Aging and Cognitive Decline: Neuroprotective Strategies

  • Frederico Simões do Couto
  • Alexandre de Mendonça

Neuronal loss occurs with aging or dementia, and an extended concept of neuroprotection assumes that the administration of a drug, or a procedure, is able to reverse or prevent neuronal damage. Neuroprotective strategies have been classified according to the mechanisms of neuronal death, and this chapter will deal mainly with neuroinflammation and related processes that occur in aging, cognitive decline, and dementia. The evidence for inflammatory phenomena in dementia, especially in Alzheimer’s disease (AD), is impressive, and the role of inflammatory cells and mediators has been extensively studied. Furthermore, anti-inflammatory drugs (specially the nonsteroidal anti-inflammatory drugs (NSAIDs)) have been shown to attenuate these phenomena in preclinical studies.


Mild Cognitive Impairment Cognitive Decline Microglial Cell Senile Plaque Mild Cognitive Impairment Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11. References

  1. Aisen, P.S., 2002, The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. The Lancet Neurology 1: 279.Google Scholar
  2. Aisen, P.S., Davis, K.L., Berg, J.D., Schafer, K., Campbell, K., Thomas, R.G., Weiner, M.F., Farlow, M.R., Sano, M., Grundman, M. and Thal, L.J., 2000, A randomized controlled trial of prednisone in Alzheimer’s disease. Alzheimer’s Disease Cooperative Study. Neurology 54: 588.PubMedGoogle Scholar
  3. Aisen, P.S., Schmeidler, J., Pasinetti, G.M., 2002, Randomized pilot study of nimesulide treatment in Alzheimer’s disease. Neurology 58: 1050.PubMedGoogle Scholar
  4. Aisen, P.S., Schafer, K.A., Grundman, M., Pfeiffer, E., Sano, M., Davis, K.L., Farlow, M.R., Jin, S., Thomas, R.G. and Thal, L.J., 2003, Alzheimer’s Disease Cooperative Study. Effects of rofecoxib or naproxen vs. placebo on Alzheimer’s disease progression: a randomized controlled trial. JAMA 289: 2819.PubMedGoogle Scholar
  5. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L., Finch, C.E., Frautschy, S., Griffin, W.S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I.R., McGeer, P.L., O’Banion, M.K., Pachter, J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F.L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, T., 2000, Inflammation and Alzheimer’s disease. Neurobiol. Aging 21: 383.PubMedGoogle Scholar
  6. Akwa, Y., Allain, H., Bentue-Ferrer, D., Berr, C., Bordet, R., Geerts, H., Nieoullon, A., Onteniente, B. and Vercelletto, M., 2005, Neuroprotection and neurodegenerative diseases: from biology to clinical practice. Alzheimer Dis. Assoc. Disord. 19: 226.Google Scholar
  7. Alarcon, R., Fuenzalida, C., Santibanez, M. and von Bernhardi, R., 2005, Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. J. Biol. Chem. 280: 30406.PubMedGoogle Scholar
  8. American Psychiatric Association, 1994, Diagnostic and Statistical Manual of Mental Disorders, 4th edition. American Psychiatric Association, Washington.Google Scholar
  9. Andersen, K., Launer, L.J., Ott, A., Hoes, A.W., Breteler, M.M. and Hofman, A., 1995, Do nonsteroidal anti-inflammatory drugs decrease the risk for Alzheimer’s disease? The Rotterdam Study. Neurology 45: 1441.PubMedGoogle Scholar
  10. Anthony, J.C., Breitner, J.C., Zandi, P.P., Meyer, M.R., Jurasova, I., Norton, M.C. and Stone, S.V., 2000, Reduced prevalence of AD in users of NSAIDs and H2 receptor antagonists: the Cache County study. Neurology 54: 2066.PubMedGoogle Scholar
  11. Bauer, J., Konig, G., Strauss, S., Jonas, U., Ganter, U., Weidemann, A., Monning, U., Masters, C.L., Volk, B., Berger, M., et al., 1991, In vitro matured human macrophages express Alzheimer’s beta A4-amyloid precursor protein indicating synthesis in microglial cells. FEBS Lett. 282: 335.PubMedGoogle Scholar
  12. Beard, C.M., Waring, S.C., O’Brien, P.C., Kurland, L.T. and Kokmen, E., 1998, Nonsteroidal anti-inflammatory drug use and Alzheimer’s disease: a case-control study in Rochester, Minnesota, 1980 through 1984. Mayo Clin. Proc. 73: 951.PubMedGoogle Scholar
  13. Bennett, D.A., Wilson, R.S., Schneider, J.A., Evans, D.A., Beckett, L.A., Aggarwal, N.T., Barnes, L.L., Fox, J.H. and Bach, J., 2002, Natural history of mild cognitive impairment in older persons. Neurology 59: 198.PubMedGoogle Scholar
  14. Bitting, L., Naidu, A., Cordell, B. and Murphy, G.M. Jr., 1996, Beta-amyloid peptide secretion by a microglial cell line is induced by beta-amyloid-(25-35) and lipopolysaccharide. J. Biol. Chem. 271: 16084PubMedGoogle Scholar
