Mutagenesis Systems for Genetic Analysis of Gossypium

  • Dick Auld
  • Ginger G. Light
  • Mohamed Fokar
  • Efrem Bechere
  • Randy D. Allen
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 3)


The recent evolution of tetraploid cotton combined with intensive selection of cultivated cottons has reduced the genetic diversity of cotton. This lack of allelic diversity hampers efforts to improve the agronomic traits of cotton and limits the application of molecular genetic tools for improvement of cotton germplasm. The lack of genetic resources also reduces our ability to understand the molecular mechanisms that regulate cotton growth and development and its responses to environmental stresses and pathogens. Use of a variety of chemical mutagens and ionizing radiation can be used to effectively increase the frequency of mutant alleles in Gossypium species. While application of insertional mutagenesis methodologies that require high-throughput plant transformation procedures is not feasible, evaluation of various transposon-based mutagenesis systems is underway. TILLING technology, which uses a combination of mutagenesis and high-throughput molecular screening methods for reverse genetics is also being developed.


Cotton Fiber Insertional Mutagenesis Reverse Genetic Lint Yield Lint Percent 



The authors thank Haggag Abdel-Mageed and Bay Nguyen for their work on transposon mutagenesis and TILLING, respectively. The authors acknowledge the generous support from Cotton Inc.


  1. Aarts MG, Dirkse WG, Stiekema WJ, Pereira A. 1993. Transposon tagging of a male sterility gene in Arabidopsis. Nature. 363: 715–717.PubMedCrossRefGoogle Scholar
  2. Aarts MG, Corzaan P, Stiekema WJ, Pereira A. 1995a. A two-element Enhancer/Inhibitor transposon system in Arabidopsis thaliana. Mol Gen Genet. 247: 555–564.Google Scholar
  3. Aarts MG, Keijzer CJ, Stiekema WJ, Pereira A. 1995b. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell. 7: 2115–2127.Google Scholar
  4. Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ, Ellis JG. 1997. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell. 9: 641–651.PubMedCrossRefGoogle Scholar
  5. Akhtar KP, Aslam M, Haq M, Jamil FF, Khan AI, Elahi MT (2005) Resistance to cotton leaf curl virus (CLCuV) in a mutant cotton line. J Cotton Sci 9:175–181.Google Scholar
  6. Aslam M, Elahi MT, Iqbal N (2003) Development of improved germplasm of cotton through radiation and DNA-mediated embryo transformation technique - evaluation and confirmation of novel genotypes. In: Improvement of New and Traditional Industrial Crops by Induced Mutations and Related Biotechnology. International Atomic Energy Agency pp. 69–80.Google Scholar
  7. Aslam M, Iqbal N, Bandesha AA, Haq MA (2004) Inductions of mutations through crosses with gamma irradiated pollen in cotton. Inter J Agric Biol 6:894–897.Google Scholar
  8. Auld DL, Heikkinen M.K., Erickson DA, Sernyk, JL, Romero JE. (1992) Rapeseed mutants with reduced levels of polyunsaturated fatty acids and increased levels of oleic acid. Crop Sci 32:357–362.CrossRefGoogle Scholar
  9. Auld, D.L., M.D. Ethridge, J.K. Dever and P.D. Dotray. (1998) Chemical mutagenesis as a tool in cotton improvement. P. 550-551. In: P. Duggar and D.A. Richter (eds.) Proc. Beltwide Cotton Conf. San Diego, CA. 5-9 Jan. Natl. Cotton Council, Memphis, TN.Google Scholar
  10. Auld D.L., Bechere E, Ethridge MD, Becker WD, Hequet E, Cantrell, RG (2000) Registration of TTU 202-1107-B and TTU 271-2155-C mutant germplasm lines of upland cotton with improved fiber quality. Crop Sci. 40:1835–1836.Google Scholar
  11. Baker B, Fedoroff N., Loerz,H., Schell J. 1986. Transposition of the maize controlling element activator in tobacco. Proc. Natl. Acad. Sci. USA. 83: 4844–4848.PubMedCrossRefGoogle Scholar
