Skip to main content

Mutagenesis Systems for Genetic Analysis of Gossypium

  • Chapter
  • First Online:
Genetics and Genomics of Cotton

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 3))

Abstract

The recent evolution of tetraploid cotton combined with intensive selection of cultivated cottons has reduced the genetic diversity of cotton. This lack of allelic diversity hampers efforts to improve the agronomic traits of cotton and limits the application of molecular genetic tools for improvement of cotton germplasm. The lack of genetic resources also reduces our ability to understand the molecular mechanisms that regulate cotton growth and development and its responses to environmental stresses and pathogens. Use of a variety of chemical mutagens and ionizing radiation can be used to effectively increase the frequency of mutant alleles in Gossypium species. While application of insertional mutagenesis methodologies that require high-throughput plant transformation procedures is not feasible, evaluation of various transposon-based mutagenesis systems is underway. TILLING technology, which uses a combination of mutagenesis and high-throughput molecular screening methods for reverse genetics is also being developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts MG, Dirkse WG, Stiekema WJ, Pereira A. 1993. Transposon tagging of a male sterility gene in Arabidopsis. Nature. 363: 715–717.

    Article  PubMed  CAS  Google Scholar 

  • Aarts MG, Corzaan P, Stiekema WJ, Pereira A. 1995a. A two-element Enhancer/Inhibitor transposon system in Arabidopsis thaliana. Mol Gen Genet. 247: 555–564.

    Google Scholar 

  • Aarts MG, Keijzer CJ, Stiekema WJ, Pereira A. 1995b. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell. 7: 2115–2127.

    Google Scholar 

  • Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ, Ellis JG. 1997. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell. 9: 641–651.

    Article  PubMed  CAS  Google Scholar 

  • Akhtar KP, Aslam M, Haq M, Jamil FF, Khan AI, Elahi MT (2005) Resistance to cotton leaf curl virus (CLCuV) in a mutant cotton line. J Cotton Sci 9:175–181.

    Google Scholar 

  • Aslam M, Elahi MT, Iqbal N (2003) Development of improved germplasm of cotton through radiation and DNA-mediated embryo transformation technique - evaluation and confirmation of novel genotypes. In: Improvement of New and Traditional Industrial Crops by Induced Mutations and Related Biotechnology. International Atomic Energy Agency pp. 69–80.

    Google Scholar 

  • Aslam M, Iqbal N, Bandesha AA, Haq MA (2004) Inductions of mutations through crosses with gamma irradiated pollen in cotton. Inter J Agric Biol 6:894–897.

    Google Scholar 

  • Auld DL, Heikkinen M.K., Erickson DA, Sernyk, JL, Romero JE. (1992) Rapeseed mutants with reduced levels of polyunsaturated fatty acids and increased levels of oleic acid. Crop Sci 32:357–362.

    Article  Google Scholar 

  • Auld, D.L., M.D. Ethridge, J.K. Dever and P.D. Dotray. (1998) Chemical mutagenesis as a tool in cotton improvement. P. 550-551. In: P. Duggar and D.A. Richter (eds.) Proc. Beltwide Cotton Conf. San Diego, CA. 5-9 Jan. Natl. Cotton Council, Memphis, TN.

    Google Scholar 

  • Auld D.L., Bechere E, Ethridge MD, Becker WD, Hequet E, Cantrell, RG (2000) Registration of TTU 202-1107-B and TTU 271-2155-C mutant germplasm lines of upland cotton with improved fiber quality. Crop Sci. 40:1835–1836.

    Google Scholar 

  • Baker B, Fedoroff N., Loerz,H., Schell J. 1986. Transposition of the maize controlling element activator in tobacco. Proc. Natl. Acad. Sci. USA. 83: 4844–4848.

    Article  PubMed  CAS  Google Scholar 

  • Bancroft I, Dean C.1993. Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics. 134: 1221–1229.

    PubMed  CAS  Google Scholar 

  • Bhatt AM, Page T, Lawson EJ, Lister C, Dean C. 1996. Use of Ac as an insertional mutagen in Arabidopsis. Plant J. 9: 935–945.

    Article  PubMed  CAS  Google Scholar 

  • Bouche N, Bouchez D. 2001. Arabidopsis gene knockout: phenotypes wanted. Curr. Opin. Plant. Biol. 4: 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, D.T., O.L. May, and D.S. Calhoun. (1996) Genetic Base of Upland Cotton Cultivars Released between 1970 and 1990. Crop Sci. 36:577–581.