  15. Bodick, N., Forette, F., Hadler, D., Harvey, R.J., Leber, P., McKeith, I.G., Riekkinen, P.J., Rossor, M.N., Scheltens, P., Shimohama, S., Spiegel, R., Tanaka, S., Thal, L.J., Urata, Y., Whitehouse, P. and Wilcock, G., 1997, Protocols to demonstrate slowing of Alzheimer’s disease progression. Position paper from the International Working Group on Harmonization of Dementia Drug Guidelines. The Disease Progression Sub-Group. Alzheimer Dis. Assoc. Disord. 11: 50.PubMedGoogle Scholar
  16. Bour, A.M., Westendorp, R.G., Laterveer, J.C., Bollen, E.L. and Remarque, E.J., 2000, Interaction of indomethacin with cytokine production in whole blood. Potential mechanism for a brain-protective effect. Exp. Gerontol. 35: 1017.PubMedGoogle Scholar
  17. Bradt, B.M., Kolb, W.P. and Cooper, N.R., 1998, Complement dependent proinflammatory properties of the Alzheimer’s disease beta-peptide. J. Exp. Med. 188: 431.PubMedGoogle Scholar
  18. Breitner, J.C., Gau, B.A., Welsh, K.A., Plassman, B.L., McDonald, W.M., Helms, M.J. and Anthony, J.C., 1994, Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study. Neurology 44: 227.PubMedGoogle Scholar
  19. Breitner, J.C., Welsh, K.A., Helms, M.J., Gaskell, P.C., Gau, B.A., Roses, A.D, Pericak-Vance, M.A. and Saunders, A.M., 1995, Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol. Aging 16: 523.PubMedGoogle Scholar
  20. Broe, G.A., Henderson, A.S., Creasey, H., McCusker, E., Korten, A.E., Jorm, A.F., Longley, W. and Anthony, J.C., 1990, A case-control study of Alzheimer’s disease in Australia. Neurology 40: 1698.PubMedGoogle Scholar
  21. Butterfield, D.A., Drake, J., Pocernich, C. and Castegna, A., 2001, Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol. Med. 7: 548.PubMedGoogle Scholar
  22. Cohen, O., Zylber-Katz, E., Caraco, Y., Granit, L. and Levy, M., 1998, Cerebrospinal fluid and plasma concentrations of dipyrone metabolites after a single oral dose of dipyrone. Eur. J. Clin. Pharmacol. 54: 549.PubMedGoogle Scholar
  23. Colton, C.A., Chernyshev, O.N., Gilbert, D.L. and Vitek, M.P., 2000, Microglial contribution to oxidative stress in Alzheimer’s disease. Ann. NY Acad. Sci. 899: 292.PubMedGoogle Scholar
  24. Combs, C.K., Johnson, D.E., Cannady, S.B., Lehman, T.M. and Landreth, G.E., 1999, Identification of microglial signal pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J. Neurosci. 19: 928.PubMedGoogle Scholar
  25. Combs, C.K., Johnson, D.E., Karlo, J.C., Cannady, S.B. and Landreth, G.E., 2000, Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J. Neurosci. 20: 558.PubMedGoogle Scholar
  26. Cornelius, C., Fratiglioni, L., Fastbom, J., Guo, Z., Viitanem, M. and Winblad, B., 1998, No support for a protective role of NSAIDS against Alzheimer’s disease - a follow-up population-based study. Neurobiol. Aging 19: 28.Google Scholar
  27. Cornelius, C., Fastbom, J., Winblad, B. and Viitanen, M., 2004, Aspirin, NSAIDs, risk of dementia, and influence of the apolipoprotein E epsilon 4 allele in an elderly population. Neuroepidemiology 23: 135.PubMedGoogle Scholar
  28. Cotman, C.W., Tenner, A.J. and Cummings, B.J., 1996, Beta-amyloid converts an acute phase injury response to chronic injury responses. Neurobiol. Aging 17: 723.PubMedGoogle Scholar
  29. Davis, J.B., McMurray, H.F. and Schubert, D., 1992, The amyloid Beta-protein of Alzheimer’s disease is chemotactic for mononuclear phagocytes. Biochem. Biophys. Res. Commun. 189: 1096.PubMedGoogle Scholar
  30. de Castro, M., Mota-Filipe, H., Caneira, M., Rico, J.M., Scott-Burden, T. and Vanhoutte, P.M., 1994, DL-propranolol augments production of NO induced by cytokines in cultured aortic smooth muscle of the rat. Eur. J. Pharmacol. 261: 199.PubMedGoogle Scholar
  31. de Mendonça, A., Sebastião, A.M. and Ribeiro, J.A., 2000, Adenosine: does it have a neuroprotective role after all? Brain Res. Rev. 33: 258.PubMedGoogle Scholar
  32. de Mendonça, A., Guerreiro, M., Ribeiro, F., Mendes, T. and Garcia, C., 2004, Mild cognitive impairment: focus on the diagnosis. J. Mol. Neurosci. 23: 13.Google Scholar
  33. Delis, D.C., Kramer, J.H., Kaplan, E. and Ober, B.A., 1987, California Verbal Learning Test: Adult Version Manual. The Psychological Corporation, San Antonio, Texas.Google Scholar
  34. Dembo, G., Park, S.B. and Kharasch, E.D., 2005, Central nervous system concentrations of cyclooxygenase-2 inhibitors in humans. Anesthesiology 102: 409.PubMedGoogle Scholar
  35. DeWitt, D.A., Perry, G., Cohen, M., Doller, C. and Silver, J., 1998, Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp. Neurol. 149: 329.PubMedGoogle Scholar
  36. Dickson, D.W., 1997, The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol. 56: 321.PubMedGoogle Scholar
  37. Dickson, D.W., Lee, S.C., Mattiace, L.A., Yen, S.H. and Brosnan, C., 1993, Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 7: 75.PubMedGoogle Scholar
