Neuroinflammation and Excitotoxicity in Neurobiology of HIV-1 Infection and AIDS: Targets for Neuroprotection

  • Marcus Kaul
  • Stuart A. Lipton

Infection with the human immunodeficiency virus-1 (HIV-1) and acquired immunodeficiency syndrome (AIDS) pose a persistent health problem worldwide. Infected peripheral immune-competent cells, in particular macrophages, appear to infiltrate the central nervous system (CNS) and provoke a neuropathological and inflammatory response involving all cell types in the brain. In fact, HIV-1 seems to enter the brain very soon after infection and can subsequently induce severe and debilitating neurological problems that range from mild behavioral abnormalities and motor dysfunction to frank dementia.


Human Immunodeficiency Virus NMDA Receptor Human Immunodeficiency Virus Infection Chemokine Receptor Neuronal Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12. References

  1. Adamson, D.C., Wildemann, B., Sasaki, M., Glass, J.D., McArthur, J.C., Christov, V.I., Dawson, T.M. and Dawson, V.L., 1996, Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science 274: 1917.PubMedGoogle Scholar
  2. Adle-Biassette, H., Levy, Y., Colombel, M., Poron, F., Natchev, S., Keohane, C. and Gray, F., 1995, Neuronal apoptosis in HIV infection in adults. Neuropathol. Appl. Neurobiol. 21: 218.PubMedGoogle Scholar
  3. Adle-Biassette, H., Chretien, F., Wingertsmann, L., Hery, C., Ereau, T., Scaravilli, F., Tardieu, M. and Gray, F., 1999, Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage. Neuropathol. Appl. Neurobiol. 25: 123.PubMedGoogle Scholar
  4. Aizenman, E., Stout, A.K., Hartnett, K.A., Dineley, K.E., McLaughlin, B. and Reynolds, I.J., 2000, Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular Zinc release. J. Neurochem. 75: 1878.PubMedGoogle Scholar
  5. Alkhatib, G., Combadiere, C., Broder, C.C., Feng, Y., Kennedy, P.E., Murphy, P.M. and Berger, E.A., 1996, CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272: 1955.PubMedGoogle Scholar
  6. Anderson, E.R., Gendelman, H.E. and Xiong, H., 2004, Memantine protects hippocampal neuronal function in murine human immunodeficiency virus type 1 encephalitis. J. Neurosci. 24: 7194.PubMedGoogle Scholar
  7. Asensio, V.C. and Campbell, I.L., 1999, Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci. 22: 504.PubMedGoogle Scholar
  8. Batchelor, P.E., Liberatore, G.T., Wong, J.Y., Porritt, M.J., Frerichs, F., Donnan, G.A. and Howells, D.W., 1999, Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J. Neurosci. 19: 1708.PubMedGoogle Scholar
  9. Bazan, J.F., Bacon, K.B., Hardiman, G., Wang, W., Soo, K., Rossi, D., Greaves, D.R., Zlotnik, A. and Schall, T.J., 1997, A new class of membrane-bound chemokine with a CX3C motif. Nature 385: 640.PubMedGoogle Scholar
  10. Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A. and Freeman, B.A., 1990, Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87: 1620.PubMedGoogle Scholar
  11. Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Rizzini, B.L., Pozzan, T. and Volterra, A., 1998, Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391: 281.PubMedGoogle Scholar
  12. Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J. and Volterra, A., 2001, CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4: 702.PubMedGoogle Scholar
  13. Bigge, C.F., 1999, Ionotropic glutamate receptors. Curr. Opin. Chem. Biol. 3: 441.PubMedGoogle Scholar
  14. Bleul, C.C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J. and Springer, T.A., 1996, The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382: 829.PubMedGoogle Scholar
  15. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. and Lipton, S.A., 1995, Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92: 7162.PubMedGoogle Scholar
  16. Bormann, J., 1989, Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels. Eur. J. Pharmacol. 166: 591.PubMedGoogle Scholar
  17. Brack-Werner, R. and Bell, J.E., 1999, Replication of HIV-1 in human astrocytes. Science Online: NeuroAids (http://www. sciencemag. org/NAIDS ) 2: 1.
  18. Brauner-Osborne, H., Egebjerg, J., Nielsen, E.O., Madsen, U. and Krogsgaard-Larsen, P., 2000, Ligands for glutamate receptors: design and therapeutic prospects. J. Med. Chem. 43: 2609.PubMedGoogle Scholar
  19. Brenneman, D.E., Westbrook, G.L., Fitzgerald, S.P., Ennist, D.L., Elkins, K.L., Ruff, M.R. and Pert, C.B., 1988, Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature 335: 639.PubMedGoogle Scholar
  20. Brew, B.J., Corbeil, J., Pemberton, L., Evans, L., Saito, K., Penny, R., Cooper, D.A. and Heyes, M.P., 1995, Quinolinic acid production is related to macrophage tropic isolates of HIV-1. J. Neurovirol. 1: 369.PubMedGoogle Scholar
  21. Bruno, V., Copani, A., Besong, G., Scoto, G. and Nicoletti, F., 2000, Neuroprotective activity of chemokines against N-methyl-D-aspartate or beta-amyloid-induced toxicity in culture. Eur. J. Pharmacol. 399: 117.PubMedGoogle Scholar
  22. Budd, S.L., Tenneti, L., Lishnak, T. and Lipton, S.A., 2000, Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proc. Natl. Acad. Sci. USA 97: 6161.PubMedGoogle Scholar
  23. Budka, H., 1991, Neuropathology of human immunodeficiency virus infection. Brain Pathol. 1: 163.PubMedGoogle Scholar
  24. Chakravarty, S. and Herkenham, M., 2005, Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J. Neurosci. 25: 1788.PubMedGoogle Scholar
  25. Chao, C.C., Hu, S., Sheng, W.S. and Peterson, P.K., 1995, Tumor necrosis factor-alpha production by human fetal microglial cells: regulation by other cytokines. Dev. Neurosci. 17: 97.PubMedGoogle Scholar
  26. Chen, H.S. and Lipton, S.A., 1997, Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J. Physiol. 499: 27.PubMedGoogle Scholar
