Advertisement

Inflammation and Apoptotic Pathways in the Peripheral Nervous System Related to Protein Misfolding

  • Maria João Saraiva

Familial amyloidotic polyneuropathy (FAP) is an autosomal dominant neurodegenerative disorder related to the systemic deposition of mutated transthyretin (TTR) amyloid fibrils, particularly in peripheral nervous system (PNS). Recently, evidence for the presence of toxic non-fibrillar TTR aggregates early in FAP nerves constituted a first step to unravel molecular signaling related to neurodegeneration in FAP. The toxic nature of TTR non-fibrillar aggregates, and not mature TTR fibrils, was evidenced by their ability to induce the expression of oxidative stress and inflammation-related molecules in neuronal cells, driving them into apoptotic pathways. How these TTR aggregates exert their effects is debatable; interaction with cellular receptors, namely the receptor for advanced glycation endproducts is a probable candidate mechanism. The pathology and the yet unknown molecular signaling mechanisms responsible for neurodegeneration in FAP will be discussed.

Keywords

Amyloid Fibril Cardiac Amyloidosis Familial Amyloid Polyneuropathy Familial Amyloidotic Polyneuropathy Cryptic Epitope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. Almeida, M.R., Macedo, B., Cardoso, I., Alves, I., Valencia, G., Arsequell, G., Planas, A. and Saraiva, M.J., 2004, Effective and selective action of a iodinated diflunisal derivative in transthyretin binding and tetramer stabilization in serum from familial amyloidotic polyneuropathy patients. Biochem. J. 381: 351.CrossRefPubMedGoogle Scholar
  2. Alves, I.L., Altland, K., Almeida, M.R., Winter, P. and Saraiva, M.J.M., 1997, Screening and biochemical characterization of transthyretin variants in the Portuguese population. Hum. Mutat. 9: 226.CrossRefPubMedGoogle Scholar
  3. Andersson, R., 1970, Hereditary amyloidosis with polyneuropathy. Acta Med. Scand. 188: 85.Google Scholar
  4. Andrade, C., 1952, A peculiar form of peripheral neuropathy. Familial atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 175: 408.CrossRefGoogle Scholar
  5. Araki, S., 1984, Type I familial amyloidotic polyneuropathy (Japanese type). Brain Develop. 6: 128.Google Scholar
  6. Benditt, E.P., Eriksen, N., Hermodson, M.A. and Ericsson, L.H., 1971, The major proteins of human and monkey substance: common properties including unusual N-terminal amino acid sequences. FEBS Lett. 19: 169.CrossRefPubMedGoogle Scholar
  7. Blake, C.C.F., Geisow, M.J., Swan, I.D.A., Rérat, C. and Rérat, B., 1974, Structure of human plasma prealbumin at 2.5 A resolution. A preliminary report on the polypeptide chain conformation quaternary structure and thyroxine binding. J. Mol. Biol. 88: 1.CrossRefPubMedGoogle Scholar
  8. Cardoso, I., Goldsbury, C., Muller, S.A., Olivieri, V., Wirtz, S., Damas, A.M., Aebi, U. and Saraiva, M.J., 2002, Transthyretin fibrillogenesis entails the assembly of monomers: A molecular model for in vitro assembled transthyretin amyloid-like fibrils. J. Mol. Biol. 317: 687.CrossRefGoogle Scholar
  9. Cardoso, I., Merlini, G. and Saraiva, M.J., 2003, A4’-iodo-4’-Deoxydoxorubicin and tetracyclines disrupt transthyretin amyloid fibrils in vitro producing non-cytotoxic species. Screening for TTR fibril disrupters. FASEB J. 17: 803.CrossRefPubMedGoogle Scholar