    Article  Google Scholar 

  • Cardon GH, Frey M, Saedler H, Gierl A.1993. Mobility of the maize transposable element En/Spm in Arabidopsis thaliana. Plant J. 3: 773–784.

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Robbins T, Nijjar C, Ralston E, Courtney-Gutterson N, Dooner HK. 1993. Tagging and cloning of a petunia flower color gene with the maize transposable element Activator. Plant Cell 5: 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S. (2001) High-throughput screening for induced point mutations. Plant Physiol. 126: 480–484.

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Young K, Reynolds SH, Codomo C, Enns L, Johnson J, Burtner C, Henikoff JG, Greene EA, Till BJ, Henikoff S. (2004) Efficient discovery of nucleotide polymorphisms in populations by ecotilling. Plant Journal. 37:778–786.

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694.

    Article  PubMed  CAS  Google Scholar 

  • Comis D (2005) TILLING genes to improve soybeans. Agric Res July:4-5.

    Google Scholar 

  • Cornelius TJ, Peter SD, Narayanan SS, Kamalanathan S (1970) Useful mutants in Cambodia cotton (G. hirsutum) by ionising radiation of seeds. Madras Agricultural J 57:594–597.

    Google Scholar 

  • Coupland G, Plum C, Chatterjee S, Post A, Starlinger P. 1989. Sequences near the termini are required for transposition of the maize transposon Ac in transgenic tobacco plants. Proc. Natl. Acad. Sci. U S A. 86: 9385–9388.

    Article  PubMed  CAS  Google Scholar 

  • Courtial B, Feuerbach F, Eberhard S, Rohmer L, Chiapello H, Camilleri C, Lucas H. 2001. Tnt1 transposition events are induced by in vitro transformation of Arabidopsis thaliana, and transposed copies integrate into genes. Mol Genet Genomics. 265: 32–42.

    Article  PubMed  CAS  Google Scholar 

  • Dean C, Sjodin C, Page T, Jones JDG, Lister C. 1992. Behavior of the maize transposable element Ac in Arabidopsis thaliana. The Plant Journal. 2: 69–81.

    Article  CAS  Google Scholar 

  • Dilkes BP, Feldmann KA. 1998. Cloning genes from T-DNA tagged mutants. Methods Mol Biol. 82: 339–351.

    PubMed  CAS  Google Scholar 

  • Feuerbach F, Drouaud J, Lucas H. 1997. Retrovirus-like end processing of the tobacco Tnt1 retrotransposon linear intermediates of replication. J Virol. 71: 4005–4015.

    PubMed  CAS  Google Scholar 

  • Frey M, Tavantzis, SM, Saedler, H. 1989. The maize En-1/Spm element transposes in potato. Molecular Genl Genet. 21 : 172–177.

    Article  Google Scholar 

  • Friedrichsen DM, Joazeiro CA, Li J, Hunter T, Chory J. (2000) Brassinosteroid-insensitive –1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant physiol. 123: 1247–1256

    Article  PubMed  CAS  Google Scholar 

  • Fotiadis NA, Miller PA (1973) Effects of recurrent seed irradiation on genetic variability and recombination in cotton (Gossypium hirsutum L.). Crop Sci 13:40–44.

    Article  Google Scholar 

  • Gaibullaev I K, Avazkhodzhaev M K, Egamberdiev AE (1975) Reaction of chemomutants of cotton to infection of the pathogen of verticillium wilt. Soviet Genetics 11:34–36.

    Google Scholar 

  • Gao W, Chen ZJ, Yu JZ, Raska D, Kohel RJ, Womack JE, Stelly DM (2004) Wide-cross whole-genome radiation hybrid mapping of cotton (Gossypium hirsutum L.). Genetics 167:1317–1329.

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Current Opinion in Plant Biology 8:211–215.

    Article  PubMed  CAS  Google Scholar 

  • Grevelding C, Becker D, Kunze R, von Menges A, Fantes V, Schell J, Masterson R. 1992. High rates of Ac/Ds germinal transposition in Arabidopsis suitable for gene isolation by insertional mutagenesis. Proc. Natl. Acad. Sci. USA. 89: 6085–6089.