  38. Eikelenboom, P., Veerhuis, R., 1996, The role of complement and activated microglia in the pathogenesis of Alzheimer’s disease. Neurobiol. Aging 17: 673.PubMedGoogle Scholar
  39. El Khoury, J., Hickman, S.E., Thomas, C.A., Cao, L., Silverstein, S.C. and Loike, J.D., 1996, Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature 382: 716.PubMedGoogle Scholar
  40. El Khoury, J., Hickman, S.E., Thomas, C.A., Loike, J.D. and Silverstein, S.C., 1998, Microglia, scavenger receptors, and the pathogenesis of Alzheimer’s disease. Neurobiol. Aging 19: S81.PubMedGoogle Scholar
  41. Endoh, M., Kunishita, T. and Tabira, T., 1999, No effect of anti-leprosy drugs in the prevention of Alzheimer’s disease and beta-amyloid neurotoxicity. J. Neurol. Sci. 165: 28.PubMedGoogle Scholar
  42. Eriksen, J.L., Sagi, S.A., Smith, T.E., Weggen, S., Das, P., McLendon, D.C., Ozols, V.V., Jessing, K.W., Zavitz, K.H., Koo, E.H. and Golde, T.E., 2003, NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J. Clin. Invest. 112: 440.PubMedGoogle Scholar
  43. Etminan, M., Gill, S. and Samii, A., 2003, Effect of nonsteroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ 327: 128.PubMedGoogle Scholar
  44. Farrell, M.J., Katz, B. and Helme, R.D., 1996, The impact of dementia on the pain experience. Pain 67: 7.PubMedGoogle Scholar
  45. FitzGerald, G.A. and Patrono, C., 2001, The coxibs, selective inhibitors of cyclooxygenase-2. N. Engl. J. Med. 345: 433.PubMedGoogle Scholar
  46. Fourrier, A., Letenneur, L., Begaud, B. and Dartigues, J.F., 1996, Nonsteroidal antiinflammatory drug use and cognitive function in the elderly: inconclusive results from a population-based cohort study. J. Clin. Epidemiol. 49: 1201.PubMedGoogle Scholar
  47. French, L.R., Schuman, L.M., Mortimer, J.A., Hutton, J.T., Boatman, R.A. and Christians, B., 1985, A case-control study of dementia of the Alzheimer type. Am. J. Epidemiol. 121: 414.PubMedGoogle Scholar
  48. Friedman, W.J., 2001, Cytokines regulate expression of the type 1 interleukin-1 receptor in rat hippocampal neurons and glia. Exp. Neurol. 68: 23.Google Scholar
  49. Garcia, C., 1984, A doença de Alzheimer. Problemas de diagnóstico clínico (Alzheimer’s disease. Difficulties of clinical diagnosis), Ph.D. Thesis, Universidade de Lisboa.Google Scholar
  50. Gauthier, S., Touchon, J., 2005, Mild cognitive impairment is not a clinical entity and should not be treated. Arch. Neurol. 6: 1164.Google Scholar
  51. Gewurz, H., Ying, S-C., Jiang, H. and Lint, T.E., 1993, Nonimmune activation of the classical complement pathway. Behring. Inst. Mitt. 93: 138.PubMedGoogle Scholar
  52. Giulian, D., 1999, Microglia and the immune pathology of Alzheimer’s disease. Am. J. Hum. Genet. 65: 13.PubMedGoogle Scholar
  53. Giulian, D., Haverkamp, L.J., Yu, J.H., Karshin, W., Tom, D., Li, J., Kirkpatrick, J., Kuo, L.M. and Roher, A.E., 1996, Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J. Neurosci. 16: 6021.PubMedGoogle Scholar
  54. Gómez-Isla, T., Price, J.L., McKeel, D.W., Jr., Morris, J.C., Growdon, J.H. and Hyman, B.T., 1996, Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J. Neurosci. 16: 4491.PubMedGoogle Scholar
  55. Gómez-Isla, T., Muñoz, G., Ferro, J.M., Lage, J.M.M. and Ramírez, J.C.N., 2006, A randomized, double-blind, placebo controlled-trial of triflusal in mild cognitive impairment. Alzheimers Dement 2: S512.Google Scholar
  56. Goodwin, J.L., Uemura, E. and Cunnick, J.E., 1995, Microglial release of nitric oxide by the synergistic action of beta-amyloid and IFN-gamma. Brain Res. 692: 207.PubMedGoogle Scholar
  57. Gordon, M.L., Mirza, N., Bauer, L., Spoor, E., Overman, G., Dustin, I., Fleischer, T.A., Putman, K., Cohen, R.M. and Sunderland, T., 2006, Intravenous pulse cyclophosphamide in Alzheimer’s disease: results of a pilot dose-finding study. Alzheimers Dement 2: S360.Google Scholar
  58. Graves, A.B., White, E., Koepsell, T.D., Reifler, B.V., van Belle, G., Larson, E.B. and Raskind, M., 1990, A case- control study of Alzheimer’s disease. Ann. Neurol. 28: 766.PubMedGoogle Scholar
  59. Griffin, W.S., 2006, Inflammation and neurodegenerative diseases. Am. J. Clin. Nutr. 83: 470.Google Scholar
  60. Griffin, W.S., Sheng, J.G., Roberts, G.W. and Mrak, R.E., 1995, Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J. Neuropathol. Exp. Neurol. 54: 276.PubMedGoogle Scholar
  61. Guerreiro, M., 1998, Contributo da Neuropsicologia para o Estudo das Demências (Contribution of neuropsychology to the study of dementia), Ph.D. Thesis, Universidade de Lisboa.Google Scholar