  12. Bancroft I, Dean C.1993. Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics. 134: 1221–1229.PubMedGoogle Scholar
  13. Bhatt AM, Page T, Lawson EJ, Lister C, Dean C. 1996. Use of Ac as an insertional mutagen in Arabidopsis. Plant J. 9: 935–945.PubMedCrossRefGoogle Scholar
  14. Bouche N, Bouchez D. 2001. Arabidopsis gene knockout: phenotypes wanted. Curr. Opin. Plant. Biol. 4: 111–117.PubMedCrossRefGoogle Scholar
  15. Bowman, D.T., O.L. May, and D.S. Calhoun. (1996) Genetic Base of Upland Cotton Cultivars Released between 1970 and 1990. Crop Sci. 36:577–581.CrossRefGoogle Scholar
  16. Cardon GH, Frey M, Saedler H, Gierl A.1993. Mobility of the maize transposable element En/Spm in Arabidopsis thaliana. Plant J. 3: 773–784.PubMedCrossRefGoogle Scholar
  17. Chuck G, Robbins T, Nijjar C, Ralston E, Courtney-Gutterson N, Dooner HK. 1993. Tagging and cloning of a petunia flower color gene with the maize transposable element Activator. Plant Cell 5: 371–378.PubMedCrossRefGoogle Scholar
  18. Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S. (2001) High-throughput screening for induced point mutations. Plant Physiol. 126: 480–484.PubMedCrossRefGoogle Scholar
  19. Comai L, Young K, Reynolds SH, Codomo C, Enns L, Johnson J, Burtner C, Henikoff JG, Greene EA, Till BJ, Henikoff S. (2004) Efficient discovery of nucleotide polymorphisms in populations by ecotilling. Plant Journal. 37:778–786.PubMedCrossRefGoogle Scholar
  20. Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694.PubMedCrossRefGoogle Scholar
  21. Comis D (2005) TILLING genes to improve soybeans. Agric Res July:4-5.Google Scholar
  22. Cornelius TJ, Peter SD, Narayanan SS, Kamalanathan S (1970) Useful mutants in Cambodia cotton (G. hirsutum) by ionising radiation of seeds. Madras Agricultural J 57:594–597.Google Scholar
  23. Coupland G, Plum C, Chatterjee S, Post A, Starlinger P. 1989. Sequences near the termini are required for transposition of the maize transposon Ac in transgenic tobacco plants. Proc. Natl. Acad. Sci. U S A. 86: 9385–9388.PubMedCrossRefGoogle Scholar
  24. Courtial B, Feuerbach F, Eberhard S, Rohmer L, Chiapello H, Camilleri C, Lucas H. 2001. Tnt1 transposition events are induced by in vitro transformation of Arabidopsis thaliana, and transposed copies integrate into genes. Mol Genet Genomics. 265: 32–42.PubMedCrossRefGoogle Scholar
  25. Dean C, Sjodin C, Page T, Jones JDG, Lister C. 1992. Behavior of the maize transposable element Ac in Arabidopsis thaliana. The Plant Journal. 2: 69–81.CrossRefGoogle Scholar
  26. Dilkes BP, Feldmann KA. 1998. Cloning genes from T-DNA tagged mutants. Methods Mol Biol. 82: 339–351.PubMedGoogle Scholar
  27. Feuerbach F, Drouaud J, Lucas H. 1997. Retrovirus-like end processing of the tobacco Tnt1 retrotransposon linear intermediates of replication. J Virol. 71: 4005–4015.PubMedGoogle Scholar
  28. Frey M, Tavantzis, SM, Saedler, H. 1989. The maize En-1/Spm element transposes in potato. Molecular Genl Genet. 21 : 172–177.CrossRefGoogle Scholar
  29. Friedrichsen DM, Joazeiro CA, Li J, Hunter T, Chory J. (2000) Brassinosteroid-insensitive –1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant physiol. 123: 1247–1256PubMedCrossRefGoogle Scholar
  30. Fotiadis NA, Miller PA (1973) Effects of recurrent seed irradiation on genetic variability and recombination in cotton (Gossypium hirsutum L.). Crop Sci 13:40–44.CrossRefGoogle Scholar
  31. Gaibullaev I K, Avazkhodzhaev M K, Egamberdiev AE (1975) Reaction of chemomutants of cotton to infection of the pathogen of verticillium wilt. Soviet Genetics 11:34–36.Google Scholar
