beta-amyloid. J. Neuroimmunol. 114: 142.PubMedGoogle Scholar
  53. Husemann, J., Loike, J.D., Anankov, R., Febbraio, M. and Silverstein, S.C., 2002, Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40: 195.PubMedGoogle Scholar
  54. Jeffrey, M., Goodsir, C.M., Bruce, M.E., McBride, P.A. and Farquhar, C., 1994, Morphogenesis of amyloid plaques in 87V murine scrapie. Neuropathol. Appl. Neurobiol. 20: 535.PubMedGoogle Scholar
  55. Johnstone, M., Gearing, A.J. and Miller, K.M., 1999, A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J. Neuroimmunol. 93: 182.PubMedGoogle Scholar
  56. Kim, S.U. and de Vellis, J., 2005, Microglia in health and disease. J. Neurosci. Res. 81: 302.PubMedGoogle Scholar
  57. Kitazawa, M., Yamasaki, T.R. and LaFerla, F.M., 2004, Microglia as a potential bridge between the amyloid {beta}-peptide and tau. Ann. NY Acad. Sci. 1035: 85.PubMedGoogle Scholar
  58. Klamt, F., Dal-Pizzol, F., Conte da Frota, M.L., Walz, R., Andrades, M.E., da Silva, E.G., Brentani, R.R., Izquierdo, I. and Fonseca Moreira, J.C., 2001, Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic. Biol. Med. 30: 1137.PubMedGoogle Scholar
  59. Klein, M.A., Kaeser, P.S., Schwarz, P., Weyd, H., Xenarios, I., Zinkernagel, R.M., Carroll, M.C., Verbeek, J.S., Botto, M., Walport, M.J., Molina, H., Kalinke, U., Acha-Orbea, H. and Aguzzi, A., 2001, Complement facilitates early prion pathogenesis. Nat. Med. 7: 488.PubMedGoogle Scholar
  60. Koenigsknecht, J. and Landreth, G., 2004, Microglial phagocytosis of fibrillar β-amyloid through a β1-integrin-dependent mechanism. J. Neurosci. 24: 9838.PubMedGoogle Scholar
  61. Koistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., Higgs, R., Liu, F., Malkani, S., Bales, K.R. and Paul, S.M., 2004, Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat. Med. 10: 719.PubMedGoogle Scholar
  62. Kopec, K.K. and Carroll, R.T., 1998, Alzheimer’s beta-amyloid peptide 1-42 induces a phagocytic response in murine microglia. J. Neurochem. 71: 2123.PubMedGoogle Scholar
  63. Le, Y., Gong, W., Tiffany, H.L., Tumanov, A., Nedospasov, S., Shen, W., Dunlop, N.M., Gao, J.L., Murphy, P.M., Oppenheim, J.J. and Wang, J.M., 2001a, Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. Neurosci. 21: 123.Google Scholar
  64. Le, Y., Yazawa, H., Gong, W., Yu, Z., Ferrans, V.J., Murphy, P.M. and Wang, J.M., 2001b, The neurotoxic prion peptide fragment PrP(106-126) is a chemotactic agonist for the G-protein-coupled receptor formyl peptide receptor-like 1. J. Immunol. 166: 1448.PubMedGoogle Scholar
  65. Lee, D.W., Sohn, H.O., Lim, H.B., Lee, Y.G, Kim, Y.S., Carp, R.I. and Wisniewski, H.M., 1999, Alteration of free radical metabolism in the brain of mice infected with scrapie agent. Free Radic. Res. 30: 499.PubMedGoogle Scholar
  66. Lee, H.P., Jun, Y.C., Choi, J.K., Kim, J.I., Carp, R.I. and Kim, Y.S., 2005, The expression of RANTES and chemokine receptors in the brains of scrapie-infected mice. J. Neuroimmunol. 158: 26.PubMedGoogle Scholar
  67. LeVine, H. 3rd., 2004, The Amyloid Hypothesis and the clearance and degradation of Alzheimer’s beta-peptide. J. Alzheimers Dis. 6: 303.PubMedGoogle Scholar
  68. Lewandowska, E., Bertrand, E., Kulczycki, J., Lipczynska-Lojkowska, W., Lechowicz, W. and Stankiewicz, J., 1999, Microglia and neuritic plaques in familial Alzheimer’s disease induced by a new mutation of presenilin-1 gene. An ultrastructural study. Folia Neuropathol. 37: 243.PubMedGoogle Scholar
  69. Li, Y., Liu, L., Barger, S.W., Mrak, R.E. and Griffin, W.S., 2001, Vitamin E suppression of microglial activation is neuroprotective. J. Neurosci. Res. 66: 163.PubMedGoogle Scholar