  62. Halliday, G., Robinson, S.R., Shepherd, C. and Kril, J., 2000, Alzheimer’s disease and inflammation: a review of cellular and therapeutic mechanisms. Clin. Exp. Pharmacol. Physiol. 27: 1.PubMedGoogle Scholar
  63. Hamilton, M., 1960, A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23: 56.PubMedGoogle Scholar
  64. Hayden, K.M., Zandi, P.P., Khachaturian, A.S., Pieper, C.F., Sanders, L., Ostbye, T., Tschanz, J.T., Norton, M.C., Munger, R., Lyketsos, C.G., Breitner, J.C.S. and Welsh-Bohmer, K.A., 2006, Modification of cognitive trajectories: NSAID use in the Cache County Study. Alzheimers Dement 2:S174.Google Scholar
  65. Henderson, A.S., Jorm, A.F., Korten, A.E., Creasey, H., McCusker, E., Broe, G.A., Longley, W. and Anthony, J.C., 1992, Environmental risk factors for Alzheimer’s disease: their relationship to age of onset and to familial or sporadic types. Psychol. Med. 22: 429.PubMedGoogle Scholar
  66. Henderson, A.S., Jorm, A.F., Christensen, H., Jacomb, P.A. and Korten, A.E., 1997, Aspirin, anti-inflammatory drugs and risk of dementia. Int. J. Geriatr. Psychiatry 12: 926.PubMedGoogle Scholar
  67. Heneka, M.T., Klockgether, T. and Feinstein, D.L., 2000, Peroxisome proliferator-activated receptor-gamma ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. J. Neurosci. 20: 6862.PubMedGoogle Scholar
  68. Hewett, S.J., Uliasz, T.F., Vidwans, A.S. and Hewett, J.A., 2000, Cyclooxygenase-2 contributes to N-methyl-D-aspartate-mediated neuronal cell death in primary cortical cell culture. J. Pharmacol. Exp. Ther. 293: 417.PubMedGoogle Scholar
  69. Heyman, A., Wilkinson, W.E., Stafford, J.A., Helms, M.J., Sigmon, A.H. and Weinberg, T., 1984, Alzheimer’s disease: a study of epidemiological aspects. Ann. Neurol. 15: 335.PubMedGoogle Scholar
  70. Ho, L., Pieroni, C., Winger, D., Purohit, D.P., Aisen, P.S. and Pasinetti, G.M.J., 1999, Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer’s disease. Neurosci. Res. 57: 295.Google Scholar
  71. Hüll, M., Lieb, K. and Fiebich, B.L., 2002, Pathways of inflammatory activation in Alzheimer’s disease: potential targets for disease modifying drugs. Curr. Med. Chem. 9: 83.PubMedGoogle Scholar
  72. Hurley, S.D., Walter, A.S., Semple-Rowland, S.L. and Streit, W.J., 1999, Cytokine transcripts expressed by microglia in vitro are not expressed by ameboid microglia at the developing rat central nervous system. Glia 25: 304.PubMedGoogle Scholar
  73. Imbimbo, B.P., 2004, The potential role of nonsteroidal anti-inflammatory drugs in treating Alzheimer’s disease. Expert. Opin. Investig. Drugs 13: 1469.PubMedGoogle Scholar
  74. International Classification of Disease. Word Health Organization, 1992, The ICD-10 Classification of Mental and Behavioral Disorders. World Health Organization, Geneva, Switzerland.Google Scholar
  75. in’t Veld, B.A., Launer, L.J., Hoes, A.W., Ott, A., Hofman, A., Breteler, M.M. and Stricker, B.H., 1998, NSAIDs and incident Alzheimer’s disease. The Rotterdam Study. Neurobiol. Aging 19: 607.Google Scholar
  76. in’t Veld, B.A., Launer, L.J., Breteler, M.M., Hofman, A. and Stricker, B.H., 2002, Pharmacologic agents associated with a preventive effect on Alzheimer’s disease: a review of the epidemiologic evidence. Epidemiol. Rev. 24: 248.Google Scholar
  77. Ishizuka, K., Kimura, T., Igata-yi, R., Katsuragi, S., Takamatsu, J. and Miyakawa, T., 1997, Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease. Psychiatry Clin. Neurosci. 51: 135.Google Scholar
  78. Jelic, V., Kivipelto, M. and Winblad, B., 2005, Clinical trials in mild cognitive impairment: lessons for the future. J Neurol. Neurosurg. Psychiatry, Published on-line, 23 Nov 2005.Google Scholar
  79. Jenkinson, M.L., Bliss, M.R., Brain, A.T. and Scott, D.L., 1989, Rheumatoid arthritis and senile dementia of the Alzheimer’s type. Br. J. Rheumatol. 28: 86.PubMedGoogle Scholar
  80. Johnstone, M., Gearing, A.J. and Miller, K.M., 1999, A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J. Neuroimmunol. 93: 182.PubMedGoogle Scholar
  81. Kanowski, S. and Hoerr, R., 2003, G. biloba extract Egb 761 in dementia intent-to-treat analysis of a 24-week, multi-center, double-blind, placebo controlled, randomized trial. Pharmacopsychiatry 63: 297.Google Scholar
  82. Kelley, K.A., Ho, L., Winger, D., Freire-Moar, J., Borelli, C.B., Aisen, P.S. and Pasinetti, G.M., 1999, Potentiation of excitotoxicity in transgenic mice overexpressing neuronal cyclooxygenase-2. Am. J. Pathol. 155: 995.PubMedGoogle Scholar
  83. Kitamura, Y., Shimohama, S., Koike, H., Kakimura, J., Matsuoka, Y., Nomura, Y., Gebicke-Haerter, P.J. and Taniguchi, T., 1999, Increased expression of cyclooxygenases and peroxisome proliferator-activated receptor-gamma in Alzheimer’s disease brains. Biochem. Biophys. Res. Commun. 254: 582.PubMedGoogle Scholar