    Article  PubMed  CAS  Google Scholar 

  • Gulin, VV, Kal’chenko VA, Turavekov S, Musaev DA (1985) Polymorphism and mutagenesis of nonspecific esterases in cotton (Gossypium hirsutum L.). Doklady:Biol Sci 285:700–703.

    CAS  Google Scholar 

  • Heinlein M, Brattig T, Kunze R. 1994. In vivo aggregation of maize Activator (Ac) transposase in nuclei of maize endosperm and Petunia protoplasts. Plant J. 5: 705–714.

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Phys. 135:630–636.

    Article  CAS  Google Scholar 

  • Herring AD, Auld DL, Ethridge MD, Hequet EF, Bechere E, Green CJ, Cantrell RG (2004) Inheritance of fiber quality and lint yield in a chemically mutated population of cotton. Euphytica 136:333–339.

    Article  Google Scholar 

  • Hirochika H, 1993. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12: 2521–2528.

    PubMed  CAS  Google Scholar 

  • Hirochika H, Otsuki H, Yoshikawa M, Otsuki Y, Sugimoto K, Takeda S. 1996. Autonomous transposition of the tobacco retrotransposon Tto1 in rice. Plant Cell 8: 725–734.

    Article  PubMed  CAS  Google Scholar 

  • Hohmann U, Jacobs G, Jung C (2005) An EMS mutageneis protocol for sugar beet and isolation of non-bolting mutants. Plant Breeding 124:317–321.

    Article  Google Scholar 

  • Horlacher WR, Killough DT (1933) Progressive mutations induced in Gossypium hirsutum by radiations. Amer Naturalist 67:532–538.

    Article  Google Scholar 

  • Hussein HAS, Al-enani A, El-Moghazi M (1982) Histological and morphological characteristics of glandless cotton mutant induced with sodium azide. Egyptian Journal of Genetics and Cytology 11:167–173.

    Google Scholar 

  • Hutchinson, J.B., Silow, R.A., and Stephens, S.G. (1947) In."The evolution of Gossypium and the differentiation of the cultivated cottons". Oxford University Press, London.

    Google Scholar 

  • James DW Jr., Dooner H K (1990) Isolation of EMS-induced mutants in Arabidopsis altered in seed fatty acid composition. Theor Appl Genet 80:241–245.

    Article  CAS  Google Scholar 

  • Jeong D-H, An S, Kang H-G, Moon S, Han J-J, Park S, Lee H-S, An K, and An G. 2002. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol. 130: 1636–1644.

    Article  PubMed  CAS  Google Scholar 

  • Johns MA, Mottinger J, Freeling M. 1985. A low copy number, copia-like transposon in maize. EMBO J. 4: 1093–1102.

    PubMed  CAS  Google Scholar 

  • Kandhro MM, Laghari S, Sial MA, Nizamani GS (2002) Performance of early maturing strains of cotton (Gossypium hirsutum L.) developed through induced mutation and hybridization. Asian J Plant Sci 5:581–582.

    Google Scholar 

  • Katterman FRH (1973) 5-Methyl cytosine content in the DNA of colchicine and spontaneously induced polyhaploids of Gossypium. Phytochemistry 12:1887–1889.

    Article  CAS  Google Scholar 

  • Keddie JS, Carroll BJ, Thomas CM, Reyes ME, Klimyuk V, Holtan H, Gruissem W, Jones JD. 1998. Transposon tagging of the Defective embryo and meristems gene of tomato. Plant Cell 10: 877–888.

    Article  PubMed  CAS  Google Scholar 

  • Keller J, Jones JD, Harper E, Lim E, Carland F, Ralston EJ, Dooner HK.1993a. Effects of gene dosage and sequence modification on the frequency and timing of transposition of the maize element Activator (Ac) in tobacco. Plant Mol. Biol. 21: 157–170.

    Google Scholar 

  • Keller J. Lim E, Dooner HK. 1993b. Preferential transposition of Ac to linked sites in Arabidopsis. Theoretical and Applied Genetics 86: 585–588

    Google Scholar 

  • Knapp S, Coupland G, Uhrig H, Starlinger P,Salamini F. 1988. Transposition of the maize transposable element Ac in Solanum tuberosum. Mol. Gen. Gent. 213: 285–290.