  27. Chen, H.S., Pellegrini, J.W., Aggarwal, S.K., Lei, S.Z., Warach, S., Jensen, F.E. and Lipton, S.A., 1992, Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J. Neurosci. 12: 4427.PubMedGoogle Scholar
  28. Chen, H.S., Wang, Y.F., Rayudu, P.V., Edgecomb, P., Neill, J.C., Segal, M.M., Lipton, S.A. and Jensen, F.E., 1998, Neuroprotective concentrations of the N-methyl-D-aspartate open- channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation. Neuroscience 86: 1121.PubMedGoogle Scholar
  29. Chen, W., Sulcove, J., Frank, I., Jaffer, S., Ozdener, H. and Kolson, D.L., 2002, Development of a human neuronal cell model for human immunodeficiency virus (HIV)-infected macrophage-induced neurotoxicity: apoptosis induced by HIV type 1 primary isolates and evidence for involvement of the Bcl-2/Bcl-xL-sensitive intrinsic apoptosis pathway. J. Virol. 76: 9407.PubMedGoogle Scholar
  30. Choi, D.W., 1988, Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623.PubMedGoogle Scholar
  31. Choi, D.W., Koh, J.Y. and Peters, S., 1988a, Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J. Neurosci. 8: 185.PubMedGoogle Scholar
  32. Choi, D.W., Yokoyama, M. and Koh, J., 1988b, Zinc neurotoxicity in cortical cell culture. Neuroscience 24: 67.PubMedGoogle Scholar
  33. Choi, Y.B., Tenneti, L., Le, D.A., Ortiz, J., Bai, G., Chen, H.S. and Lipton, S.A., 2000, Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat. Neurosci. 3: 15.PubMedGoogle Scholar
  34. Choi, Y.B., Chen, H.S. and Lipton, S.A., 2001, Three pairs of cysteine residues mediate both redox and Zn2+ modulation of the NMDA receptor. J. Neurosci. 21: 392.PubMedGoogle Scholar
  35. Clifford, D.B., 1999, Central neurologic complications of HIV infection. Curr. Infect. Dis. Rep. 1: 187.PubMedGoogle Scholar
  36. Cocchi, F., Devico, A.L., Garzino-Demo, A., Arya, S.K., Gallo, R.C. and Lusso, P., 1995, Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV- suppressive factors produced by CD8+ T cells. Science 270: 1811.PubMedGoogle Scholar
  37. Conant, K., Garzino-Demo, A., Nath, A., McArthur, J.C., Halliday, W., Power, C., Gallo, R.C. and Major, E.O., 1998, Induction of monocyte chemoattractant protein-1 in HIV-1 Tat- stimulated astrocytes and elevation in AIDS dementia. Proc. Natl. Acad. Sci. USA 95: 3117.PubMedGoogle Scholar
  38. Cunningham, P.H., Smith, D.G., Satchell, C., Cooper, D.A. and Brew, B., 2000, Evidence for independent development of resistance to HIV-1 reverse transcriptase inhibitors in the cerebrospinal fluid. AIDS 14: 1949.PubMedGoogle Scholar
  39. Das, S., Sasaki, Y.F., Rothe, T., Premkumar, L.S., Takasu, M., Crandall, J.E., Dikkes, P., Conner, D.A., Rayudu, P.V., Cheung, W., Chen, H.S., Lipton, S.A. and Nakanishi, N., 1998, Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3a. Nature 393: 377.PubMedGoogle Scholar
  40. Dawson, V.L., Dawson, T.M., London, E.D., Bredt, D.S. and Snyder, S.H., 1991, Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88: 6368.PubMedGoogle Scholar
  41. Dawson, V.L., Dawson, T.M., Bartley, D.A., Uhl, G.R. and Snyder, S.H., 1993, Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13: 2651.PubMedGoogle Scholar
  42. De Clercq, E., 2004, HIV-chemotherapy and -prophylaxis: new drugs, leads and approaches. Int. J. Biochem. Cell Biol. 36: 1800.PubMedGoogle Scholar
  43. Digicaylioglu, M. and Lipton, S.A., 2001, Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signaling cascades. Nature 412: 641.PubMedGoogle Scholar
  44. Digicaylioglu, M., Garden, G., Timberlake, S., Fletcher, L. and Lipton, S.A., 2004a, Acute neuroprotective synergy of erythropoietin and insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 101: 9855.PubMedGoogle Scholar
  45. Digicaylioglu, M., Kaul, M., Fletcher, L., Dowen, R. and Lipton, S.A., 2004b, Erythropoietin protects cerebrocortical neurons from HIV-1/gp120-induced damage. Neuroreport 15: 761.PubMedGoogle Scholar
  46. Doble, A., 1999, The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther. 81: 163.PubMedGoogle Scholar
  47. Dragic, T., Litwin, V., Allaway, G.P., Martin, S.R., Huang, Y., Nagashima, K.A., Cayanan, C., Maddon, P.J., Koup, R.A., Moore, J.P. and Paxton, W.A., 1996, HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381: 667.PubMedGoogle Scholar
  48. Dreyer, E.B. and Lipton, S.A., 1995, The coat protein gp120 of HIV-1 inhibits astrocyte uptake of excitatory amino acids via macrophage arachidonic acid. Eur. J. Neurosci. 7: 2502.PubMedGoogle Scholar
  49. Dreyer, E.B., Kaiser, P.K., Offermann, J.T. and Lipton, S.A., 1990, HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 248: 364.PubMedGoogle Scholar
  50. Elkabes, S., DiCicco-Bloom, E.M. and Black, I.B., 1996, Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J. Neurosci. 16: 2508.PubMedGoogle Scholar
  51. Ellis, R.J., Deutsch, R., Heaton, R.K., Marcotte, T.D., McCutchan, J.A., Nelson, J.A., Abramson, I., Thal, L.J., Atkinson, J.H., Wallace, M.R. and Grant, I., 1997, Neurocognitive impairment is an independent risk factor for death in HIV infection. San Diego HIV Neurobehavioral Research Center Group. Arch. Neurol. 54: 416.PubMedGoogle Scholar
  52. Erdo, S.L. and Schafer, M., 1991, Memantine is highly potent in protecting cortical cultures against excitotoxic cell death evoked by glutamate and N-methyl-D-aspartate. Eur. J. Pharmacol. 198: 215.PubMedGoogle Scholar
  53. Everall, I.P., Heaton, R.K., Marcotte, T.D., Ellis, R.J., McCutchan, J.A., Atkinson, J.H., Grant, I., Mallory, M. and Masliah, E., 1999, Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. HNRC group. HIV Neurobehavioral Research Center. Brain Pathol. 9: 209.PubMedGoogle Scholar
  54. Fiala, M., Looney, D.J., Stins, M., Way, D.D., Zhang, L., Gan, X., Chiappelli, F., Schweitzer, E.S., Shapshak, P., Weinand, M., Graves, M.C., Witte, M. and Kim, K.S., 1997, TNF-alpha opens a paracellular route for HIV-1 invasion across the blood-brain barrier. Mol. Med. 3: 553.PubMedGoogle Scholar