  84. Kittner, B., Rossner, M. and Rother, M., 1997, Clinical trials in dementia with propentofylline. Ann. NY Acad. Sci. 826: 307.PubMedGoogle Scholar
  85. Klegeris, A. and McGeer, P.L., 1997, Beta-amyloid protein enhances macrophage production of oxygen free radicals and glutamate. J. Neurosci. Res. 49: 229.PubMedGoogle Scholar
  86. Knopman, D., Kahn, J. and Miles, S., 1998, Clinical Research Designs for Emerging Treatments for Alzheimer’s disease. Arch. Neurol. 55: 1425.PubMedGoogle Scholar
  87. Kopec, K.K. and Carroll, R.T., 1998, Alzheimer’s beta-amyloid peptide 1-42 induces a phagocytic response in murine microglia. J. Neurochem. 71: 2123.PubMedCrossRefGoogle Scholar
  88. Kunz, T. and Oliw, E.H., 2001, The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus. Eur. J. Neurosci. 13: 569.PubMedGoogle Scholar
  89. Lawton, M.P. and Brody, E.M., 1969, Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9: 179.PubMedGoogle Scholar
  90. Lee, Y.B., Nagai, A. and Kim, S.U., 2002, Cytokines, chemokines, and cytokine receptors in human microglia. J. Neurosci. Res. 69: 94.PubMedGoogle Scholar
  91. Leszek, J. and Gasiorowski, K., 1996, Therapeutic efficay of cyclophosphamide in Alzheimer’s disease. Alzheimers Res. 2: 43.Google Scholar
  92. Levi, M.S. and Brimble, M.A., 2004, A review of neuroprotective agents. Curr. Med. Chem. 11: 2383.PubMedGoogle Scholar
  93. Lue, L.F., Yan, S.D. and Stern, D.M., 2005, Preventing activation of receptor for advanced glycation endproducts in Alzheimer’s disease. Curr. Drug Targets CNS Neurol. Disord. 4: 249.PubMedGoogle Scholar
  94. Lukiw, W.J. and Bazan, N.G., 1997, Cyclooxygenase 2 RNA message abundance, stability, and hypervariability in sporadic Alzheimer neocortex. J. Neurosci. Res. 50: 937.PubMedGoogle Scholar
  95. McDonald, D.R., Brunden, K.R. and Landreth, G.E., 1997, Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J. Neurosci. 17: 2284.PubMedGoogle Scholar
  96. McDonald, D.R., Bamberger, M.E., Combs, C.K. and Landreth, G.E., 1998, Abeta-amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J. Neurosci. 18: 4451.PubMedGoogle Scholar
  97. McGeer, P.L., Schulzer, M. and McGeer, E.G., 1996, Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 47: 425.PubMedGoogle Scholar
  98. McGeer, E.G., Yasojima, K., Schwab, C. and McGeer, P.L., 2001, The pentraxins: possible role in Alzheimer’s disease and other innate inflammatory diseases. Neurobiol. Aging 22: 843.PubMedGoogle Scholar
  99. Meda, L., Cassatella, M.A., Szendrei, G.I., Otvos, L., Jr., Baron, P., Villalba, M., Ferrari, D. and Rossi, F., 1995, Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374: 647.PubMedGoogle Scholar
  100. Meda, L., Baron, P. and Scarlato, G., 2001, Glial activation in Alzheimer’s disease: the role of Abeta and its associated proteins. Neurobiol. Aging 22: 885.PubMedGoogle Scholar
  101. Mendes, T., 2003, Memory and Metamemory: from the young to the aged. Master degree thesis, Faculdade de Medicina da Universidade de Lisboa.Google Scholar
  102. Moreira, P.I., Honda, K., Liu, Q., Santos, M.S., Oliveira, C.R., Aliev, G., Nunomura, A., Zhu, X., Smith, M.A. and Perry, G., 2005, Oxidative stress: the old enemy in Alzheimer’s disease pathophysiology. Curr. Alzheimer Res. 2: 403.PubMedGoogle Scholar
  103. Mrak, R.E. and Griffin, W.S., 2001, Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol. Aging 22: 903.PubMedGoogle Scholar
  104. Nakayama, M., Uchimura, K., Zhu, R.L., Nagayama, T., Rose, M.E., Stetler, R.A., Isakson, P.C., Chen, J. and Graham, S.H., 1998, Cyclooxygenase-2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia. Proc. Natl. Acad. Sci. USA. 95: 10954.PubMedGoogle Scholar
  105. Ogawa, O., Umegaki, H., Sumi, D., Hayashi, T., Nakamura, A., Thakur, N.K., Yoshimura, J., Endo, H. and Iguchi, A., 2000, Inhibition of inducible nitric oxide synthase gene expression by indomethacin or ibuprofen in betaamyloid protein-stimulated J774 cells. Eur. J. Pharmacol. 408: 137.PubMedGoogle Scholar
  106. Pasinetti, G.M. and Aisen, P.S., 1998, Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience 87: 319.PubMedGoogle Scholar
  107. Perry, R.T., Collins, J.S., Wiener, H., Acton, R. and Go, R.C., 2001, The role of TNF and its receptors in Alzheimer’s disease. Neurobiol. Aging 22: 873.PubMedGoogle Scholar
  108. Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G. and Kokmen, E., 1999, Mild cognitive impairment. Arch. Neurol. 56: 303.PubMedGoogle Scholar
  109. Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C., Morris, J.C., Rabins, P.V., Ritchie, K., Rossor, M., Thal, L. and Winblad, B., 2001a, Current concepts in mild cognitive impairment. Arch. Neurol. 58: 1985.PubMedGoogle Scholar