  32. Gao W, Chen ZJ, Yu JZ, Raska D, Kohel RJ, Womack JE, Stelly DM (2004) Wide-cross whole-genome radiation hybrid mapping of cotton (Gossypium hirsutum L.). Genetics 167:1317–1329.PubMedCrossRefGoogle Scholar
  33. Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Current Opinion in Plant Biology 8:211–215.PubMedCrossRefGoogle Scholar
  34. Grevelding C, Becker D, Kunze R, von Menges A, Fantes V, Schell J, Masterson R. 1992. High rates of Ac/Ds germinal transposition in Arabidopsis suitable for gene isolation by insertional mutagenesis. Proc. Natl. Acad. Sci. USA. 89: 6085–6089.PubMedCrossRefGoogle Scholar
  35. Gulin, VV, Kal’chenko VA, Turavekov S, Musaev DA (1985) Polymorphism and mutagenesis of nonspecific esterases in cotton (Gossypium hirsutum L.). Doklady:Biol Sci 285:700–703.Google Scholar
  36. Heinlein M, Brattig T, Kunze R. 1994. In vivo aggregation of maize Activator (Ac) transposase in nuclei of maize endosperm and Petunia protoplasts. Plant J. 5: 705–714.PubMedCrossRefGoogle Scholar
  37. Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Phys. 135:630–636.CrossRefGoogle Scholar
  38. Herring AD, Auld DL, Ethridge MD, Hequet EF, Bechere E, Green CJ, Cantrell RG (2004) Inheritance of fiber quality and lint yield in a chemically mutated population of cotton. Euphytica 136:333–339.CrossRefGoogle Scholar
  39. Hirochika H, 1993. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12: 2521–2528.PubMedGoogle Scholar
  40. Hirochika H, Otsuki H, Yoshikawa M, Otsuki Y, Sugimoto K, Takeda S. 1996. Autonomous transposition of the tobacco retrotransposon Tto1 in rice. Plant Cell 8: 725–734.PubMedCrossRefGoogle Scholar
  41. Hohmann U, Jacobs G, Jung C (2005) An EMS mutageneis protocol for sugar beet and isolation of non-bolting mutants. Plant Breeding 124:317–321.CrossRefGoogle Scholar
  42. Horlacher WR, Killough DT (1933) Progressive mutations induced in Gossypium hirsutum by radiations. Amer Naturalist 67:532–538.CrossRefGoogle Scholar
  43. Hussein HAS, Al-enani A, El-Moghazi M (1982) Histological and morphological characteristics of glandless cotton mutant induced with sodium azide. Egyptian Journal of Genetics and Cytology 11:167–173.Google Scholar
  44. Hutchinson, J.B., Silow, R.A., and Stephens, S.G. (1947) In."The evolution of Gossypium and the differentiation of the cultivated cottons". Oxford University Press, London.Google Scholar
  45. James DW Jr., Dooner H K (1990) Isolation of EMS-induced mutants in Arabidopsis altered in seed fatty acid composition. Theor Appl Genet 80:241–245.CrossRefGoogle Scholar
  46. Jeong D-H, An S, Kang H-G, Moon S, Han J-J, Park S, Lee H-S, An K, and An G. 2002. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol. 130: 1636–1644.PubMedCrossRefGoogle Scholar
  47. Johns MA, Mottinger J, Freeling M. 1985. A low copy number, copia-like transposon in maize. EMBO J. 4: 1093–1102.PubMedGoogle Scholar
  48. Kandhro MM, Laghari S, Sial MA, Nizamani GS (2002) Performance of early maturing strains of cotton (Gossypium hirsutum L.) developed through induced mutation and hybridization. Asian J Plant Sci 5:581–582.Google Scholar
  49. Katterman FRH (1973) 5-Methyl cytosine content in the DNA of colchicine and spontaneously induced polyhaploids of Gossypium. Phytochemistry 12:1887–1889.CrossRefGoogle Scholar
  50. Keddie JS, Carroll BJ, Thomas CM, Reyes ME, Klimyuk V, Holtan H, Gruissem W, Jones JD. 1998. Transposon tagging of the Defective embryo and meristems gene of tomato. Plant Cell 10: 877–888.PubMedCrossRefGoogle Scholar
  51. Keller J, Jones JD, Harper E, Lim E, Carland F, Ralston EJ, Dooner HK.1993a. Effects of gene dosage and sequence modification on the frequency and timing of transposition of the maize element Activator (Ac) in tobacco. Plant Mol. Biol. 21: 157–170.Google Scholar