  55. Fontana, G., Valenti, L. and Raiteri, M., 1997, Agp120 can revert antagonism at the glycine site of NMDA receptors mediating GABA release from cultured hippocampal neurons. J. Neurosci. Res. 49: 732.PubMedGoogle Scholar
  56. Fox, L., Alford, M., Achim, C., Mallory, M. and Masliah, E., 1997, Neurodegeneration of somatostatin-immunoreactive neurons in HIV encephalitis. J. Neuropathol. Exp. Neurol. 56: 360.PubMedGoogle Scholar
  57. Galasso, J.M., Harrison, J.K. and Silverstein, F.S., 1998, Excitotoxic brain injury stimulates expression of the chemokine receptor CCR5 in neonatal rats. Am. J. Pathol. 153: 1631.PubMedGoogle Scholar
  58. Garaci, E., Caroleo, M.C., Aloe, L., Aquaro, S., Piacentini, M., Costa, N., Amendola, A., Micera, A., Calio, R., Perno, C.F. and Levi-Montalcini, R., 1999, Nerve growth factor is an autocrine factor essential for the survival of macrophages infected with HIV. Proc. Natl. Acad. Sci. USA 96: 14013.PubMedGoogle Scholar
  59. Garden, G.A., Guo, W., Jayadev, S., Tun, C., Balcaitis, S., Choi, J., Montine, T.J., Moller, T. and Morrison, R.S., 2004, HIV associated neurodegeneration requires p53 in neurons and microglia. FASEB J. 18: 1141.PubMedGoogle Scholar
  60. Gartner, S., 2000, HIV infection and dementia. Science 287: 602.PubMedGoogle Scholar
  61. Gelbard, H.A., Dzenko, K.A., DiLoreto, D., del Cerro, C., del Cerro, M. and Epstein, L.G., 1993, Neurotoxic effects of tumor necrosis factor alpha in primary human neuronal cultures are mediated by activation of the glutamate AMPA receptor subtype: implications for AIDS neuropathogenesis. Dev. Neurosci. 15: 417.PubMedGoogle Scholar
  62. Gelbard, H.A., Nottet, H.S., Swindells, S., Jett, M., Dzenko, K.A., Genis, P., White, R., Wang, L., Choi, Y.B., Zhang, D. et al., 1994, Platelet-activating factor: A candidate human immunodeficiency virus type 1-induced neurotoxin. J. Virol. 68: 4628.PubMedGoogle Scholar
  63. Gelbard, H.A., James, H.J., Sharer, L.R., Perry, S.W., Saito, Y., Kazee, A.M., Blumberg, B.M., and Epstein, L.G., 1995, Apoptotic neurons in brains from paediatric patients with HIV-1 encephalitis and progressive encephalopathy. Neuropathol. Appl. Neurobiol. 21: 208.PubMedGoogle Scholar
  64. Gendelman, H.E., Persidsky, Y., Ghorpade, A., Limoges, J., Stins, M., Fiala, M. and Morrisett, R., 1997, The neuropathogenesis of the AIDS dementia complex. AIDS 11 suppl A: S35.Google Scholar
  65. Gendelman, H.E., Grant, I., Lipton, S.A., Everall, I. and Swindells, S., 2005, The Neurology of AIDS. Oxford University Press, London.Google Scholar
  66. Giulian, D., Vaca, K. and Noonan, C.A., 1990, Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250: 1593.PubMedGoogle Scholar
  67. Giulian, D., Wendt, E., Vaca, K. and Noonan, C.A., 1993, The envelope glycoprotein of human immunodeficiency virus type 1 stimulates release of neurotoxins from monocytes. Proc. Natl. Acad. Sci. USA 90: 2769.PubMedGoogle Scholar
  68. Giulian, D., Yu, J., Li, X., Tom, D., Li, J., Wendt, E., Lin, S.N., Schwarcz, R. and Noonan, C., 1996, Study of receptor-mediated neurotoxins released by HIV-1 infected mononuclear phagocytes found in human brain. J. Neurosci. 16: 3139.PubMedGoogle Scholar
  69. Glass, J.D., Wesselingh, S.L., Selnes, O.A. and McArthur, J.C., 1993, Clinical-neuropathologic correlation in HIV-associated dementia. Neurology 43: 2230.PubMedGoogle Scholar
  70. Glass, J.D., Fedor, H., Wesselingh, S.L. and McArthur, J.C., 1995, Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann. Neurol. 38: 755.PubMedGoogle Scholar
  71. Gleichmann, M., Gillen, C., Czardybon, M., Bosse, F., Greiner-Petter, R., Auer, J. and Muller, H.W., 2000, Cloning and characterization of SDF-1gamma, a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system. Eur. J. Neurosci. 12: 1857.PubMedGoogle Scholar
  72. Gonzalez, E., Rovin, B.H., Sen, L., Cooke, G., Dhanda, R., Mummidi, S., Kulkarni, H., Bamshad, M.J., Telles, V., Anderson, S.A., Walter, E.A., Stephan, K.T., Deucher, M., Mangano, A., Bologna, R., Ahuja, S.S., Dolan, M.J. and Ahuja, S.K., 2002, HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc. Natl. Acad. Sci. USA 99: 13795.PubMedGoogle Scholar
  73. Gonzalez-Scarano, F. and Martin-Garcia, J., 2005, The neuropathogenesis of AIDS. Nat. Rev. Immunol. 5: 69.PubMedGoogle Scholar
  74. Gonzalez-Zulueta, M., Feldman, A.B., Klesse, L.J., Kalb, R.G., Dillman, J.F., Parada, L.F., Dawson, T.M. and Dawson, V.L., 2000, Requirement for nitric oxide activation of p21(ras)/extracellular regulated kinase in neuronal ischemic preconditioning. Proc. Natl. Acad. Sci. USA 97: 436.PubMedGoogle Scholar
  75. Gras, G., Chretien, F., Vallat-Decouvelaere, A.V., Le Pavec, G., Porcheray, F., Bossuet, C., Leone, C., Mialocq, P., Dereuddre-Bosquet, N., Clayette, P., Le Grand, R., Creminon, C., Dormont, D., Rimaniol, A.C. and Gray, F., 2003, Regulated expression of sodium-dependent glutamate transporters and synthetase: a neuroprotective role for activated microglia and macrophages in HIV infection? Brain Pathol. 13: 211.PubMedGoogle Scholar
  76. He, J., Chen, Y., Farzan, M., Choe, H., Ohagen, A., Gartner, S., Busciglio, J., Yang, X., Hofmann, W., Newman, W., Mackay, C.R., Sodroski, J. and Gabuzda, D., 1997, CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385: 645.PubMedGoogle Scholar
  77. Hesselgesser, J., Taub, D., Baskar, P., Greenberg, M., Hoxie, J., Kolson, D.L. and Horuk, R., 1998, Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4. Curr. Biol. 8: 595.PubMedGoogle Scholar
  78. Heyes, M.P., Brew, B.J., Martin, A., Price, R.W., Salazar, A.M., Sidtis, J.J., Yergey, J.A., Mouradian, M.M., Sadler, A.E., Keilp, J., Rubinow, D. and Markey, S.P., 1991, Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann. Neurol. 29: 202.PubMedGoogle Scholar