  110. Petersen, R.C., Stevens, J.C., Ganguli, M., Tangalos, E.G., Cummings, J.L. and DeKosky, S.T., 2001b, Practice parameter: early detection of dementia, mild cognitive impairment (an evidence-based review). Neurology 56: 1133.PubMedGoogle Scholar
  111. Petersen, R.C., Thomas, R.G., Grundman, M., Bennett, D., Doody, R., Ferris, S., Galasko, D., Jin, S., Kaye, J., Levey, A., Pfeiffer, E., Sano, M., van Dyck, C.H. and Thal, L.J.; Alzheimer’s Disease Cooperative Study Group, 2005, Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med. 352: 2379.Google Scholar
  112. Raskind, M.A., Peskind, E.R., Truyen, L., Kershaw, P. and Damaraju, C.V., 2004, The cognitive benefits of galantamine are sustained for at least 36 months: a long-term extension trial. Arch. Neurol. 61: 252.PubMedGoogle Scholar
  113. eines, S.A., Block, G.A., Morris, J.C., Liu, G., Nessly, M.L., Lines, C.R., Norman, B.A. and Baranak, C.C., 2004, Rofecoxib Protocol 091 Study Group. Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology 62: 66.Google Scholar
  114. Ribeiro, F., de Mendonça, A. and Guerreiro, M., 2006, Mild Cognitive Impairment: deficits in cognitive domains other than memory. Dement. Geriatr. Cogn. Disord. 21: 284.PubMedGoogle Scholar
  115. Ribeiro, F., Guerreiro, M. and de Mendonça, A., 2007, Verbal learning and memory deficits in Mild Cognitive Impairment. J. Clin. Exp. Neuropsychol. 29: 187.PubMedGoogle Scholar
  116. Ritchie, K., Artero, S. and Touchon, J., 2001, Classification criteria for mild cognitive impairment - A population-based validation study. Neurology 56: 37.PubMedGoogle Scholar
  117. Robertson, M., 2003, Effect of NSAIDs on risk of Alzheimer’s disease: confounding factors were not discussed. BMJ 327: 751.PubMedGoogle Scholar
  118. Rogers, J., Luber-Narod, J., Styren, S.D. and Civin, W.H., 1988, Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol. Aging 9: 339.PubMedGoogle Scholar
  119. Rogers, J., Cooper, N.R., Webster, S. et al., 1992, Complement activation by beta-amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA 89: 10016.PubMedGoogle Scholar
  120. Rogers, J., Kirby, L.C., Hempelman, S.R., Berry, D.L., McGeer, P.L., Kaszniak, A.W., Zalinski, J., Cofield, M., Mansukhani, L., Willson, P. et al., 1993, Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43: 1609.PubMedGoogle Scholar
  121. Rother, M., Erkinjuntti, T., Roessner, M., Kittner, B., Marcusson, J. and Karlsson, I., 1998, Propentofylline in the treatment of Alzheimer’s disease and vascular dementia: a review of phase III trials. Dement. Geriatr. Cogn. Disord. 9 S1: 36.Google Scholar
  122. Rudolphi, K.A., Park, C.K. and Rother, M., 1997, Propentofylline(HWA 285), a neuroprotective glial cell modulator: pharmacologic profile. CNS Drug. Rev. 3: 260.Google Scholar
  123. Sano, M., Ernesto, C., Thomas, R.G., Klauber, M.R., Schafer, K., Grundman, M., Woodbury, P., Growdon, J., Cotman, C.W., Pfeiffer, E., Schneider, L.S. and Thal, L.J., 1997, A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N. Engl. J. Med. 336: 1216.PubMedGoogle Scholar
  124. Sastre, M., Dewachter, I., Rossner, S., Bogdanovic, N., Rosen, E., Borghgraef, P., Evert, B.O., Dumitrescu-Ozimek, L., Thal, D.R., Landreth, G., Walter, J., Klockgether, T., van Leuven, F. and Heneka, M.T., 2006, Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc. Natl. Acad. Sci. USA 103: 443.PubMedGoogle Scholar
  125. Scharf, S., Mander, A., Ugoni, A., Vajda, F. and Christophidis, N., 1999, A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer’s disease. Neurology 53: 197.PubMedGoogle Scholar
  126. Schimmer, B., and Parker, K.L., 2006, Adrenocorticotropic hormone: adrenocortical steroids and their synthetic analogs; inhibitors of the synthesis and actions of adrenocortical hormones. In: Goodman & Gilman’s The Pharmacological Basis of Therapeutics. L.L. Brunton (ed.). McGraw Hill, NY, pp. 653-670.Google Scholar
  127. Schmand, B., Jonker, C., Hooijer, C. and Lindeboom, J., 1996, Subjective memory and memory complaints may announce dementia. Neurology 46: 121.PubMedGoogle Scholar
  128. Schmidt, L.A., Fox, A., Goldberg, M.C., Smith, C.C. and Schulkin, J., 1999, Effects of acute prednisone administration on memory, attention, and emotion in healthy human adults. Psychoneuroendocrinology 24: 461.PubMedGoogle Scholar
  129. Schneider, L.S., DeKosky, S.T., Farlow, M.R., Tariot, P.N., Hoerr, R. and Kieser, M., 2005, A randomized, double-blind, placebo control trial of two doses of G. biloba extract in dementia of Alzheimer’s type. Curr. Alzheimer Res. 2: 495.Google Scholar