  52. Keller J. Lim E, Dooner HK. 1993b. Preferential transposition of Ac to linked sites in Arabidopsis. Theoretical and Applied Genetics 86: 585–588Google Scholar
  53. Knapp S, Coupland G, Uhrig H, Starlinger P,Salamini F. 1988. Transposition of the maize transposable element Ac in Solanum tuberosum. Mol. Gen. Gent. 213: 285–290.Google Scholar
  54. Kohli A, Xiong J, Greco R, Christou P, Pereira A. 2001. Tagged Transcriptome Display (TTD) in Indica rice using Ac transposition. Mol Genet Genomics. 266: 1–11.PubMedCrossRefGoogle Scholar
  55. Koprek T, McElroy D, Louwerse J, Williams-Carrier R, Lemaux PG. 1999. Negative selection systems for transgenic barley (Hordeum vulgare L.): comparison of bacterial codA- and cytochrome P450 gene-mediated selection. Plant J. 19: 719–726.PubMedCrossRefGoogle Scholar
  56. Koprek T, Rangel S, McElroy D, Louwerse JD, Williams-Carrier RE, Lemaux PG. 2001. Transposon-mediated single-copy gene delivery leads to increased transgene expression stability in barley. Plant Physiol. 125: 1354–1362.PubMedCrossRefGoogle Scholar
  57. Kulinski, J, Besack, D, Oleykowski, CA, Godwin, AK and Yeung, AT. 2000. CEL I enymatic mutation detection assay. Biotechniques. 29: 44–46.PubMedGoogle Scholar
  58. Kunze R, Starlinger P 1989. The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J. 8: 3177–3185.PubMedGoogle Scholar
  59. Kunze R, Behrens U, Courage-Franzkowiak U, Feldmar S, Kuhn S, Lutticke R. 1993. Dominant transposition-deficient mutants of maize Activator (Ac) transposase. Proc. Natl. Acad. Sci. USA. 90: 7094–7098.PubMedCrossRefGoogle Scholar
  60. Kunze R. 1996. The activator (Ac) element of Zea mays L. In “Transposable Elements” (H. Saedler and A. Gierl, eds), pp. 161–194. Springer, Heidelberg.CrossRefGoogle Scholar
  61. Kunze, R, Saedler H., Lonnig WE. 1997. Plant transposable elements. Botanical Research 27, 331– 470.CrossRefGoogle Scholar
  62. Larik AS, Hafiz HMI, Al-Saheal YA (1983) Azide mutagenesis in cotton (Gossypium hirsutum). Science and Environment 5:33–42.Google Scholar
  63. Laufs J, Wirtz U, Kammann M, Matzeit V, Schaefer S, Schell J, Czernilofsky AP, Baker B, Gronenborn B. 1990. Wheat dwarf virus Ac/Ds vectors: expression and excision of transposable elements introduced into various cereals by a viral replicon. Proc. Natl. Acad. Sci. USA. 87: 7752–7756.PubMedCrossRefGoogle Scholar
  64. Long D, Swinburne J, Martin M, Wilson K, Sundberg E, Lee K, Coupland G. 1993. Analysis of the frequency of inheritance of transposed Ds elements in Arabidopsis after activation by a CaMV 35S promoter fusion to the Ac transposase gene. Mol. Gen. Genet. 241: 627–636.PubMedCrossRefGoogle Scholar
  65. Lucas H, Feuerbach F, Kunert K, Grandbastien MA, Caboche M. 1995. RNA-mediated transposition of the tobacco retrotransposon Tnt1 in Arabidopsis thaliana. EMBO J 14: 2364–2373PubMedGoogle Scholar
  66. Luckett DJ (1989) Colchicine mutagenesis is associated with substantial heritable variation in cotton. Euphytica 42:177–182.CrossRefGoogle Scholar
  67. Marsch-Martinez N, Greco R, Van Arkel G, Herrera-Estrella L, Pereira A. 2002. Activation tagging using the en-I maize transposon system in Arabidopsis. Plant Physiol. 129: 1544–1556.PubMedCrossRefGoogle Scholar
  68. Masson P, Fedoroff NV. 1989. Mobility of the maize suppressor-mutator element in transgenic tobacco cells. Proc. Natl. Acad. Sci. USA. 86: 2219–2223.PubMedCrossRefGoogle Scholar
  69. May, O.L., D.T. Bowman, and D.S. Calhoun. (1995) Genetic diversity of U.S. Upland Cotton Cultivars Released between 198- and 1990. Crop Sci. 35:1570–1574.CrossRefGoogle Scholar
  70. Mazier M, Botton E, Flamain F, Bouchet J-P, Courtial B, Chupeau M-C, Chupeau Y, Maisonneuve B, Lucas H. 1886 Successful gene tagging in lettuce using the Tnt1 retrotransposon from tobacco. Plant Physiol. 144: 18–31.Google Scholar
