Advertisement

Genetic Engineering of Cotton

  • Norma L. Trolinder
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 3)

Abstract

The words biotechnology, genetic engineering, molecular biology, and high throughput genomic analysis have engendered awe, doubtfulness, ambivalence, and hope from scientists and the public alike. The technologies justify the responses, for they are undoubtedly the most powerful biological research tools in existence today. They are not, however, new tools that have suddenly burst upon us. Rather, as with most new tools, the scientific community has been slowly developing them for decades. We must regard them as tools to address and solve real problems not as ends unto themselves. Genetic engineering of cotton has proven to be a very challenging undertaking but despite the challenges, Cotton has led the way for acceptance of genetically engineered crop plants and today the industry stands on a new threshold, with another new set of tools for understanding the cotton genome. It is with that foundation that we move forward today.

Keywords

Transgenic Plant Somatic Embryo Somatic Embryogenesis Shoot Apex Somaclonal Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrawal, D.C., A.D.Banerjee, R.R. Kulala, A.B. Dhage, A.B., A.V. Kulkarni, M. Nalawade, S.L. Hazra, K.V. Krishnamurty, K.V. (1997). In vitro induction of multiple shoots and plant regeneration in cotton (Gossypium hirsutum L). Plant Cell Reports 16(9) : 647–652CrossRefGoogle Scholar
  2. Allen, R.D. (1995). Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1049–1054.PubMedGoogle Scholar
  3. Allen, R.D. and N.L. Trolinder (1995). Expression of superoxide dismutase in transgenic plants leads to increased stress tolerance. Prodeedings Beltwide cotton Conference, Vol. 2: 1136–1137. National Cotton Council, TN.Google Scholar
  4. Armstrong, Toni A., D. L. De Boer, (2004). Method for regeneration of cotton. U.S. patent application 20040087030Google Scholar
  5. Bajaj, Y.P.S, and M. S. Gill (1985). In vitro induction of genetic variability in cotton (Gossypium spp.). Theor. Appl. Genet. 70:363–368.Google Scholar
  6. Bajai, Y.P.S. and M.S. Gill (1986) Micropropagation and germplasm preservation of cotton (Gossypium spp.) through shoot tip and meristem culture. Ind. J. Exp. Bot 24:581–583.Google Scholar
  7. Barrow, J. R. (1986) The conditions required to isolate and maintain viable cotton (Gossypium hirsutum L.) microspores. Plant Cell Reports 5(6)Google Scholar
  8. Bayley, C.C.; Morgan, M.; Dale, E.C., Ow, D.W. 1992. Exchange of gene activity in transgenic plants catalyzed by the Cre-lox site-specific recombination system. Plant Molecular Biology 18: 353–362PubMedCrossRefGoogle Scholar
  9. Bayliss, M.W. (1973) Origin of chromosome number variation in cultured plant cells. Nature 246: 529–530.CrossRefGoogle Scholar
  10. Beasley, C.A. (1971). In vitro culture of fertilized cotton ovules. Bioscience 21 906–907.CrossRefGoogle Scholar
  11. Beasley, C.A. and I.P. Ting (1973). The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. Amer J. Bot 60:130–139.CrossRefGoogle Scholar
  12. Baszczynski, C. L., B.A. Bowen, D.J. Peterson, L. Tagliani (2008) Compositions and methods for the targeted insertion of a nucleotide sequence of interest into the genome of a plant. U.S. patent 7,361,508.Google Scholar
  13. Bowler, C., M. Van Montagu, D. Inze (1992). Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43:83–116.CrossRefGoogle Scholar
  14. Burke, John J; M.J. Oliver, J.P. Velten (1998). Pollen based transformation system using solid media U. S. patent 5,929,300.Google Scholar