    Google Scholar 

  • Kohli A, Xiong J, Greco R, Christou P, Pereira A. 2001. Tagged Transcriptome Display (TTD) in Indica rice using Ac transposition. Mol Genet Genomics. 266: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Koprek T, McElroy D, Louwerse J, Williams-Carrier R, Lemaux PG. 1999. Negative selection systems for transgenic barley (Hordeum vulgare L.): comparison of bacterial codA- and cytochrome P450 gene-mediated selection. Plant J. 19: 719–726.

    Article  PubMed  CAS  Google Scholar 

  • Koprek T, Rangel S, McElroy D, Louwerse JD, Williams-Carrier RE, Lemaux PG. 2001. Transposon-mediated single-copy gene delivery leads to increased transgene expression stability in barley. Plant Physiol. 125: 1354–1362.

    Article  PubMed  CAS  Google Scholar 

  • Kulinski, J, Besack, D, Oleykowski, CA, Godwin, AK and Yeung, AT. 2000. CEL I enymatic mutation detection assay. Biotechniques. 29: 44–46.

    PubMed  CAS  Google Scholar 

  • Kunze R, Starlinger P 1989. The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J. 8: 3177–3185.

    PubMed  CAS  Google Scholar 

  • Kunze R, Behrens U, Courage-Franzkowiak U, Feldmar S, Kuhn S, Lutticke R. 1993. Dominant transposition-deficient mutants of maize Activator (Ac) transposase. Proc. Natl. Acad. Sci. USA. 90: 7094–7098.

    Article  PubMed  CAS  Google Scholar 

  • Kunze R. 1996. The activator (Ac) element of Zea mays L. In “Transposable Elements” (H. Saedler and A. Gierl, eds), pp. 161–194. Springer, Heidelberg.

    Chapter  Google Scholar 

  • Kunze, R, Saedler H., Lonnig WE. 1997. Plant transposable elements. Botanical Research 27, 331– 470.

    Article  CAS  Google Scholar 

  • Larik AS, Hafiz HMI, Al-Saheal YA (1983) Azide mutagenesis in cotton (Gossypium hirsutum). Science and Environment 5:33–42.

    Google Scholar 

  • Laufs J, Wirtz U, Kammann M, Matzeit V, Schaefer S, Schell J, Czernilofsky AP, Baker B, Gronenborn B. 1990. Wheat dwarf virus Ac/Ds vectors: expression and excision of transposable elements introduced into various cereals by a viral replicon. Proc. Natl. Acad. Sci. USA. 87: 7752–7756.

    Article  PubMed  CAS  Google Scholar 

  • Long D, Swinburne J, Martin M, Wilson K, Sundberg E, Lee K, Coupland G. 1993. Analysis of the frequency of inheritance of transposed Ds elements in Arabidopsis after activation by a CaMV 35S promoter fusion to the Ac transposase gene. Mol. Gen. Genet. 241: 627–636.

    Article  PubMed  CAS  Google Scholar 

  • Lucas H, Feuerbach F, Kunert K, Grandbastien MA, Caboche M. 1995. RNA-mediated transposition of the tobacco retrotransposon Tnt1 in Arabidopsis thaliana. EMBO J 14: 2364–2373

    PubMed  CAS  Google Scholar 

  • Luckett DJ (1989) Colchicine mutagenesis is associated with substantial heritable variation in cotton. Euphytica 42:177–182.

    Article  CAS  Google Scholar 

  • Marsch-Martinez N, Greco R, Van Arkel G, Herrera-Estrella L, Pereira A. 2002. Activation tagging using the en-I maize transposon system in Arabidopsis. Plant Physiol. 129: 1544–1556.

    Article  PubMed  CAS  Google Scholar 

  • Masson P, Fedoroff NV. 1989. Mobility of the maize suppressor-mutator element in transgenic tobacco cells. Proc. Natl. Acad. Sci. USA. 86: 2219–2223.

    Article  PubMed  CAS  Google Scholar 

  • May, O.L., D.T. Bowman, and D.S. Calhoun. (1995) Genetic diversity of U.S. Upland Cotton Cultivars Released between 198- and 1990. Crop Sci. 35:1570–1574.