  79. Ho, D.D., Rota, T.R., Schooley, R.T., Kaplan, J.C., Allan, J.D., Groopman, J.E., Resnick, L., Felsenstein, D., Andrews, C.A. and Hirsch, M.S., 1985, Isolation of HTLV-III from cerebrospinal fluid and neural tissues of patients with neurologic syndromes related to the acquired immunodeficiency syndrome. N. Engl. J. Med. 313: 1493.Google Scholar
  80. Jain, K.K., 2000, Evaluation of memantine for neuroprotection in dementia. Expert. Opin. Investig. Drugs 9: 1397.PubMedGoogle Scholar
  81. Jiang, Z.G., Piggee, C., Heyes, M.P., Murphy, C., Quearry, B., Bauer, M., Zheng, J., Gendelman, H.E. and Markey, S.P., 2001, Glutamate is a mediator of neurotoxicity in secretions of activated HIV- 1-infected macrophages. J. Neuroimmunol. 117: 97.PubMedGoogle Scholar
  82. Johnston, J.B., Jiang, Y., van Marle, G., Mayne, M.B., Ni, W., Holden, J., McArthur, J.C. and Power, C., 2000, Lentivirus infection in the brain induces matrix metalloproteinase expression: role of envelope diversity. J. Virol. 74: 7211.PubMedGoogle Scholar
  83. Jones, G. and Power, C., 2006, Regulation of neural cell survival by HIV-1 infection. Neurobiol. Dis. 21: 1.PubMedGoogle Scholar
  84. Kalams, S.A. and Walker, B.D., 1995, Cytotoxic T lymphocytes and HIV-1 related neurologic disorders. Curr. Top. Microbiol. Immunol. 202: 79.PubMedGoogle Scholar
  85. Kaul, M., 2002, Chemokines and their receptors in HIV-associated dementia. J. Neurovirol. 8 suppl. 1: 41.Google Scholar
  86. Kaul, M. and Lipton, S.A., 1999, Chemokines and activated macrophages in gp120-induced neuronal apoptosis. Proc. Natl. Acad. Sci. USA 96: 8212.PubMedGoogle Scholar
  87. Kaul, M., Garden, G.A. and Lipton, S.A., 2001, Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410: 988.PubMedGoogle Scholar
  88. Kaul, M., Zheng, J., Okamoto, S., Gendelman, H.E. and Lipton, S.A., 2005, HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ. 12 suppl. 1: 878.Google Scholar
  89. Kaul, M., Ma, Q., Medders, K.E., Desai, M.K. and Lipton, S.A., 2006, HIV-1 coreceptors CCR5 and CXCR4 both mediate neuronal cell death but CCR5 paradoxically can also contribute to protection. Cell Death Differ. July 14; [Epub ahead of print].Google Scholar
  90. Keilhoff, G. and Wolf, G., 1992, Memantine prevents quinolinic acid-induced hippocampal damage. Eur. J. Pharmacol. 219: 451.PubMedGoogle Scholar
  91. Kerr, S.J., Armati, P.J., Pemberton, L.A., Smythe, G., Tattam, B. and Brew, B.J., 1997, Kynurenine pathway inhibition reduces neurotoxicity of HIV-1- infected macrophages. Neurology 49: 1671.PubMedGoogle Scholar
  92. Kikuchi, M., Tenneti, L. and Lipton, S.A., 2000, Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J. Neurosci. 20: 5037.PubMedGoogle Scholar
  93. Kim, W.K., Choi, Y.B., Rayudu, P.V., Das, P., Asaad, W., Arnelle, D.R., Stamler, J.S. and Lipton, S.A., 1999, Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO-. Neuron 24: 461.Google Scholar
  94. Koenig, S., Gendelman, H.E., Orenstein, J.M., Dal Canto, M.C., Pezeshkpour, G.H., Yungbluth, M., Janotta, F., Aksamit, A., Martin, M.A. and Fauci, A.S., 1986, Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233: 1089.PubMedGoogle Scholar
  95. Kohr, G., Eckardt, S., Luddens, H., Monyer, H. and Seeburg, P.H., 1994, NMDA receptor channels: subunit-specific potentiation by reducing agents. Neuron 12: 1031.PubMedGoogle Scholar
  96. Kramer-Hammerle, S., Rothenaigner, I., Wolff, H., Bell, J.E. and Brack-Werner, R., 2005, Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res. 111: 194.PubMedGoogle Scholar
  97. Krathwohl, M.D. and Kaiser, J.L., 2004a, Chemokines promote quiescence and survival of human neural progenitor cells. Stem Cells 22: 109.PubMedGoogle Scholar
  98. Krathwohl, M.D. and Kaiser, J.L., 2004b, HIV-1 promotes quiescence in human neural progenitor cells. J. Infect. Dis. 190: 216.PubMedGoogle Scholar
  99. Kullander, K., Kylberg, A. and Ebendal, T., 1997, Specificity of neurotrophin-3 determined by loss-of-function mutagenesis. J. Neurosci. Res. 50: 496.PubMedGoogle Scholar
  100. Langford, D., Sanders, V.J., Mallory, M., Kaul, M. and Masliah, E., 2002, Expression of stromal cell-derived factor 1alpha protein in HIV encephalitis. J. Neuroimmunol. 127: 115.PubMedGoogle Scholar
  101. Lannuzel, A., Lledo, P.M., Lamghitnia, H.O., Vincent, J.D. and Tardieu, M., 1995, HIV-1 envelope proteins gp120 and gp160 potentiate NMDA [Ca2+]i increase, alter [Ca2+]i homeostasis and induce neurotoxicity in human embryonic neurons. Eur. J. Neurosci. 7: 2285.PubMedGoogle Scholar
  102. Lapidot, T. and Petit, I., 2002, Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp. Hematol. 30: 973.PubMedGoogle Scholar
  103. Lavi, E., Kolson, D.L., Ulrich, A.M., Fu, L. and Gonzalez-Scarano, F., 1998, Chemokine receptors in the human brain and their relationship to HIV infection. J. Neurovirol. 4: 301.PubMedGoogle Scholar
  104. Lazarov-Spiegler, O., Solomon, A.S., Zeev-Brann, A.B., Hirschberg, D.L., Lavie, V. and Schwartz, M., 1996, Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J. 10: 1296.PubMedGoogle Scholar
  105. Le, D.A. and Lipton, S.A., 2001, Potential and current use of N-methyl-D-aspartate (NMDA) receptor antagonists in diseases of aging. Drugs Aging 18: 717.PubMedGoogle Scholar
  106. Le, D., Das, S., Wang, Y.F., Yoshizawa, T., Sasaki, Y.F., Takasu, M., Nemes, A., Mendelsohn, M., Dikkes, P., Lipton, S.A. and Nakanishi, N., 1997, Enhanced neuronal death from focal ischemia in AMPA-receptor transgenic mice. Brain Res. Mol. Brain Res. 52: 235.PubMedGoogle Scholar
  107. Lees, K.R., 1997, Cerestat and other NMDA antagonists in ischemic stroke. Neurology 49: S66.PubMedGoogle Scholar
  108. Lei, S.Z., Pan, Z.H., Aggarwal, S.K., Chen, H.S., Hartman, J., Sucher, N.J. and Lipton, S.A., 1992, Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 8: 1087.PubMedGoogle Scholar