  130. Shaffer, L.M., Dority, M.D., Gupta-Bansal, R., Frederickson, R.C., Younkin, S.G. and Brunden, K.R., 1995, Amyloid beta protein (A beta) removal by neuroglial cells in culture. Neurobiol. Aging 16: 737.PubMedGoogle Scholar
  131. Shen, Y. and Meri, S., 2003, Yin and Yang: complement activation and regulation in Alzheimer’s disease. Prog. Neurobiol. 70: 463.PubMedGoogle Scholar
  132. Shen, Y., Li, R., McGeer, E.G. and McGeer, P.L., 1997, Neuronal expression of mRNAs for complement proteins of the classical pathway in Alzheimer brain. Brain Res. 769: 391.PubMedGoogle Scholar
  133. Shen, Y., Lue, L., Yang, L., Roher, A., Kuo, Y., Strohmeyer, R., et al., 2001, Complement activation by neurofibrillary tangles in Alzheimer’s disease. Neurosci. Lett. 305: 165.PubMedGoogle Scholar
  134. Shirahama, T., Miura, K., Ju, S.T., Kisilevsky, R., Gruys, E. and Cohen, A.S., 1990, Amyloid enhancing factor-loaded macrophages in amyloid fibril formation. Lab. Invest. 62: 61.PubMedGoogle Scholar
  135. Smits, H.A., Rijsmus, A., van Loon, J.H., Wat, J.W., Verhoef, J., Boven, L.A. and Nottet, H.S., 2002, Amyloid-beta-induced chemokine production in primary human macrophages and astrocytes. J. Neuroimmunol. 127: 160.PubMedGoogle Scholar
  136. Smyth, E.M., Burke, A. and FitzGerald, G.A., 2006, Lipid-derived autacoids: eisosanoids and platett activating factor. In: Goodman & Gilman’s The Pharmacological Basis of Therapeutics. L.L. Brunton, (ed.). McGraw Hill, NY, pp. 653-670.Google Scholar
  137. Stern, R.G., Mohs, R.C., Davidson, M., Schmeidler, J., Silverman, J., Kramer-Ginsberg, E., Searcey, T., Bierer, L. and Davis, K.L., 1994, A longitudinal study of Alzheimer’s disease: measurement, rate, and predictors of cognitive deterioration. Am. J. Psychiatry 151: 390.PubMedGoogle Scholar
  138. Stewart, W.F., Kawas, C., Corrada, M. and Metter, E.J., 1997, Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48: 626.PubMedGoogle Scholar
  139. Streit, W.J., Walter, S.A., Permell, N.A., 1999, Reactive microgliosis. Prog. Neurobiol. 57: 563.PubMedGoogle Scholar
  140. Strohmeyer, R., Shen, Y. and Rogers, J., 2000, Detection of complement alternative pathway mRNA and proteins in the Alzheimer’s disease brain. Brain Res. Mol. Brain Res. 81: 7.PubMedGoogle Scholar
  141. Stuchbury, G. and Munch, G., 2005, Alzheimer’s associated inflammation, potential drug targets and future therapies. J. Neural Transm. 112: 429.PubMedGoogle Scholar
  142. Styren, D.S., Civin, W.H. and Rodgers, J., 1990, Molecular, cellular, and pathologic characterization of HLA-DR immunoreactivity in normal elderly and Alzheimer’s disese brain. Exp. Neurol. 110: 93.PubMedGoogle Scholar
  143. Suzuki, S., Tanaka, K., Nagata, E., Ito, D., Dembo, T. and Fukuuchi, Y., 1999, Cerebral neurons express interleukin-6 after transient forebrain ischemia in gerbils. Neurosci. Lett. 262: 117.PubMedGoogle Scholar
  144. Szekely, C.A., Thorne, J.E., Zandi, P.P., Ek, M., Messias, E., Breitner, J.C. and Goodman, S.N., 2004, Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a systematic review. Neuroepidemiology 23: 159.PubMedGoogle Scholar
  145. Tabet, N. and Feldman, H., 2002, Indomethacin for the treatment of Alzheimer’s disease patients. Cochrane Database Syst. Rev. 2: CD003673.Google Scholar
  146. Tabet, N. and Feldman, H., 2003, Ibuprofen for Alzheimer’s disease. Cochrane Database Syst Rev. 2:CD004031.Google Scholar
  147. Tarkowski, E., Liljeroth, A.M., Minthon, L., Tarkowski, A., Wallin, A. and Blennow, K., 2003, Cerebral pattern of cytokines in dementias. Brain Research Bulletin 61: 255.PubMedGoogle Scholar
  148. Taylor, D., Paton, C. and Kerwin, R., 2005, Use of psychotropics in special patient groups. The Maudseley 2005-2006 Prescribing Guidelines, 8th edition. Taylor and Francis, London and New York, pp. 259-335.Google Scholar
  149. Tchelingerian, J.L., Vignais, L. and Jacque, C., 1994, TNF alpha gene expression is induced in neurones after a hippocampal lesion. Neuroreport 5: 585.PubMedGoogle Scholar
  150. Terai, K., Walker, D.G., McGeer, M.G. and McGeer, P.L., 1997, Neurons express proteins of the classic complement pathway in Alzheimer’s disease. Brain Res. 769: 385.PubMedGoogle Scholar
  151. Thal, L.J., Grundman, M., Berg, J., Ernstrom, K., Margolin, R., Pfeiffer, E., Weiner, M.F., Zamrini, E. and Thomas, R.G., 2003, Idebenone fails to slow cognitive decline in Alzheimer’s disease. Neurology 61: 1498.PubMedGoogle Scholar
  152. Thal, L.J., Ferris, S.H., Kirby, L., Block, G.A., Lines, C.R., Yuen, E., Assaid, C., Nessly, M.L., Norman, B.A., Baranak, C.C. and Reines, S.A., Rofecoxib Protocol 078 study group, 2005, A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology 30: 1204.Google Scholar