    Article  Google Scholar 

  • Mazier M, Botton E, Flamain F, Bouchet J-P, Courtial B, Chupeau M-C, Chupeau Y, Maisonneuve B, Lucas H. 1886 Successful gene tagging in lettuce using the Tnt1 retrotransposon from tobacco. Plant Physiol. 144: 18–31.

    Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S. (2000) Targeted screening for induced mutations. Nature Biotechnology. 18: 455–457.

    Article  PubMed  CAS  Google Scholar 

  • McCallum CM, Comai L, Green EA, Henikoff S. (2000) Targeting induced local lesion in genomes (TILLING) for plant functional genomics. Plant Physiol. 123: 439–442.

    Article  PubMed  CAS  Google Scholar 

  • McClintock B. 1951. Chromosome organization and genetic expression. Cold Spring Harbor Symposia on Quantitative Biol. 16: 13–47.

    Article  CAS  Google Scholar 

  • Mehetre SS, Thombre MV (1982) Fibre properties of x-ray induced glandless mutants in American cotton. J Maharashtra Agricultural Universities 8:189–190.

    Google Scholar 

  • Meissner R, Chague V, Zhu Q, Emmanuel E, Elkind Y, Levy AA. 2000. Technical advance: a high throughput system for transposon tagging and promoter trapping in tomato. Plant J. 22: 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Murai N, Li ZJ, Kawagoe Y, Hayashimoto A. 1991. Transposition of the maize activator element in transgenic rice plants. Nucleic Acids Res. 19: 617–622.

    Article  PubMed  CAS  Google Scholar 

  • National Cotton Council. (2005) Economic Impact of US Cotton. www.cotton.org/econ/cropinfo/supply-demand.cfm

  • Nazirov NN, Satipov G (1979) Reaction of radiation induced mutants to different water regimes. Soviet Agricultural Sciences 7:12–15.

    Google Scholar 

  • Nazirov NN, Tashmatov NT, Bakhabov A, Nabiev AG (1981) Respiration rate and rate of 32P incorporation into organophosphorus compounds in radiation-induced cotton mutants and their initial forms on saline soil. Soviet Agricultural Sciences 5:27–29.

    Google Scholar 

  • Ngematov M, Kovalenko VI, Shumnyi VK, Asrorov KA (1975) Induction of cytoplasmic male sterility in cotton by the method of radiation mutagenesis. Soviet Genetics 11:1593–1595.

    Google Scholar 

  • Oleykowski CA, Mullins CRB, Godwin AK, Yeung AT. (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Research. 26: 4597–4602.

    Article  PubMed  CAS  Google Scholar 

  • O'Keefe DP, Tepperman JM, Dean C, Leto KJ, Erbes DL, Odell JT. 1994. Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide. Plant Physiol. 105: 473–482.

    PubMed  Google Scholar 

  • Osborne BI, Baker B. 1995. Movers and shakers: maize transposons as tools for analyzing other plant genomes. Curr. Opin. Cell Biol. 7: 406–413..

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Li Y, Stein, L. (2005) Site preferences of insertional mutagenesis agents in Arabidopsis. Plant Physiol. 137: 168–175.

    Article  PubMed  CAS  Google Scholar 

  • Pereira A, Aarts MG. 1998. Transposon tagging with the En-I system. Methods Mol. Biol. 82: 329–338.

    PubMed  CAS  Google Scholar 

  • Perera RJ, Linard CG, Signer ER. 1993. Cytosine deaminase as a negative selective marker for Arabidopsis. Plant Mol. Biol. 23: 793–799.

    Article  PubMed  CAS  Google Scholar 

  • Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, Parniske M (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Phys. 131:866–871.

    Article  CAS  Google Scholar 

  • Peterson, P.A. 1987. Mobile elements in plants. Critical Reviews in plant Sciences 6: 105–208.

    Article  Google Scholar 

  • Pohlman RF, Fedoroff NV, Messing J. 1984. Correction: nucleotide sequence of Ac. Cell. 39: 417.

    Article  PubMed  CAS  Google Scholar 

  • Raut RN, Jain HK, Panwar RS (1971) Radiation-induced photoinsensitive mutants in cotton. Current Science 40:383–384.

    Google Scholar 

  • Reddy VRK, Sundaravadivelu K (1999) Improvement of cotton (Gossypium hirsutum L.) - Induced mutagenesis. In: Proc Natl Symp Recent Trends in Plant Cytogenetics and Biotechnology, 21-22 Feb, 1999. Dept of Botany, Andhra University, Visakhapatnam, India. Abst. No. 22.