  70. Lindberg, C., Selenica, M.L., Westlind-Danielsson, A. and Schultzberg, M., 2005, Beta-amyloid protein structure determines the nature of cytokine release from rat microglia. J. Mol. Neurosci. 27: 1.PubMedGoogle Scholar
  71. Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., Trinchese, F., Liu, S., Gunn-Moore, F., Lue, L.F., Walker, D.G., Kuppusamy, P., Zewier, Z.L., Arancio, O., Stern, D., Yan, S.S. and Wu, H., 2004, ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304: 448.PubMedGoogle Scholar
  72. Luth, H.J., Munch, G. and Arendt, T., 2002, Aberrant expression of NOS isoforms in Alzheimer’s disease is structurally related to nitrotyrosine formation. Brain Res. 953: 135.PubMedGoogle Scholar
  73. Mabbot, N.A., 2004, The complement system in prion disease. Curr. Opinion Immunol. 16: 587.Google Scholar
  74. Mallucci, G. and Collinge, J., 2005, Rational targeting for prion therapeutics. Nat. Rev. Neurosci. 6: 23.PubMedGoogle Scholar
  75. Marella, M. and Chabry, J., 2004, Neurons and astrocytes respond to prion infection by inducing microglia recruitment. J. Neurosci. 24: 620.PubMedGoogle Scholar
  76. Marella, M., Gaggioli, C., Batoz, M., Deckert, M., Tartare-Deckert, S. and Chabry, J., 2005, Pathological prion protein exposure switches on neuronal mitogen-activated protein kinase pathway resulting in microglia recruitment. J. Biol. Chem. 280: 1529.PubMedGoogle Scholar
  77. Mhatre, M., Floyd, R.A. and Hensley, K., 2004, Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets. J. Alzheimers Dis. 6: 147.PubMedGoogle Scholar
  78. Miele, G., Jeffrey, M., Turnbull, D., Manson, J. and Clinton, M., 2002, Ablation of cellular prion protein expression affects mitochondrial numbers and morphology. Biochem. Biophys. Res. Commun. 291: 372.PubMedGoogle Scholar
  79. Minghetti, L., 2004, Cyclo-oxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 63: 901.PubMedGoogle Scholar
  80. Minghetti, L., Ajmone-Cat, M.A., De Berardinis, M.A. and De Simone, R., 2005, Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res. Brain Res. Rev. 48: 251.PubMedGoogle Scholar
  81. Moreira, P.I., Honda, K., Liu, Q., Santos, M.S., Oliveira, C.R., Aliev, G., Nunomura, A., Zhu, X., Smith, M.A. and Perry, G., 2005, Oxidative stress: the old enemy in Alzheimer’s disease pathophysiology. Curr. Alzheimer Res. 2: 403.PubMedGoogle Scholar
  82. Moreira, P.I., Santos, M.S., Moreno, A., Rego, A.C. and Oliveira, C., 2002, Effect of amyloid beta-peptide on permeability transition pore: a comparative study. J. Neurosci. Res. 69: 257.PubMedGoogle Scholar
  83. Morelli, L., Llovera, R., Ibendahl, S. and Castano, E.M., 2002, The degradation of amyloid beta as a therapeutic strategy in Alzheimer’s disease and cerebrovascular amyloidoses. Neurochem. Res. 27: 1387.PubMedGoogle Scholar
  84. Mrak, R.E. and Griffin, W.S., 2001, Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol. Aging 22: 903.PubMedGoogle Scholar
  85. Munch, G., Gasic-Milenkovic, J. and Arendt, T., 2003, Effect of advanced glycation end-products on cell cycle and their relevance for Alzheimer’s disease. J. Neural Transm. Suppl. 65: 63.PubMedGoogle Scholar
  86. Nagele, R.G., Wegiel, J., Venkataraman, V., Imaki, H., Wang, K.C. and Wegiel, J., 2004, Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol. Aging 25: 663.PubMedGoogle Scholar
  87. Nakanishi, H., 2003, Microglial functions and proteases. Mol. Neurobiol. 27: 163.PubMedGoogle Scholar
  88. Nicoll, J.A., Wilkinson, D., Holmes, C., Steart, P., Markham, H. and Weller, R.O., 2003, Neuropathology of human Alzheimer’s disease after immunization with amyloid-beta peptide: a case report. Nat. Med. 9: 448.PubMedGoogle Scholar