  15. Cao, Jing-Lin; X. Zhang, S.X. Jin, X.Y. Yang, H.G Zhu, L-L Fu, (2008). An efficient culture system for synchronization control of somatic embryogenesis in cotton (Gossypium hirsutum L). Acta Agronomica Sinica 34(2) 224–231.Google Scholar
  16. Carlson, S.R., G.W. Rudgers, H. Zieler, J.M. Mach, S Luo, E. Grunden, C. Krol, G.P. Copenhaver, D. Preuss (2007). Meiotic Transmission of an In Vitro- Assembled Autonomous Maize Minichromosome. PloS Genet 3(10): e 179. doi:10.1371/journal.pgen.0030179.Google Scholar
  17. Chen, Z. X., S. J. Li, J. X. Yue, G. L. Jiao, and S. X. Liu (1989). Plantlet regeneration from protoplasts isolated from an embryogenic suspension culture of cotton (Gossypium hirsutum L.). Acta Botanica Sinica 31,966–9.Google Scholar
  18. Chappell, J., and J.R. Mauney (1967). Culture of the apical meristem of Gossypium hirsutum in vitro. Phyton 24: 93–100.Google Scholar
  19. Chlan, C. A., J. Lin, J. W. Cary, and T. E. Cleveland, (1995). A procedure for biolistic transformation and regeneration of transgenic cotton from meristematic tissue. Plant Mol. Biol. Rep. 13, 31–7.CrossRefGoogle Scholar
  20. Chua, N.H., J. Zuo, S, G, Moller (2004). Inducible site specific recombination for the activation and removal of transgenes in transgenic plants. U.S. Patent 6,723,896.Google Scholar
  21. Cousins, Y. L., B. R. Lyon, and D. J. Llewellyn (1991). Transformation of an Australian cotton cultivar: prospects for cotton improvement through genetic engineering. Aust. J. Plant Physiol. 18,481–94.CrossRefGoogle Scholar
  22. Davidonis, G. H., and R. H. Hamilton (1983). Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Sci. Lett. 32,89–93.CrossRefGoogle Scholar
  23. Davis, B. 2006. Genetically controlled herbicide resistance in cotton plants in the absence of genetic engineering. US Patent 7,074,987.Google Scholar
  24. Deaton, W.R. (1995). Managing for resistance to the Bollgard gene. IN: Proceedings of the Beltwide Cotton Conference, Vol 2: 758. National Cotton Council. Memphis, TN.Google Scholar
  25. Earley, K.W., J.R. Hang, O. Pontes, K. Opper, T. Juehne, F. Song, C.S. Pikaard (2006). Gateway compatible vectors for plant functional genomics & proteomics. The Plant Journal 45: 616–629.PubMedCrossRefGoogle Scholar
  26. Finer, J. J. and Smith, R. H. 1984. Initiation of callus and somatic embryos from explants of mature cotton (Gossypium klotzschianum Anderss). Plant Cell Reports 3,41–43.CrossRefGoogle Scholar
  27. Finer, J., 1988. Plant regeneration from somatic embryogenic suspension cultures of cotton (Gossypium hirsutum L.). Plant Cell Rep. 7, 399–402.CrossRefGoogle Scholar
  28. Finer, J. J. and McMullen, M. D. 1990. Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Reports 8,586–9.CrossRefGoogle Scholar
  29. Firoozabady, E. Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirsutum L (1993). In Vitro Cellular and Developmental Biology – Plant 29 (3).Google Scholar
  30. Firoozabady, E., Deboer, D., Merlo, D., Halk, E., Amerson, L., Rashka, K. and Murray, E. 1987. Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol. Biol. 10: 105–16.CrossRefGoogle Scholar
  31. Gapper, C. and L. Dolan (2006). Control of Plant Development by Reactive Oxygen Species. Plant Physiol. 141(2):341–345.PubMedCrossRefGoogle Scholar
  32. Gawel, N. J. and Robacker, C. 1990. Genetic control of somatic embryogenesis in cotton petiole callus cultures. Euphytica 49,249–53.Google Scholar
  33. Golovkin, M.V., M. Abraham, S. Morocz, S., Bottka, A. Feher, and D. Dudits, (1993). Production of transgenic embryogenic plants by direct DNA uptake into maize protoplasts. Plant Sci. 90:41–52.CrossRefGoogle Scholar
  34. Gould, J., S. Banister, O. Hasegawa, M. Fahima, R.H. Smith, (1991). Regeneration of Gossypium hirsutum and G. barbadense from shoot apex tissues for transformation. Plant Cell Reports 10,12–6.CrossRefGoogle Scholar