  153. The Canadian Study of Health and Aging, 1994, Risk factors for Alzheimer’s disease in Canada. Neurology 44: 2073.Google Scholar
  154. Tobinick, E.L., Gross, H., Weinberger, A. and Cohen, H., 2006, TNF-alpha modulation for treatment of Alzheimer’s disease: a six month pilot study. Alzheimers Dement 2: S364.Google Scholar
  155. Tuppo, E.E. and Arias, H.R., 2005, The role of inflammation in Alzheimer’s disease. Int. J. Biochem. Cell. Biol. 37: 289.PubMedGoogle Scholar
  156. Van Gool, W.A., Weinstein, H.C., Scheltens, P., Walstra, G.J., 2001, Effect of hydroxychloroquine on progression of dementia in early Alzheimer’s disease: an 18-month randomised, double-blind, placebo-controlled study. Lancet 358: 455.PubMedGoogle Scholar
  157. Vane, J. and Botting, R., 1987, Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J. 1: 89.PubMedGoogle Scholar
  158. Visser, P.J., Scheltens, P. and Verhey, F.R., 2005, Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer’s disease? J. Neurol. Neurosurg. Psychiatry 76: 1348.PubMedGoogle Scholar
  159. Watson, G.S., Cholerton, B.A., Reger, M.A., Baker, L.D., Plymate, S.R., Asthana, S., Fishel, M.A., Kulstad, J.J., Green, P.S., Cook, D.G., Kahn, S.E., Keeling, M.L. and Craft, S., 2005, Preserved cognition in patients with early Alzheimer’s disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary, study. Am. J. Geriatr. Psychiatry 13: 950.PubMedGoogle Scholar
  160. Webster, S., Lue, L.F., Brachova, L., Tenner, A.J., McGeer, P.L., Terai, K., Walker, D.G., Bradt, B., Cooper, N.R. and Rogers, J., 1997, Molecular and cellular characterization of the membrane attack complex, C5b-9, in Alzheimer’s disease. Neurobiol. Aging 18: 415.PubMedGoogle Scholar
  161. Wechsler, D., 1969, Manuel de l’Échelle Clinique de Mémoire. Centre de Psychologie Appliquée, Paris.Google Scholar
  162. Weggen, S., Eriksen, J.L., Das, P., Sagi, S.A., Wang, R., Pietrzik, C.U., Findlay, K.A., Smith, T.E., Murphy, M.P., Bulter, T., Kang, D.E., Marquez-Sterling, N., Golde, T.E. and Koo, E.H., 2001, A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414: 212.PubMedGoogle Scholar
  163. Weggen, S., Eriksen, J.L., Sagi, S.A., Pietrzik, C.U., Ozols, V., Fauq, A., Golde, T.E. and Koo, E.H., 2003, Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. J. Biol. Chem. 278: 31831.PubMedGoogle Scholar
  164. Whitehouse, P.J., Kittner, B., Roessner, M., Rossor, M., Sano, M., Thal, L. and Winblad, B., 1998, Clinical trial designs for demonstrating disease-course-altering effects in dementia. Alzheimer Dis. Assoc. Disord. 12: 281.Google Scholar
  165. Wilson, C.J., Finch, C.E. and Cohen, H.J., 2002, Cytokines and cognition - the case for a head-to-toe inflammation paradigm. J. Am. Geriat. Soc. 50: 2041.PubMedGoogle Scholar
  166. Wolkowitz, O.M., Reus, V.I., Canink, J., Levin, B., Lupien, S., 1997, Glucocorticoid medication, memory and steriod psychosis in medical illness. Ann. NY Acad. Sci. 832: 37.Google Scholar
  167. Yan, S.D., Stern, D., Kane, M.D., Kuo, Y.M., Lampert, H.C. and Roher, A.E., 1998, RAGE-Abeta interactions in the pathophysiology of Alzheimer’s disease. Restor. Neurol. Neurosci. 12: 167.PubMedGoogle Scholar
  168. Yasojima, K., Schwab, C., McGeer, E.G. and McGeer, P.L., 1999a, Up-regulated production and activation of the complement system in Alzheimer’s disease brain. Am. J. Pathol. 154: 927.PubMedGoogle Scholar
  169. Yasojima, K., Schwab, C., McGeer, E.G. and McGeer, P.L., 1999b, Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain Res. 830: 226PubMedGoogle Scholar
  170. Yasojima, K., Schwab, C., McGeer, E.G. and McGeer, P.L., 2000, Human neurons generate C-reactive protein and amyloid P: upregulation in Alzheimer’s disease. Brain Res. 887: 80.PubMedGoogle Scholar
  171. Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M. and Leirer, O., 1983, Development and validation of a geriatric depression scale: a preliminary report. J. Psych. Res. 17: 37.Google Scholar
  172. Zandi, P.P. and Breitner, J.C., 2001, Do NSAIDs prevent Alzheimer’s disease? And, if so, why? The epidemiological evidence. Neurobiol. Aging 22: 811.PubMedGoogle Scholar
  173. Zhang, Y., Raud, J., Hedqvist, P. and Fredholm, B.B., 1996, Propentofylline inhibits polymorphonuclear leukocyte recruitment in vivo by a mechanism involving adenosine A2A receptors. Eur. J. Pharmacol. 313: 237.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Frederico Simões do Couto
    • 1
  • Alexandre de Mendonça
    • 1
  1. 1.Departments of Neurology and Psychiatry and Institute of Pharmacology and NeurosciencesInstitute of Molecular Medicine and Faculty of Medicine of LisbonPortugal

Personalised recommendations