  89. O’Donovan, C.N., Tobin, D. and Cotter, T.G., 2001, Prion protein fragment PrP-(106-126) induces apoptosis via mitochondrial disruption in human neuronal SH-SY5Y cells. J. Biol. Chem. 276: 43516.PubMedGoogle Scholar
  90. Pereira, C., Santos, M.S. and Oliveira, C., 1999, Involvement of oxidative stress on the impairment of energy metabolism induced by Abeta peptides on PC12 cells: protection by antioxidants. Neurobiol. Dis. 6: 209.PubMedGoogle Scholar
  91. Pereira, C., Agostinho, P., Moreira, P.I., Cardoso, S.M. and Oliveira C.R., 2005, Alzheimer’s disease-associated neurotoxic mechanisms and neuroprotective strategies. Curr. Drug Targets CNS Neurol. Disord. 4: 383.PubMedGoogle Scholar
  92. Peretz, D., Williamson, R.A., Kaneko, K., Vergara, J., Leclerc, E., Schmitt-Ulms, G., Mehlhorn, I.R., Legname, G., Wormald, M.R., Rudd, P.M., Dwek, R.A., Burton, D.R. and Prusiner, S.B., 2001, Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412: 739.PubMedGoogle Scholar
  93. Perez, A., Morelli, L., Cresto, J.C. and Castano, E.M., 2000, Degradation of soluble amyloid beta-peptides 1-40, 1-42, and the Dutch variant 1-40Q by insulin degrading enzyme from Alzheimer’s disease and control brains. Neurochem. Res. 25: 247.PubMedGoogle Scholar
  94. Peyrin, J.M., Lasmezas, C.I., Haik, S., Tagliavini, F., Salmona, M., Williams, A., Richie, D., Deslys, J.P. and Dormont, D., 1999, Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines. Neuroreport 10: 723.PubMedGoogle Scholar
  95. Pfeifer, M., Boncristiano, S., Bondolfi, L., Stalder, A., Deller, T., Staufenbiel, M., Mathews, P.M. and Jucker, M., 2002, Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 298: 1379.PubMedGoogle Scholar
  96. Pocernich, C.B. and Butterfield, D.A., 2003, Acrolein inhibits NADH-linked mitochondrial enzyme activity: implications for Alzheimer’s disease. Neurotox. Res. 5: 515.PubMedGoogle Scholar
  97. Prusiner, S.B., 1996, Molecular biology and pathogenesis of prion diseases. Trends Biochem. Sci. 21: 482.PubMedGoogle Scholar
  98. Quintanilla, R.A., Orellana, D.I., Gonzalez-Billault, C. and Maccioni, R.B., 2004, Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp. Cell Res. 295: 245.PubMedGoogle Scholar
  99. Rogers, J.T., Leiter, L.M., McPhee, J., Cahill, C.M., Zhan, S.S., Potter, H. and Nilsson, L.N., 1999, Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5'-untranslated region sequences. J. Biol. Chem. 274: 6421.PubMedGoogle Scholar
  100. Rogers, J., Strohmeyer, R., Kovelowski, C.J. and Li, R., 2002, Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 40: 260.PubMedGoogle Scholar
  101. Sano, M., Ernesto, C., Thomas, R.G., Klauber, M.R., Schafer, K., Grundman, M., Woodbury, P., Growdon, J., Cotman, C.W., Pfeiffer, E., Schneider, L.S. and Thal, L.J., 1997, A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N. Engl. J. Med. 336: 1216.PubMedGoogle Scholar
  102. Sasaki, N., Takeuchi, M., Chowei, H., Kikuchi, S., Hayashi, Y., Nakano, N., Ikeda, H., Yamagishi, S., Kitamoto, T., Saito, T. and Makita, Z., 2002, Advanced glycation end-products (AGE) and their receptor (RAGE) in the brain of patients with Creutzfeldt-Jakob disease with prion plaques. Neurosci. Lett. 326: 117.PubMedGoogle Scholar
  103. Schenk, D.B. and Yednock, T., 2002, The role of microglia in Alzheimer’s disease: friend or foe? Neurobiol. Aging 23: 677.PubMedGoogle Scholar
  104. Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K., Kholodenko, D., Lee, M., Liao, Z., Lieberburg, I., Motter, R., Mutter, L., Soriano, F., Shopp, G., Vasquez, N., Vandevert, C., Walker, S., Wogulis, M., Yednock, T., Games, D. and Seubert, P., 1999, Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173.PubMedGoogle Scholar