  10. Cardoso, I. and Saraiva, M.J., 2006, Doxycycline disrupts transthyretin amyloid: evidence from studies in a FAP transgenic mice model. FASEB J. 20: 234.CrossRefPubMedGoogle Scholar
  11. Coelho, T., Chorão, R., Sousa, A., Alves, I.L., Torres, M.F. and Saraiva, M.J.M., 1996, Compound heterozygotes of transthyretin Met 30 and transthyretin Met 119 are protected from the devastating effects of familial amyloid polyneuropathy. Neuromuscular Disord. (Suppl) 6: S20.CrossRefGoogle Scholar
  12. Coimbra, A. and Andrade, C., 1971, Familial amyloid polyneuropathy: and electron microscope study of peripheral nerve in five cases. I. Interstitial changes. Brain 94: 199.Google Scholar
  13. Eanes, E.D. and Glenner, G.G., 1968, X-ray diffraction studies on amyloid filaments. J. Histochem. Cytochem. 16: 673.PubMedGoogle Scholar
  14. Glenner, G.G., Terry, W.D., Harada, M., Isersky, C. and Page, D.L., 1971, Amyloid fibril proteins: proof of homology with immunoglobulin light chains by sequence analysis. Science 172: 1150.CrossRefPubMedGoogle Scholar
  15. Goldsteins, G., Persson, H., Andersson, K., Olofsson, A., Dacklin, I., Edvinsson Saraiva, M.J. and Lundgren, E., 1999, Exposure of cryptic epitopes on transthyretin only in amyloid and in amyloidogenic mutants. Proc. Natl Acad. Sci. USA 96: 3108.CrossRefPubMedGoogle Scholar
  16. Holmgren, G., Steen, L., Ekstedt, J., Groth, C.G., Ericzon, B.G., Eriksson, S., Andersen, O., Karlberg, I., Norden, G. and Nakazato, M., 1991, Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). Clin. Genet. 40: 242.PubMedCrossRefGoogle Scholar
  17. Holmgren, G., Ericzon, B.G., Groth, C.G., Steen, L., Suhr, O., Andersen, O., Wallin, B.G., Seymour, A., Richardson, S., Hawkins, P.N. and Pepys, M.B., 1993, Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet 341: 1113.CrossRefPubMedGoogle Scholar
  18. Jacobson, D.R., Pastore, R.D., Yaghoubian, R., Kane, I., Gallo, G., Buck, F.S. and Buxbaum, J., 1997, Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N. Engl. J. Med. 336: 466.CrossRefPubMedGoogle Scholar
  19. Kohno, K., Palha, J.A., Miyakawa, K., Saraiva, M.J., Ito, S., Mabuchu, T., Blaner, W.S., Iijima, H., Tsukahara, S., Episkopou, V., Gottesman, M.E., Shimada, K., Takahashi, K., Yamamura, K. and Maeda, S., 1997, Analysis of amyloid deposition in a transgenic mouse model of homozygous familial amyloidotic polyneuropathy. Am. J. Pathol. 150: 1497.PubMedGoogle Scholar
  20. Lewis, W.D. and Skinner, M., 1994, Liver transplantation for familial amyloidotic polyneuropathy: a potentially curative treatment. Amyloid: Int. J. Exp. Clin. Invest. 1: 143.Google Scholar
  21. Monteiro, F., Sousa, M.M., Cardoso, I., Barbas do Amaral, J., Guimarães, A. and Saraiva, M.J., 2006, Activation of ERK1/2 MAP kinases in Familial Amyloidotic Polyneuropathy. J. Neurochem. 97: 151.CrossRefPubMedGoogle Scholar
  22. Moses, A.C., Rosen, H.N., Moller, D.E., Tsuzaki, S., Haddow, J.E., Lawlor, J., Liepnieks, J.J., Nichols, W.C. and Benson, M.D., 1990, A point mutation in transthyretin increases affinity for thyroxine and produces euthyroid hyperthyroxinemia. J. Clin. Invest. 86: 2025.CrossRefPubMedGoogle Scholar
  23. Munar-Qués, M., Costa, P.P., Saraiva, M.J.M., Farré, C.V., Bernat, C.M., Luna, C.C. and Alberti, J.F.F., 1997, Familial amyloidotic polyneuropathy. TTR Met 30 in Majorca (Spain). Amyloid 4: 181.Google Scholar