  71. McCallum CM, Comai L, Greene EA, Henikoff S. (2000) Targeted screening for induced mutations. Nature Biotechnology. 18: 455–457.PubMedCrossRefGoogle Scholar
  72. McCallum CM, Comai L, Green EA, Henikoff S. (2000) Targeting induced local lesion in genomes (TILLING) for plant functional genomics. Plant Physiol. 123: 439–442.PubMedCrossRefGoogle Scholar
  73. McClintock B. 1951. Chromosome organization and genetic expression. Cold Spring Harbor Symposia on Quantitative Biol. 16: 13–47.CrossRefGoogle Scholar
  74. Mehetre SS, Thombre MV (1982) Fibre properties of x-ray induced glandless mutants in American cotton. J Maharashtra Agricultural Universities 8:189–190.Google Scholar
  75. Meissner R, Chague V, Zhu Q, Emmanuel E, Elkind Y, Levy AA. 2000. Technical advance: a high throughput system for transposon tagging and promoter trapping in tomato. Plant J. 22: 265–274.PubMedCrossRefGoogle Scholar
  76. Murai N, Li ZJ, Kawagoe Y, Hayashimoto A. 1991. Transposition of the maize activator element in transgenic rice plants. Nucleic Acids Res. 19: 617–622.PubMedCrossRefGoogle Scholar
  77. National Cotton Council. (2005) Economic Impact of US Cotton.
  78. Nazirov NN, Satipov G (1979) Reaction of radiation induced mutants to different water regimes. Soviet Agricultural Sciences 7:12–15.Google Scholar
  79. Nazirov NN, Tashmatov NT, Bakhabov A, Nabiev AG (1981) Respiration rate and rate of 32P incorporation into organophosphorus compounds in radiation-induced cotton mutants and their initial forms on saline soil. Soviet Agricultural Sciences 5:27–29.Google Scholar
  80. Ngematov M, Kovalenko VI, Shumnyi VK, Asrorov KA (1975) Induction of cytoplasmic male sterility in cotton by the method of radiation mutagenesis. Soviet Genetics 11:1593–1595.Google Scholar
  81. Oleykowski CA, Mullins CRB, Godwin AK, Yeung AT. (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Research. 26: 4597–4602.PubMedCrossRefGoogle Scholar
  82. O'Keefe DP, Tepperman JM, Dean C, Leto KJ, Erbes DL, Odell JT. 1994. Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide. Plant Physiol. 105: 473–482.PubMedGoogle Scholar
  83. Osborne BI, Baker B. 1995. Movers and shakers: maize transposons as tools for analyzing other plant genomes. Curr. Opin. Cell Biol. 7: 406–413..PubMedCrossRefGoogle Scholar
  84. Pan X, Li Y, Stein, L. (2005) Site preferences of insertional mutagenesis agents in Arabidopsis. Plant Physiol. 137: 168–175.PubMedCrossRefGoogle Scholar
  85. Pereira A, Aarts MG. 1998. Transposon tagging with the En-I system. Methods Mol. Biol. 82: 329–338.PubMedGoogle Scholar
  86. Perera RJ, Linard CG, Signer ER. 1993. Cytosine deaminase as a negative selective marker for Arabidopsis. Plant Mol. Biol. 23: 793–799.PubMedCrossRefGoogle Scholar
  87. Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, Parniske M (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Phys. 131:866–871.CrossRefGoogle Scholar
  88. Peterson, P.A. 1987. Mobile elements in plants. Critical Reviews in plant Sciences 6: 105–208.CrossRefGoogle Scholar
  89. Pohlman RF, Fedoroff NV, Messing J. 1984. Correction: nucleotide sequence of Ac. Cell. 39: 417.PubMedCrossRefGoogle Scholar
  90. Raut RN, Jain HK, Panwar RS (1971) Radiation-induced photoinsensitive mutants in cotton. Current Science 40:383–384.Google Scholar
  91. Reddy VRK, Sundaravadivelu K (1999) Improvement of cotton (Gossypium hirsutum L.) - Induced mutagenesis. In: Proc Natl Symp Recent Trends in Plant Cytogenetics and Biotechnology, 21-22 Feb, 1999. Dept of Botany, Andhra University, Visakhapatnam, India. Abst. No. 22.Google Scholar