  105. Schultz, J., Schwarz, A., Neidhold, S., Burwinkel, M., Riemer, C., Simon, D., Kopf, M., Otto, M. and Baier, M., 2004, Role of interleukin-1 in prion disease-associated astrocyte activation. Am. J. Pathol. 165: 671.PubMedGoogle Scholar
  106. Selkoe, D.J. and Lansbury Jr., P.J., 1999, Biochemistry of Alzheimer’s and prion diseases. In: Basic Neurochemistry: Molecular, Cellular and Medical Aspects 6th edition, G.J. Siegel, (ed.), Lippincott-Raven, Philadelphia, pp. 949-968.Google Scholar
  107. Sleegers, K. and van Duijn, C.M., 2001, Alzheimer’s disease: genes, pathogenesis and risk prediction. Community Genet. 4: 197.PubMedGoogle Scholar
  108. Smith, M.A., Harris, P.L., Sayre, L.M. and Perry, G., 1997, Iron accumulation in Alzheimer’s disease is a source of redox-generated free radicals. Proc. Natl Acad. Sci. USA 94: 9866.PubMedGoogle Scholar
  109. Solforosi, L., Criado, J.R., McGavern, D.B., Wirz, S., Sanchez-Alavez, M., Sugama, S., DeGiorgio, L.A., Volpe, B.T., Wiseman, E., Abalos, G., Masliah, E., Gilden, D., Oldstone, M.B., Conti, B. and Williamson. R.A., 2004, Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303: 1514.PubMedGoogle Scholar
  110. Solomon, B., Koppel, R., Hanan, E. and Katzav, T., 1996, Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc. Natl Acad. Sci. USA 93: 452.PubMedGoogle Scholar
  111. Streit, W.J., Conde, J.R. and Harrison, J.K., 2001, Chemokines and Alzheimer’s disease. Neurobiol. Aging 22: 909.PubMedGoogle Scholar
  112. Streit, W.J., Conde, J.R., Fendrick, S.E., Flanary, B.E. and Mariani, C.L., 2005, Role of microglia in the central nervous system’s immune response. Neurol. Res. 27: 685.PubMedGoogle Scholar
  113. Stuchbury, G. and Münch, G., 2005, Alzheimer’s associated inflammation, potential drug targets and future therapies. J. Neural Transm. 112: 429.PubMedGoogle Scholar
  114. Sung, S., Yao, Y., Uryu, K., Yang, H., Lee, V.M., Trojanowski, J.Q. and Pratico, D., 2004, Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J. 18: 323.PubMedGoogle Scholar
  115. Swerdlow, R.H. and Khan, S.M., 2004, A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med. Hypotheses 63: 8.PubMedGoogle Scholar
  116. Takuma, K., Yao, J., Huang, J., Xu, H., Chen, X., Luddy, J., Trillat, A.C., Stern, D.M., Arancio, O. and Yan, S.S., 2005, ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB J. 19: 597.PubMedGoogle Scholar
  117. Tuppo, E.E. and Arias, H.R., 2005, The role of inflammation in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 37: 289.PubMedGoogle Scholar
  118. Van Everbroeck, B., Dobbeleir, I., De Waele, M., De Leenheir, E., Lubke, U., Martin, J.J. and Cras, P., 2004, Extracellular protein deposition correlates with glial activation and oxidative stress in Creutzfeldt-Jakob and Alzheimer’s disease. Acta Neuropathol. (Berl). 108: 194.Google Scholar
  119. Veerhuis, R., Hoozemans, J.J., Janssen, I., Boshuizen, R.S., Langeveld, J.P. and Eikelenboom, P., 2002, Adult human microglia secrete cytokines when exposed to neurotoxic prion protein peptide: no intermediary role for prostaglandin E2. Brain Res. 925: 195.PubMedGoogle Scholar
  120. Veerhuis, R., Van Breemen, M.J., Hoozemans, J.M., Morbin, M., Ouladhadj, J., Tagliavini, F. and Eikelenboom, P., 2003, Amyloid beta plaque-associated proteins C1q and SAP enhance the Abeta1-42 peptide-induced cytokine secretion by adult human microglia in vitro. Acta Neuropathol. (Berl) 105: 135.Google Scholar
  121. Veerhuis, R., Boshuizen, R.S. and Familian, A., 2005a, Amyloid associated proteins in Alzheimer’s and prion disease. Curr. Drug Targets CNS Neurol. Disord. 4: 235.PubMedGoogle Scholar