  24. Palha, J.A., Moreira, P., Olofsson, A., Lundgren, E. and Saraiva, M.J., 2001, Antibody recognition of amyloidogenic transthyretin variants in serum of patients with familial amyloidotic polyneuropathy. J. Mol. Med. 78: 703.CrossRefPubMedGoogle Scholar
  25. Quintas, A., Vaz, D., Cardoso, I., Saraiva, M.J. and Brito, R.M., 2001, Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants. J. Biol. Chem. 276: 27207.CrossRefPubMedGoogle Scholar
  26. Saraiva, M.J.M., Birken, S., Costa, P.P. and Goodman, D.S., 1984, Amyloid fibril protein in familial amyloidotic polyneuropathy, Portuguese type. Definition of a molecular abnormality in transthyretin (prealbumin). J. Clin. Invest. 74: 104.CrossRefPubMedGoogle Scholar
  27. Sasaki, H., Yoshioka, N., Takagi, Y. and Sakaki, Y., 1985, Structure of the chromosomal gene for human serum prealbumin. Gene 37: 191.CrossRefPubMedGoogle Scholar
  28. Schmidt, A.M., Yan, S.D., Yan, S.F. and Stern, D.M., 2000, The biology of the receptor for advanced glycation end products and its ligands. Biochim. Biophys. Acta 1498: 99.CrossRefPubMedGoogle Scholar
  29. Sebastião, M.P., Saraiva, M.J. and Damas, A.M., 1998, The crystal structure of amyloidogenic Leu55 --> Pro transthyretin variant reveals a possible pathway for transthyretin polymerization into amyloid fibrils. J. Biol. Chem. 273: 24715.CrossRefPubMedGoogle Scholar
  30. Soprano, D.R., Herbert, J., Soprano, K.J., Schon, E.A. and Goodman, D.S., 1985, Demonstration of transthyretin mRNA in the brain and other extrahepatic tissues in the rat. J. Biol. Chem. 260: 11793.PubMedGoogle Scholar
  31. Sousa, M.M., Yan, S.D., Stern, D., Saraiva, M.J., 2000, Interaction of the receptor for advanced glycation end products (RAGE) with transthyretin triggers nuclear transcription factor kB (NF-kB) activation. Lab. Invest. 80: 1101.PubMedGoogle Scholar
  32. Sousa, M.M., Cardoso, I., Fernandes, R., Guimarães, A. and Saraiva, M.J., 2001, Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of non-fibrillar aggregates. Am. J. Pathol. 159: 1993.PubMedGoogle Scholar
  33. Sousa, M.M., Yan, S.D., Fernandes, R., Guimarães, A., Stern, D. and Saraiva, M.J.M., 2001a, Familial amyloid polyneuropathy: RAGE-dependent triggering of neuronal inflammatory and apoptotic pathways. J. Neurosci. 21: 7576.PubMedGoogle Scholar
  34. Sousa, M.M., Barbas do Amaral, J., Guimarães, A. and Saraiva, M.J., 2005, Upregulation of the extracellular matrix remodelling genes, biglycan, neutrophil gelatinase-associated lipocalin and matrix metalloproteinase-9 in familial amyloid polyneuropathy. FASEB J. 19: 124.PubMedGoogle Scholar
  35. Terazaki, H., Ando, Y., Fernandes, R., Yamamura, K., Maeda, S. and Saraiva, M.J., 2006, Immunization in familial amyloidotic polyneuropathy: Counteracting deposition by immunization with a Y78F TTR mutant. Lab. Invest. 86: 23.CrossRefPubMedGoogle Scholar
  36. Wallace, M.R., Naylor, S.L., Kluve-Beckerman, B., Long, G.L., McDonald, L., Shows, T.B. and Benson, M.D., 1985, Localization of the human prealbumin gene to chromosome 18, Biochem. Biophys. Res. Commun. 129: 753.CrossRefPubMedGoogle Scholar
  37. Westermark, P., Sletten, K., Johansson, B. and Cornwell, G.G. III, 1990, Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc. Natl Acad. Sci. USA 87: 2843.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Maria João Saraiva
    • 1
  1. 1.Molecular Neurobiology, IBMC & ICBASUniversity of PortoPortugal

Personalised recommendations