  109. Letendre, S.L., Lanier, E.R. and McCutchan, J.A., 1999, Cerebrospinal fluid beta chemokine concentrations in neurocognitively impaired individuals infected with human immunodeficiency virus type 1. J. Infect. Dis. 180: 310.PubMedGoogle Scholar
  110. Lipton, S.A., 1992a, Memantine prevents HIV coat protein-induced neuronal injury in vitro. Neurology 42: 1403.PubMedGoogle Scholar
  111. Lipton, S.A., 1992b, Models of neuronal injury in AIDS: another role for the NMDA receptor? Trends Neurosci. 15: 75.PubMedGoogle Scholar
  112. Lipton, S.A., 1992c, Requirement for macrophages in neuronal injury induced by HIV envelope protein gp120. Neuroreport 3: 913.PubMedGoogle Scholar
  113. Lipton, S.A., 1993, Prospects for clinically tolerated NMDA antagonists: open- channel blockers and alternative redox states of nitric oxide. Trends Neurosci. 16: 527.PubMedGoogle Scholar
  114. Lipton, S.A., 1994, HIV coat protein gp120 induces soluble neurotoxins in culture medium. Neurosci. Res. Commun. 15: 31.Google Scholar
  115. Lipton, S.A., 1997a, Neuropathogenesis of acquired immunodeficiency syndrome dementia. Curr. Opin. Neurol. 10: 247.PubMedGoogle Scholar
  116. Lipton, S.A., 1997b, Treating AIDS dementia [letter; comment]. Science 276: 1629.PubMedGoogle Scholar
  117. Lipton, S.A., 1998, Neuronal injury associated with HIV-1: approaches to treatment. Annu. Rev. Pharmacol. Toxicol. 38: 159.PubMedGoogle Scholar
  118. Lipton, S.A., 2004, Erythropoietin for neurologic protection and diabetic neuropathy. N. Engl. J. Med. 350: 2516.PubMedGoogle Scholar
  119. Lipton, S.A. and Gendelman, H.E., 1995, Seminars in Medicine of the Beth Israel Hospital, Boston. Dementia associated with the acquired immunodeficiency syndrome. N. Engl. J. Med. 332: 934.PubMedGoogle Scholar
  120. Lipton, S.A. and Jensen, F.E., 1992, Memantine, a clinically-tolerated NMDA open-channel blocker, prevents HIV coat protein-induced neuronal injury in vitro and in vivo. Soc. Neurosci. Abstr. 18: 757.Google Scholar
  121. Lipton, S.A. and Kieburtz, K., 1998, Development of adjunctive therapies for the neurologic manifestations of AIDS: dementia and painful neuropathy. In: The Neurology of AIDS. H.E. Gendelman, S.A. Lipton, L.G. Epstein and S. Swindells, eds, Chapman and Hall, New York, pp. 377.Google Scholar
  122. Lipton, S.A. and Rosenberg, P.A., 1994, Excitatory amino acids as a final common pathway for neurologic disorders [see comments]. N. Engl. J. Med. 330: 613.PubMedGoogle Scholar
  123. Lipton, S.A. and Stamler, J.S., 1994, Actions of redox-related congeners of nitric oxide at the NMDA receptor. Neuropharmacology 33: 1229.PubMedGoogle Scholar
  124. Lipton, S.A. and Wang, Y.F., 1996, NO-related species can protect from focal cerebral ischemia/reperfusion. In: Pharmacology of cerebral ischemia. J. Krieglstein, ed., Medpharm Scientific Publisher, Stuttgart, pp. 183.Google Scholar
  125. Lipton, S.A., Sucher, N.J., Kaiser, P.K. and Dreyer, E.B., 1991, Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity. Neuron 7: 111.PubMedGoogle Scholar
  126. Lipton, S.A., Choi, Y.B., Pan, Z.H., Lei, S.Z., Chen, H.S., Sucher, N.J., Loscalzo, J., Singel, D.J. and Stamler, J.S., 1993, A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364: 626.PubMedGoogle Scholar
  127. Liu, R., Paxton, W.A., Choe, S., Ceradini, D., Martin, S.R., Horuk, R., MacDonald, M.E., Stuhlmann, H., Koup, R.A. and Landau, N.R., 1996, Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86: 367.PubMedGoogle Scholar
  128. Liu, Y., Jones, M., Hingtgen, C.M., Bu, G., Laribee, N., Tanzi, R.E., Moir, R.D., Nath, A. and He, J.J., 2000, Uptake of HIV-1 Tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat. Med. 6: 1380.PubMedGoogle Scholar
  129. Lo, T.M., Fallert, C.J., Piser, T.M. and Thayer, S.A., 1992, HIV-1 envelope protein evokes intracellular calcium oscillations in rat hippocampal neurons. Brain Res. 594: 189.PubMedGoogle Scholar
  130. Locati, M. and Murphy, P.M., 1999, Chemokines and chemokine receptors: biology and clinical relevance in inflammation and AIDS. Annu. Rev. Med. 50: 425.PubMedGoogle Scholar
  131. Lopalco, L., Barassi, C., Paolucci, C., Breda, D., Brunelli, D., Nguyen, M., Nouhin, J., Luong, T.T., Truong, L.X., Clerici, M., Calori, G., Lazzarin, A., Pancino, G. and Burastero, S.E., 2005, Predictive value of anti-cell and anti-human immunodeficiency virus (HIV) humoral responses in HIV-1-exposed seronegative cohorts of European and Asian origin. J. Gen. Virol. 86: 339.PubMedGoogle Scholar
  132. Luo, X., Carlson, K.A., Wojna, V., Mayo, R., Biskup, T.M., Stoner, J., Anderson, J., Gendelman, H.E. and Melendez, L.M., 2003, Macrophage proteomic fingerprinting predicts HIV-1-associated cognitive impairment. Neurology 60: 1931.PubMedGoogle Scholar
  133. Ma, Q., Jones, D., Borghesani, P.R., Segal, R.A., Nagasawa, T., Kishimoto, T., Bronson, R.T. and Springer, T.A., 1998, Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl. Acad. Sci. USA 95: 9448.PubMedGoogle Scholar
  134. Marshall, D.C., Wyss-Coray, T. and Abraham, C.R., 1998, Induction of matrix metalloproteinase-2 in human immunodeficiency virus-1 glycoprotein 120 transgenic mouse brains. Neurosci. Lett. 254: 97.PubMedGoogle Scholar
  135. Masliah, E., Ge, N., Achim, C.L., Hansen, L.A. and Wiley, C.A., 1992, Selective neuronal vulnerability in HIV encephalitis. J. Neuropathol. Exp. Neurol. 51: 585.PubMedGoogle Scholar
  136. Masliah, E., Heaton, R.K., Marcotte, T.D., Ellis, R.J., Wiley, C.A., Mallory, M., Achim, C.L., McCutchan, J.A., Nelson, J.A., Atkinson, J.H. and Grant, I., 1997, Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC group. The HIV Neurobehavioral Research Center. Ann. Neurol. 42: 963.PubMedGoogle Scholar
  137. Mattson, M.P., Haughey, N.J. and Nath, A., 2005, Cell death in HIV dementia. Cell Death Differ. 12: 893.PubMedGoogle Scholar