  92. Robbins TP, Jenkin M, Courtney-Gutterson N. 1994. Enhanced frequency of transposition of the maize transposable element Activator following excision from T-DNA in Petunia hybrida. Mol. Gen. Genet. 244: 491–500.PubMedCrossRefGoogle Scholar
  93. Salanki MS, Parameswarappa R (1968) Colchine-induced mutant in cotton (Gossypium hirsutum L.) Current Sci 12:356–357.Google Scholar
  94. Sanamayan MF, Rakhmatullina RM (2003) Cytogenetic analysis of translocations in cotton. Plant Breeding 122:511–516.CrossRefGoogle Scholar
  95. San Miguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.CrossRefGoogle Scholar
  96. Savaskan C (2002) The effects of gamma radiation of the pollen size of Gossypium hirsutum L. Turk J Biol 26:477–480.Google Scholar
  97. Scholz S, Lorz H, Lutticke S. 2001. Transposition of the maize transposable element Ac in barley (Hordeum vulgare L.). Mol Gen Genet. 264: 653–661.PubMedCrossRefGoogle Scholar
  98. Shamsuzzaman KM, Hamid MA, Azad MAK, Hussain M, Majid MA (2003) Varietal improvement of cotton (Gossypium hirsutum) through mutation breeding. In: Improvement of New and Traditional Industrial Crops by Induced Mutations and Related Biotechnology. International Atomic Energy Agency pp. 81-94.Google Scholar
  99. Shattuck V, Katterman FR (1982) Enhanced unscheduled DNA synthesis in the cotyledons of Gossypium barbadense L. by ethylmethanesulfonate (EMS). Biochemical and Biophysical Research Communications 109:1017–1025.PubMedCrossRefGoogle Scholar
  100. Sheidai M, Azarani H, Hosseininejad Z (2002) Cytogenetic study of gamma irradiated lines of cotton (Gossypium hirsutum L.). J Sci Islamic Rep of Iran 13:311–322.Google Scholar
  101. Shi-Qi A, De-Qi Q, Xiu-Yun C (1991) Induction of parthonogenesis and chromosome behavior in plants of parthenogenetic origin in cotton (Gossypium hirsutum). Genome 34:255–260.CrossRefGoogle Scholar
  102. Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nature Biotech 23:75–80.CrossRefGoogle Scholar
  103. Spasibionek S (2006) New mutants of winter rapeseed (Brassica napus L.) with changed fatty acid composition. Plant Breeding 125:259–267.CrossRefGoogle Scholar
  104. Springer PS, McCombie WR, Sundaresan V, Martienssen RA. 1995. Gene trap tagging of PROLIFERA, an essential MCM2-3-5-like gene in Arabidopsis. Science. 268: 877–880.PubMedCrossRefGoogle Scholar
  105. Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, Martienssen R. 1995. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9: 1797–1810.PubMedCrossRefGoogle Scholar
  106. Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, Allen RD. (2005) Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol. 46: 1384–1391.PubMedCrossRefGoogle Scholar
  107. Suoniemi A, Anamthawat-Jónsson K, Arna T, Schulman AH. 1996. The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol. 31: 295–306.PubMedCrossRefGoogle Scholar
  108. Takken FL, Schipper D, Nijkamp HJ, Hille J. 1998. Identification and Ds-tagged isolation of a new gene at the Cf-4 locus of tomato involved in disease resistance to Cladosporium fulvum race 5. Plant J. 14: 401–411.PubMedCrossRefGoogle Scholar
  109. Tadege M, Wen Ji, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratet P, Mysore KS. 2008. Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. The Plant Journal, 54: 335–347.PubMedCrossRefGoogle Scholar
  110. Till BJ, Colbert T, Tompa R, Enns LC, Codomo CA, Johnson JE, Reynolds SH, Henikoff JG, Greene EA, Stein MN, Comai L, Henikoff S. (2003a) High-throughput TILLING for functional genomics. Plant Functional Genomics: Methods and Protocols Edited by: Grotewald E. Clifton, NJ, Humana Press; pp. 205–220.Google Scholar
  111. Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S. (2003b) Large-scale discovery of induced point mutations with high throughput TILLING. Genome Res, 13: 524–530.Google Scholar