    Google Scholar 

  • Robbins TP, Jenkin M, Courtney-Gutterson N. 1994. Enhanced frequency of transposition of the maize transposable element Activator following excision from T-DNA in Petunia hybrida. Mol. Gen. Genet. 244: 491–500.

    Article  PubMed  CAS  Google Scholar 

  • Salanki MS, Parameswarappa R (1968) Colchine-induced mutant in cotton (Gossypium hirsutum L.) Current Sci 12:356–357.

    Google Scholar 

  • Sanamayan MF, Rakhmatullina RM (2003) Cytogenetic analysis of translocations in cotton. Plant Breeding 122:511–516.

    Article  Google Scholar 

  • San Miguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765–768.

    Article  CAS  Google Scholar 

  • Savaskan C (2002) The effects of gamma radiation of the pollen size of Gossypium hirsutum L. Turk J Biol 26:477–480.

    Google Scholar 

  • Scholz S, Lorz H, Lutticke S. 2001. Transposition of the maize transposable element Ac in barley (Hordeum vulgare L.). Mol Gen Genet. 264: 653–661.

    Article  PubMed  CAS  Google Scholar 

  • Shamsuzzaman KM, Hamid MA, Azad MAK, Hussain M, Majid MA (2003) Varietal improvement of cotton (Gossypium hirsutum) through mutation breeding. In: Improvement of New and Traditional Industrial Crops by Induced Mutations and Related Biotechnology. International Atomic Energy Agency pp. 81-94.

    Google Scholar 

  • Shattuck V, Katterman FR (1982) Enhanced unscheduled DNA synthesis in the cotyledons of Gossypium barbadense L. by ethylmethanesulfonate (EMS). Biochemical and Biophysical Research Communications 109:1017–1025.

    Article  PubMed  CAS  Google Scholar 

  • Sheidai M, Azarani H, Hosseininejad Z (2002) Cytogenetic study of gamma irradiated lines of cotton (Gossypium hirsutum L.). J Sci Islamic Rep of Iran 13:311–322.

    Google Scholar 

  • Shi-Qi A, De-Qi Q, Xiu-Yun C (1991) Induction of parthonogenesis and chromosome behavior in plants of parthenogenetic origin in cotton (Gossypium hirsutum). Genome 34:255–260.

    Article  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nature Biotech 23:75–80.

    Article  CAS  Google Scholar 

  • Spasibionek S (2006) New mutants of winter rapeseed (Brassica napus L.) with changed fatty acid composition. Plant Breeding 125:259–267.

    Article  CAS  Google Scholar 

  • Springer PS, McCombie WR, Sundaresan V, Martienssen RA. 1995. Gene trap tagging of PROLIFERA, an essential MCM2-3-5-like gene in Arabidopsis. Science. 268: 877–880.

    Article  PubMed  CAS  Google Scholar 

  • Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, Martienssen R. 1995. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9: 1797–1810.

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, Allen RD. (2005) Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol. 46: 1384–1391.

    Article  PubMed  CAS  Google Scholar 

  • Suoniemi A, Anamthawat-Jónsson K, Arna T, Schulman AH. 1996. The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol. 31: 295–306.

    Article  PubMed  CAS  Google Scholar 

  • Takken FL, Schipper D, Nijkamp HJ, Hille J. 1998. Identification and Ds-tagged isolation of a new gene at the Cf-4 locus of tomato involved in disease resistance to Cladosporium fulvum race 5. Plant J. 14: 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Tadege M, Wen Ji, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratet P, Mysore KS. 2008. Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. The Plant Journal, 54: 335–347.

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Colbert T, Tompa R, Enns LC, Codomo CA, Johnson JE, Reynolds SH, Henikoff JG, Greene EA, Stein MN, Comai L, Henikoff S. (2003a) High-throughput TILLING for functional genomics. Plant Functional Genomics: Methods and Protocols Edited by: Grotewald E. Clifton, NJ, Humana Press; pp. 205–220.

    Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S. (2003b) Large-scale discovery of induced point mutations with high throughput TILLING. Genome Res, 13: 524–530.