  138. McArthur, J.C., Hoover, D.R., Bacellar, H., Miller, E.N., Cohen, B.A., Becker, J.T., Graham, N.M., McArthur, J.H., Selnes, O.A., Jacobson, L.P. et al., 1993, Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 43: 2245.PubMedGoogle Scholar
  139. McArthur, J.C., McClernon, D.R., Cronin, M.F., Nance-Sproson, T.E., Saah, A.J., St Clair, M. and Lanier, E.R., 1997, Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann. Neurol. 42: 689.PubMedGoogle Scholar
  140. McArthur, J.C., Haughey, N., Gartner, S., Conant, K., Pardo, C., Nath, A. and Sacktor, N., 2003, Human immunodeficiency virus-associated dementia: an evolving disease. J. Neurovirol. 9: 205.PubMedGoogle Scholar
  141. McGrath, K.E., Koniski, A.D., Maltby, K.M., McGann, J.K. and Palis, J., 1999, Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev. Biol. 213: 442.Google Scholar
  142. Melton, S.T., Kirkwood, C.K. and Ghaemi, S.N., 1997, Pharmacotherapy of HIV dementia. Ann. Pharmacother. 31: 457.PubMedGoogle Scholar
  143. Mennicken, F., Maki, R., de Souza, E.B. and Quirion, R., 1999, Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends Pharmacol. Sci. 20: 73.Google Scholar
  144. Meucci, O. and Miller, R.J., 1996, Gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective action of TGF-beta1. J. Neurosci. 16: 4080.PubMedGoogle Scholar
  145. Meucci, O., Fatatis, A., Simen, A.A., Bushell, T.J., Gray, P.W. and Miller, R.J., 1998, Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc. Natl. Acad. Sci. USA 95: 14500.PubMedGoogle Scholar
  146. Michael, N.L. and Moore, J.P., 1999, HIV-1 entry inhibitors: evading the issue [news] [see comments]. Nat. Med. 5: 740.PubMedGoogle Scholar
  147. Miller, R.J. and Meucci, O., 1999, AIDS and the brain: Is there a chemokine connection? Trends Neurosci. 22: 471.PubMedGoogle Scholar
  148. Milligan, C.E., Cunningham, T.J. and Levitt, P., 1991, Differential immunochemical markers reveal the normal distribution of brain macrophages and microglia in the developing rat brain. J. Comp. Neurol. 314: 125.PubMedGoogle Scholar
  149. Minghetti, L., 2005, Role of inflammation in neurodegenerative diseases. Curr. Opin. Neurol. 18: 315.PubMedGoogle Scholar
  150. Miwa, T., Furukawa, S., Nakajima, K., Furukawa, Y. and Kohsaka, S., 1997, Lipopolysaccharide enhances synthesis of brain-derived neurotrophic factor in cultured rat microglia. J. Neurosci. Res. 50: 1023.PubMedGoogle Scholar
  151. Mukherjee, P.K., DeCoster, M.A., Campbell, F.Z., Davis, R.J. and Bazan, N.G., 1999, Glutamate receptor signaling interplay modulates stress- sensitive mitogen-activated protein kinases and neuronal cell death. J. Biol. Chem. 274: 6493.PubMedGoogle Scholar
  152. Muller, W.E., Schroder, H.C., Ushijima, H., Dapper, J. and Bormann, J., 1992, Gp120 of HIV-1 induces apoptosis in rat cortical cell cultures: prevention by memantine. Eur. J. Pharmacol. 226: 209.PubMedGoogle Scholar
  153. Nath, A., 1999, Pathobiology of human immunodeficiency virus dementia. Semin. Neurol. 19: 113.PubMedGoogle Scholar
  154. Nath, A., Psooy, K., Martin, C., Knudsen, B., Magnuson, D.S., Haughey, N. and Geiger, J.D., 1996, Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J. Virol. 70: 1475.PubMedGoogle Scholar
  155. Navia, B.A., Dafni, U., Simpson, D., Tucker, T., Singer, E., McArthur, J.C., Yiannoutsos, C., Zaborski, L. and Lipton, S.A., 1998, A phase I/II trial of nimodipine for HIV-related neurologic complications. Neurology 51: 221.PubMedGoogle Scholar
  156. Nicholas, R.S., Stevens, S., Wing, M.G. and Compston, D.A., 2002, Microglia-derived IGF-2 prevents TNFalpha induced death of mature oligodendrocytes in vitro. J. Neuroimmunol. 124: 36.PubMedGoogle Scholar
  157. Nicotera, P., Ankarcrona, M., Bonfoco, E., Orrenius, S. and Lipton, S.A., 1997, Neuronal necrosis and apoptosis: two distinct events induced by exposure to glutamate or oxidative stress. Adv. Neurol. 72: 95.PubMedGoogle Scholar
  158. Nottet, H.S., Jett, M., Flanagan, C.R., Zhai, Q.H., Persidsky, Y., Rizzino, A., Bernton, E.W., Genis, P., Baldwin, T., Schwartz, J., LaBenz, C.J. and Gendelman, H.E., 1995, A regulatory role for astrocytes in HIV-1 encephalitis. An overexpression of eicosanoids, platelet-activating factor, and tumor necrosis factor-alpha by activated HIV-1-infected monocytes is attenuated by primary human astrocytes. J. Immunol. 154: 3567.PubMedGoogle Scholar
  159. Nottet, H.S., Persidsky, Y., Sasseville, V.G., Nukuna, A.N., Bock, P., Zhai, Q.H., Sharer, L.R., McComb, R.D., Swindells, S., Soderland, C. and Gendelman, H.E., 1996, Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J. Immunol. 156: 1284.PubMedGoogle Scholar
  160. Oberlin, E., Amara, A., Bachelerie, F., Bessia, C., Virelizier, J.L., Arenzana-Seisdedos, F., Schwartz, O., Heard, J. M., Clark-Lewis, I., Legler, D.F., Loetscher, M., Baggiolini, M. and Moser, B., 1996, The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382: 833.PubMedGoogle Scholar
  161. Ohagen, A., Ghosh, S., He, J., Huang, K., Chen, Y., Yuan, M., Osathanondh, R., Gartner, S., Shi, B., Shaw, G. and Gabuzda, D., 1999, Apoptosis induced by infection of primary brain cultures with diverse human immunodeficiency virus type 1 isolates: evidence for a role of the envelope. J. Virol. 73: 897.PubMedGoogle Scholar
  162. Olney, J.W., 1969, Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164: 719.PubMedGoogle Scholar
  163. Olney, J.W. and Sharpe, L.G., 1969, Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 166: 386.PubMedGoogle Scholar
  164. Osborne, N.N. and Quack, G., 1992, Memantine stimulates inositol phosphates production in neurones and nullifies N-methyl-D-aspartate-induced destruction of retinal neurons. Neurochem. Int. 21: 329.PubMedGoogle Scholar
  165. Parsons, C.G., Danysz, W. and Quack, G., 1999, Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist-a review of preclinical data. Neuropharmacology 38: 735.PubMedGoogle Scholar