  122. Veerhuis, R., Boshuizen, R.S., Morbin, M., Mazzoleni, G., Hoozemans, J.J., Langedijk, J.P., Tagliavini, F., Langeveld, J.P. and Eikelenboom, P., 2005b, Activation of human microglia by fibrillar prion protein-related peptides is enhanced by amyloid-associated factors SAP and C1q. Neurobiol. Dis. 19: 273.PubMedGoogle Scholar
  123. Walsh, D.T., Perry, V.H. and Minghetti, L., 2000, Cyclooxygenase-2 is highly expressed in microglial-like cells in a murine model of prion disease. Glia 29: 392.PubMedGoogle Scholar
  124. Weggen, S., Eriksen, J.L., Sagi, S.A., Pietrzik, C.U., Ozols, V., Fauq, A., Golde, T.E. and Koo, E.H., 2003, Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. J. Biol. Chem. 278: 31831.PubMedGoogle Scholar
  125. Wegiel, J., Imaki, H., Wang, K.C., Wegiel, J., Wronska, A., Osuchowski, M. and Rubenstein, R., 2003, Origin and turnover of microglial cells in fibrillar plaques of APPsw transgenic mice. Acta Neuropathol. (Berl.) 105: 393.Google Scholar
  126. Weldon, D.T., Rogers, S.D., Ghilardi, J.R., Finke, M.P., Cleary, J.P., O’Hare, E., Esler, W.P., Maggio, J.E. and Mantyh, P.W., 1998, Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J. Neurosci. 18: 2161.PubMedGoogle Scholar
  127. Wenk, G.L., McGann, K., Hauss-Wegrzyniak, B. and Rosi, S., 2003, The toxicity of tumor necrosis factor-alpha upon cholinergic neurons within the nucleus basalis and the role of norepinephrine in the regulation of inflammation: implications for Alzheimer’s disease. Neuroscience 121: 719.PubMedGoogle Scholar
  128. White, A.R., Enever, P., Tayebi, M., Mushens, R., Linehan, J., Brandner, S., Anstee, D., Collinge, J. and Hawke, S., 2003, Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422: 80.PubMedGoogle Scholar
  129. Wisniewski, T., Ghiso, J. and Frangione, B., 1997, Biology of A-beta-amyloid in Alzheimer’s disease. Neurobiol. Dis. 4: 313.PubMedGoogle Scholar
  130. Wong, A., Luth, H.J., Deuther-Conrad, W., Dukic-Stefanovic, S., Gasic-Milenkovic, J., Arendt, T. and Munch G., 2001, Advanced glycation end-products co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res. 920: 32.PubMedGoogle Scholar
  131. Wyss-Coray, T., Loike, J.D., Brionne, T.C., Lu, E., Anankov, R., Yan, F., Silverstein, S.C. and Husemann, J., 2003, Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat. Med. 9: 453.PubMedGoogle Scholar
  132. Xia, M. and Hyman, B.T., 2002, GROalpha/KC, a chemokine receptor CXCR2 ligand, can be a potent trigger for neuronal ERK1/2 and PI-3 kinase pathways and for tau hyperphosphorylation-a role in Alzheimer’s disease? J. Neuroimmunol. 122: 55.PubMedGoogle Scholar
  133. Xia, M., Qin, S., McNamara, M., Mackay, C. and Hyman, B.T., 1997, Interleukin-8 receptor B immunoreactivity in brain and neuritic plaques of Alzheimer’s disease. Am. J. Pathol. 150: 1267.PubMedGoogle Scholar
  134. Yan, S.D., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., Slattery, T., Zhao, L., Nagashima, M., Morser, J., Migheli, A., Nawroth, P., Stern, D. and Schmidt, A.M., 1996, RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382: 685.PubMedGoogle Scholar
  135. Zandi, P.P., Anthony, J.C., Khachaturian, A.S., Stone, S.V., Gustafson, D., Tschanz, J.T., Norton, M.C., Welsh-Bohmer, K.A. and Breitner, J.C., 2004, Reduced risk of Alzheimer’s disease in users of antioxidant vitamin supplements: the Cache County Study. Arch. Neurol. 61: 82.PubMedGoogle Scholar
  136. Zhou, Y., Su, Y., Li, B., Liu, F., Ryder, J.W., Wu, X., Gonzalez-DeWhitt, P.A., Gelfanova, V., Hale, J.E., May, P.C., Paul, S.M. and Ni, B., 2003, Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science 302: 1215.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Paula Agostinho
    • 1
  • Catarina R. Oliveira
    • 1
  1. 1.Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of MedicineUniversity of CoimbraPortugal

Personalised recommendations