  112. Till BJ, Burtner C, Comai L, Henikoff S. 2004. Mismatch cleavage by single- strand specific nucleases. Nucleic Acids Research. 32:2632–2641.PubMedCrossRefGoogle Scholar
  113. Tonnemaker, K.A., D.L. Auld, D.C. Thill, C.A. Mallory-Smith, and D.A. Erickson. (1992) Development of Sulfonylurea Resistant Rapeseed Using Chemical Mutagenesis. Crop Sci. 32:1387–1391.CrossRefGoogle Scholar
  114. Van der Biezen EA, Brandwagt BF, van Leeuwen W, Nijkamp HJ, Hille J. 1996. Identification and isolation of the FEEBLY gene from tomato by transposon tagging. Mol. Gen. Genet. 251: 267–280.PubMedCrossRefGoogle Scholar
  115. Van Sluys MA, Tempe J, Fedoroff N. 1987. Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota. EMBO J. 6: 3881–3889.PubMedGoogle Scholar
  116. Varagona MJ, Purugganan M, Wessler SR. 1992. Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell. 4: 811–820.PubMedCrossRefGoogle Scholar
  117. Voytas DF, Cummings MP, Koniczny A, Ausubel FM, Rodermel SR. 1992. copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA. 89: 7124–7128.PubMedCrossRefGoogle Scholar
  118. Walbot V. 1992. Strategies for Mutagenesis and Gene Cloning Using transposon tagging and T-DNA insertional mutagenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. Vol. 43: 49–82.CrossRefGoogle Scholar
  119. Walbot V. Saturation mutagenesis using maize transposons. 2000. Curr. Opin. Plant Biol. 3: 103–107.PubMedCrossRefGoogle Scholar
  120. Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J. (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410: 380–3.PubMedCrossRefGoogle Scholar
  121. Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K, Wisman E, Steiner-Lange S, Saedler H, Yephremov A. 2001. Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid omega hydroxylation in development. Proc. Natl. Acad. Sci. USA. 98: 9694–9699.PubMedCrossRefGoogle Scholar
  122. Wendel, J.F. (1989) New World Tetraploid Cottons Contain Old-World Cytoplasm. Proc Natl Acad Sci USA 86: 4132–4136.PubMedCrossRefGoogle Scholar
  123. Wisman E, Hartmann U, Sagasser M, Baumann E, Palme K, Hahlbrock K, Saedler H, Weisshaar B. 1998. Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc Natl Acad Sci U S A. 95: 12432–12437.PubMedCrossRefGoogle Scholar
  124. Wu J-L, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MRS, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, Bruskiewich R, Wang G, Leach J, Khush G, Leung H (2005) Chemical- and irradiation induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59:85–97.PubMedCrossRefGoogle Scholar
  125. Xanthopoulos FP, Kechagia UE (2001) Improvement of two locally adapted cultivars in earliness by induced mutations. Aust. J. Agric. Res. 52:523–527.CrossRefGoogle Scholar
  126. Xanthopoulos FP, Kechagia UE (2003) Improvement of two locally adapted cultivars by induced mutations. In: Improvement of New and Traditional Industrial Crops by Induced Mutations and Related Biotechnology. International Atomic Energy Agency pp. 61-68.Google Scholar
  127. Yakabova MM, Rubin AB, Khramova GA, Matorin DN (1975) Hill reaction and delayed fluorescence in mutants of Gossypium hirsutum. In: Genetics Aspects of Photosynthesis, Nasyrov et al., Eds. pp. 263–269.Google Scholar
  128. Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H. 1999. Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell. 11: 2187–2201.PubMedCrossRefGoogle Scholar
  129. Zhou JH, Atherly AG. 1990. In situ detection of transposition of the maize controlling element (Ac) in transgenic soybean tissues. Plant Cell Reports 8: 542–545.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dick Auld
  • Ginger G. Light
  • Mohamed Fokar
  • Efrem Bechere
  • Randy D. Allen

There are no affiliations available

Personalised recommendations