  166. Paxton, W.A., Martin, S.R., Tse, D., O’Brien, T.R., Skurnick, J., VanDevanter, N.L., Padian, N., Braun, J.F., Kotler, D.P., Wolinsky, S.M. and Koup, R.A., 1996, Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat. Med. 2: 412.PubMedGoogle Scholar
  167. Paxton, W.A., Liu, R., Kang, S., Wu, L., Gingeras, T.R., Landau, N.R., Mackay, C.R. and Koup, R.A., 1998, Reduced HIV-1 infectability of CD4+ lymphocytes from exposed- uninfected individuals: Association with low expression of CCR5 and high production of beta-chemokines. Virology 244: 66.PubMedGoogle Scholar
  168. Pellegrini, J.W. and Lipton, S.A., 1993, Delayed administration of memantine prevents N-methyl-D- aspartate receptor-mediated neurotoxicity. Ann. Neurol. 33: 403.PubMedGoogle Scholar
  169. Persidsky, Y., Stins, M., Way, D., Witte, M.H., Weinand, M., Kim, K.S., Bock, P., Gendelman, H.E. and Fiala, M., 1997, A model for monocyte migration through the blood-brain barrier during HIV-1 encephalitis. J. Immunol. 158: 3499.PubMedGoogle Scholar
  170. Petito, C.K. and Roberts, B., 1995, Evidence of apoptotic cell death in HIV encephalitis. Am. J. Pathol. 146: 1121.PubMedGoogle Scholar
  171. Petito, C.K., Cho, E.S., Lemann, W., Navia, B.A. and Price, R.W., 1986, Neuropathology of acquired immunodeficiency syndrome (AIDS): an autopsy review. J Neuropathol. Exp. Neurol. 45: 635.PubMedGoogle Scholar
  172. Pierson, T.C., Doms, R.W. and Pohlmann, S., 2004, Prospects of HIV-1 entry inhibitors as novel therapeutics. Rev. Med. Virol. 14: 255.PubMedGoogle Scholar
  173. Pittaluga, A., Pattarini, R., Severi, P. and Raiteri, M., 1996, Human brain N-methyl-D-aspartate receptors regulating noradrenaline release are positively modulated by HIV-1 coat protein gp120. AIDS 10: 463.PubMedGoogle Scholar
  174. Power, C., McArthur, J.C., Nath, A., Wehrly, K., Mayne, M., Nishio, J., Langelier, T., Johnson, R.T. and Chesebro, B., 1998, Neuronal death induced by brain-derived human immunodeficiency virus type 1 envelope genes differs between demented and nondemented AIDS patients. J. Virol. 72: 9045.PubMedGoogle Scholar
  175. Power, C., Gill, M.J. and Johnson, R.T., 2002, Progress in clinical neurosciences: the neuropathogenesis of HIV infection: host-virus interaction and the impact of therapy. Can. J. Neurol. Sci. 29: 19.PubMedGoogle Scholar
  176. Prospero-Garcia, O., Gold, L.H., Fox, H.S., Polis, I., Koob, G.F., Bloom, F.E. and Henriksen, S.J., 1996, Microglia-passaged simian immunodeficiency virus induces neurophysiological abnormalities in monkeys. Proc. Natl. Acad. Sci. USA 93: 14158.PubMedGoogle Scholar
  177. Rapalino, O., Lazarov-Spiegler, O., Agranov, E., Velan, G.J., Yoles, E., Fraidakis, M., Solomon, A., Gepstein, R., Katz, A., Belkin, M., Hadani, M. and Schwartz, M., 1998, Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4: 814.PubMedGoogle Scholar
  178. Robinson, A.P., White, T.M. and Mason, D.W., 1986, Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunol. 57: 239.Google Scholar
  179. Rottman, J.B., Ganley, K.P., Williams, K., Wu, L., Mackay, C.R. and Ringler, D.J., 1997, Cellular localization of the chemokine receptor CCR5. Correlation to cellular targets of HIV-1 infection. Am. J. Pathol. 151: 1341.PubMedGoogle Scholar
  180. Ryan, L.A., Zheng, J., Brester, M., Bohac, D., Hahn, F., Anderson, J., Ratanasuwan, W., Gendelman, H.E. and Swindells, S., 2001, Plasma levels of soluble CD14 and tumor necrosis factor-alpha type II receptor correlate with cognitive dysfunction during human immunodeficiency virus type 1 infection. J. Infect. Dis. 184: 699.PubMedGoogle Scholar
  181. Sardar, A.M., Hutson, P.H. and Reynolds, G.P., 1999, Deficits of NMDA receptors and glutamate uptake sites in the frontal cortex in AIDS. Neuroreport 10: 3513.PubMedGoogle Scholar
  182. Sasseville, V.G., Newman, W., Brodie, S.J., Hesterberg, P., Pauley, D. and Ringler, D.J., 1994, Monocyte adhesion to endothelium in simian immunodeficiency virus-induced AIDS encephalitis is mediated by vascular cell adhesion molecule-1/alpha 4 beta 1 integrin interactions. Am. J. Pathol. 144: 27.PubMedGoogle Scholar
  183. Sathi, S., Edgecomb, P., Warach, S., Manchester, K., Donaghey, T., Stieg, P.E., Jensen, F.E. and Lipton, S.A., 1993, Chronic transdermal nitroglycerin (NTG) is neuroprotective in experimental rodent stroke models. Soc. Neurosci. Abstr. 19: 849.Google Scholar
  184. Sattler, R., Xiong, Z., Lu, W.Y., Hafner, M., MacDonald, J.F. and Tymianski, M., 1999, Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284: 1845.PubMedGoogle Scholar
  185. Savio, T. and Levi, G., 1993, Neurotoxicity of HIV coat protein gp120, NMDA receptors, and protein kinase C: a study with rat cerebellar granule cell cultures. J. Neurosci. Res. 34: 265.PubMedGoogle Scholar
  186. Scala, E., D’Offizi, G., Rosso, R., Turriziani, O., Ferrara, R., Mazzone, A.M., Antonelli, G., Aiuti, F. and Paganelli, R., 1997, C-C chemokines, IL-16, and soluble antiviral factor activity are increased in cloned T cells from subjects with long-term nonprogressive HIV infection. J. Immunol. 158: 4485.PubMedGoogle Scholar
  187. Schifitto, G., Sacktor, N., Marder, K., McDermott, M.P., McArthur, J.C., Kieburtz, K., Small, S. and Epstein, L.G., 1999, Randomized trial of the platelet-activating factor antagonist lexipafant in HIV-associated cognitive impairment. Neurological AIDS Research Consortium. Neurology 53: 391.PubMedGoogle Scholar
  188. Seif el Nasr, M., Peruche, B., Rossberg, C., Mennel, H.D. and Krieglstein, J., 1990, Neuroprotective effect of memantine demonstrated in vivo and in vitro. Eur. J. Pharmacol. 185: 19.PubMedGoogle Scholar