    Google Scholar 

  • Till BJ, Burtner C, Comai L, Henikoff S. 2004. Mismatch cleavage by single- strand specific nucleases. Nucleic Acids Research. 32:2632–2641.

    Article  PubMed  CAS  Google Scholar 

  • Tonnemaker, K.A., D.L. Auld, D.C. Thill, C.A. Mallory-Smith, and D.A. Erickson. (1992) Development of Sulfonylurea Resistant Rapeseed Using Chemical Mutagenesis. Crop Sci. 32:1387–1391.

    Article  CAS  Google Scholar 

  • Van der Biezen EA, Brandwagt BF, van Leeuwen W, Nijkamp HJ, Hille J. 1996. Identification and isolation of the FEEBLY gene from tomato by transposon tagging. Mol. Gen. Genet. 251: 267–280.

    Article  PubMed  Google Scholar 

  • Van Sluys MA, Tempe J, Fedoroff N. 1987. Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota. EMBO J. 6: 3881–3889.

    PubMed  Google Scholar 

  • Varagona MJ, Purugganan M, Wessler SR. 1992. Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell. 4: 811–820.

    Article  PubMed  CAS  Google Scholar 

  • Voytas DF, Cummings MP, Koniczny A, Ausubel FM, Rodermel SR. 1992. copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA. 89: 7124–7128.

    Article  PubMed  CAS  Google Scholar 

  • Walbot V. 1992. Strategies for Mutagenesis and Gene Cloning Using transposon tagging and T-DNA insertional mutagenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. Vol. 43: 49–82.

    Article  CAS  Google Scholar 

  • Walbot V. Saturation mutagenesis using maize transposons. 2000. Curr. Opin. Plant Biol. 3: 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J. (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410: 380–3.

    Article  PubMed  CAS  Google Scholar 

  • Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K, Wisman E, Steiner-Lange S, Saedler H, Yephremov A. 2001. Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid omega hydroxylation in development. Proc. Natl. Acad. Sci. USA. 98: 9694–9699.

    Article  PubMed  CAS  Google Scholar 

  • Wendel, J.F. (1989) New World Tetraploid Cottons Contain Old-World Cytoplasm. Proc Natl Acad Sci USA 86: 4132–4136.

    Article  PubMed  CAS  Google Scholar 

  • Wisman E, Hartmann U, Sagasser M, Baumann E, Palme K, Hahlbrock K, Saedler H, Weisshaar B. 1998. Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc Natl Acad Sci U S A. 95: 12432–12437.

    Article  PubMed  CAS  Google Scholar 

  • Wu J-L, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MRS, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, Bruskiewich R, Wang G, Leach J, Khush G, Leung H (2005) Chemical- and irradiation induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59:85–97.

    Article  PubMed  CAS  Google Scholar 

  • Xanthopoulos FP, Kechagia UE (2001) Improvement of two locally adapted cultivars in earliness by induced mutations. Aust. J. Agric. Res. 52:523–527.

    Article  Google Scholar 

  • Xanthopoulos FP, Kechagia UE (2003) Improvement of two locally adapted cultivars by induced mutations. In: Improvement of New and Traditional Industrial Crops by Induced Mutations and Related Biotechnology. International Atomic Energy Agency pp. 61-68.

    Google Scholar 

  • Yakabova MM, Rubin AB, Khramova GA, Matorin DN (1975) Hill reaction and delayed fluorescence in mutants of Gossypium hirsutum. In: Genetics Aspects of Photosynthesis, Nasyrov et al., Eds. pp. 263–269.

    Google Scholar 

  • Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H. 1999. Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell. 11: 2187–2201.

    Article  PubMed  CAS  Google Scholar 

  • Zhou JH, Atherly AG. 1990. In situ detection of transposition of the maize controlling element (Ac) in transgenic soybean tissues. Plant Cell Reports 8: 542–545.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Haggag Abdel-Mageed and Bay Nguyen for their work on transposon mutagenesis and TILLING, respectively. The authors acknowledge the generous support from Cotton Inc.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Auld, D., Light, G.G., Fokar, M., Bechere, E., Allen, R.D. (2009). Mutagenesis Systems for Genetic Analysis of Gossypium . In: Paterson, A.H. (eds) Genetics and Genomics of Cotton. Plant Genetics and Genomics: Crops and Models, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70810-2_9

Download citation

Publish with us

Policies and ethics