  189. Stieg, P.E., Sathi, S., Warach, S., Le, D.A. and Lipton, S.A., 1999, Neuroprotection by the NMDA receptor-associated open-channel blocker memantine in a photothrombotic model of cerebral focal ischemia in neonatal rat. Eur. J. Pharmacol. 375: 115.PubMedGoogle Scholar
  190. Stumm, R.K., Rummel, J., Junker, V., Culmsee, C., Pfeiffer, M., Krieglstein, J., Hollt, V. and Schulz, S., 2002, A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4- dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J. Neurosci. 22: 5865.PubMedGoogle Scholar
  191. Sullivan, J.M., Traynelis, S.F., Chen, H.S., Escobar, W., Heinemann, S.F. and Lipton, S.A., 1994, Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13: 929.PubMedGoogle Scholar
  192. Susman, E., 2001, Memantine improves function and cognition in advanced Alzheimer’s. Inpharma Weekly 1292: 5.Google Scholar
  193. Tachibana, K., Hirota, S., Iizasa, H., Yoshida, H., Kawabata, K., Kataoka, Y., Kitamura, Y., Matsushima, K., Yoshida, N., Nishikawa, S., Kishimoto, T. and Nagasawa, T., 1998, The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393: 591.PubMedGoogle Scholar
  194. Tenneti, L., D’Emilia, D.M. and Lipton, S.A., 1997, Suppression of neuronal apoptosis by S-nitrosylation of caspases. Neurosci. Lett. 236: 139.PubMedGoogle Scholar
  195. Tenneti, L., D’Emilia, D.M., Troy, C.M. and Lipton, S.A., 1998, Role of caspases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. J. Neurochem. 71: 946.PubMedGoogle Scholar
  196. Toggas, S.M., Masliah, E., Rockenstein, E.M., Rall, G.F., Abraham, C.R. and Mucke, L., 1994, Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367: 188.PubMedGoogle Scholar
  197. Toggas, S.M., Masliah, E. and Mucke, L., 1996, Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine. Brain Res. 706: 303.PubMedGoogle Scholar
  198. Tornatore, C., Chandra, R., Berger, J.R. and Major, E.O., 1994, HIV-1 infection of subcortical astrocytes in the pediatric central nervous system. Neurology 44: 481.PubMedGoogle Scholar
  199. Tran, P.B. and Miller, R.J., 2003, Chemokine receptors: signposts to brain development and disease. Nat. Rev. Neurosci. 4: 444.PubMedGoogle Scholar
  200. Turchan, J., Sacktor, N., Wojna, V., Conant, K. and Nath, A., 2003, Neuroprotective therapy for HIV dementia. Curr. HIV. Res. 1: 373.PubMedGoogle Scholar
  201. Turrin, N.P. and Rivest, S., 2004, Unraveling the molecular details involved in the intimate link between the immune and neuroendocrine systems. Exp. Biol. Med. (Maywood. ) 229: 996.Google Scholar
  202. UNAIDS., 2004, Report on the global AIDS epidemic; executive summary.Google Scholar
  203. Verani, A. and Lusso, P., 2002, Chemokines as natural HIV antagonists. Curr. Mol. Med. 2: 691.PubMedGoogle Scholar
  204. Weiss, J.H. and Sensi, S.L., 2000, Ca2+-Zn2+ permeable AMPA or kainate receptors: possible key factors in selective neurodegeneration. Trends Neurosci. 23: 365.PubMedGoogle Scholar
  205. Welch, K. and Morse, A., 2002, The clinical profile of end-stage AIDS in the era of highly active antiretroviral therapy. AIDS Patient. Care STDS. 16: 75.Google Scholar
  206. Wesselingh, S.L., Takahashi, K., Glass, J.D., McArthur, J.C., Griffin, J.W. and Griffin, D.E., 1997, Cellular localization of tumor necrosis factor mRNA in neurological tissue from HIV-infected patients by combined reverse transcriptase/polymerase chain reaction in situ hybridization and immunohistochemistry. J. Neuroimmunol. 74: 1.PubMedGoogle Scholar
  207. Wiley, C.A., Soontornniyomkij, V., Radhakrishnan, L., Masliah, E., Mellors, J., Hermann, S.A., Dailey, P. and Achim, C.L., 1998, Distribution of brain HIV load in AIDS. Brain Pathol. 8: 277.PubMedGoogle Scholar
  208. Yeh, M.W., Kaul, M., Zheng, J., Nottet, H.S., Thylin, M., Gendelman, H.E. and Lipton, S.A., 2000, Cytokine-stimulated, but not HIV-infected, human monocyte-derived macrophages produce neurotoxic levels of L -cysteine. J. Immunol. 164: 4265.PubMedGoogle Scholar
  209. Zagury, D., Lachgar, A., Chams, V., Fall, L.S., Bernard, J., Zagury, J.F., Bizzini, B., Gringeri, A., Santagostino, E., Rappaport, J., Feldman, M., O’Brien, S.J., Burny, A. and Gallo, R.C., 1998, C-C chemokines, pivotal in protection against HIV type 1 infection. Proc. Natl. Acad. Sci. USA 95: 3857.PubMedGoogle Scholar
  210. Zhang, L., He, T., Talal, A., Wang, G., Frankel, S.S. and Ho, D.D., 1998, In vivo distribution of the human immunodeficiency virus/simian immunodeficiency virus coreceptors: CXCR4, CCR3, and CCR5. J. Virol. 72: 5035.PubMedGoogle Scholar
  211. Zhang, K., McQuibban, G.A., Silva, C., Butler, G.S., Johnston, J.B., Holden, J., Clark-Lewis, I., Overall, C.M. and Power, C., 2003, HIV-induced metalloproteinase processing of the chemokine stromal cell-derived factor-1 causes neurodegeneration. Nat. Neurosci. 6: 1064.PubMedGoogle Scholar
  212. Zhao, J., Lopez, A.L., Erichsen, D., Herek, S., Cotter, R.L., Curthoys, N.P. and Zheng, J., 2004a, Mitochondrial glutaminase enhances extracellular glutamate production in HIV-1-infected macrophages: Linkage to HIV-1 associated dementia. J. Neurochem. 88: 169.PubMedGoogle Scholar
  213. Zhao, M.L., Si, Q. and Lee, S.C., 2004b, IL-16 expression in lymphocytes and microglia in HIV-1 encephalitis. Neuropathol. Appl. Neurobiol. 30: 233.PubMedGoogle Scholar
  214. Zheng, J., Thylin, M.R., Ghorpade, A., Xiong, H., Persidsky, Y., Cotter, R., Niemann, D., Che, M., Zeng, Y.C., Gelbard, H.A., Shepard, R.B., Swartz, J.M. and Gendelman, H.E., 1999, Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J. Neuroimmunol. 98: 185.PubMedGoogle Scholar
  215. Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I. and Littman, D.R., 1998, Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393: 595.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Marcus Kaul
    • 1
  • Stuart A. Lipton
    • 1
  1. 1.Center for Neuroscience and Aging ResearchThe Burnham Institute for Medical ResearchLa JollaUSA

Personalised recommendations