  35. Green, A., S. Singh, Q. Liu, (2005). Method of modifying the content of cotton seed oil. U.S. patent 6,974,898.Google Scholar
  36. Hemphill, J.K., C. G. Maier, K.D. Chapman, (1998). Rapid in vitro plant regeneration of cotton (Gossypium hirsutum L.). Plant Cell Rep. 17, 273–278.CrossRefGoogle Scholar
  37. Hodges, T.K., L.A. Lyznik (1999). Controlled modification of eukaryotic genomes. U.S. patent 5,910,415.Google Scholar
  38. Hood, E.E., S.B. Gelvin, L.S. Melchers, A. Hoekema (1993). New Agrobacterium helper plasmid for gene transfer to plants. Transgenic Res. 2: 208–218.CrossRefGoogle Scholar
  39. Horsch, R. B., Fry, J. E., Hoffmann, N. L., Eichholtz, D., Rogers, S. G. and Fraley, R. T.(1985). A simple and general method for transferring genes into plants. Science 227: 1229–1231.CrossRefGoogle Scholar
  40. Huynh, T.T. (2001) Palmitol-Acyl Carrier Protein Thioesterase in Cotton (Gossypium hirsutum L.): Biochemical and Molecular Characterization of a Major Mechanism for the Regulation of Palmitic Acid Content. Dissertation. University of North TexasGoogle Scholar
  41. Huzera, S; A. V. Kulkarni, S. M. Naluwade, A.K. Bienerjee, D.C. Agrawal, K.V. Krishnamurty. (2006) Multiple shoot regeneration in cotton: Influence of explants, genotypes and culture vessels on sprouting and proliferation of pre-existing meristems of cotton (Gossypium hirsutum L and Gossypium Arboreum L). IVC and DB 36 (6) 505–510.Google Scholar
  42. Jiang, B. (2004). Optimization of Agrobacterium mediated cotton transformation using shoot apices explants and quantitative trait loci analysis of yield and yield component traits in upland cotton (Gossypium hirsutum L). A Dissertation. Louisiana State University.Google Scholar
  43. Jain, S.M.; B.S. Ahloorolia, D. S. Brar, (1998). Somaclonal variation and induced mutations in crop improvement. Ed. Kluwer Academic Press, The Netherlands.Google Scholar
  44. Jim, S., X. Zhang, Y. Nie, X. Guo, S. Liang, H. Zhu. (2006). Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biologia Plantarum 50 (4)Google Scholar
  45. Kebede, D. Tripathy, S. Hwang, N. Trolinder, R. Wright (2007). Alternative respiration during cotton growth & development. International Cotton Research Conference 2007, Lubbock, Texas.Google Scholar
  46. Kim. J.K., B.A. Triplett (2001). Cotton fiber growth In Planta and In Vitro: Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127: 1361–1366.PubMedCrossRefGoogle Scholar
  47. Klein, R.M., E.D. Wolf, R. Wu., J.C. Sanford (1987). High-velocity micro-projectiles for delivering nucleic acids into living cells. Nature,327: 70–73.CrossRefGoogle Scholar
  48. Kornyeyev, D. B., A. Logan P., Payton, R. D. Allen, A. S. Holaday (2001) Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiologia Plantarum 113: 323–331PubMedCrossRefGoogle Scholar
  49. Koshinsky, H.A., H. K. Liao, D.W. Ow (1995). Progress in screening micro- organisms for gossypol degrading ability. Biochemistry of cotton (Proceedings of the biochemistry of cotton workshop) Galveston, TX. Cotton Incorporated pp 19-22.Google Scholar
  50. Kosegi, B. D, J.R. Beringer, A. Palta, A. Mehra, J.F..Petoline, R. Ram, (2007). Whisker-mediated transformation of embryogenic cotton suspension cultures. US PATENT 7,166,768.Google Scholar
  51. Kumar, S., P. Sharma, D. Pentel. A genetic approach to in vitro regeneration of non-regenerating cotton (Gossypium hirsutum L.) cultivars. (1998). Plant Cell Rep. 18: 59–63.CrossRefGoogle Scholar
  52. Kumar, S. , A. Dhingra, H. Daniell (2005). Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Molecular Biology 56: 203–216.CrossRefGoogle Scholar
  53. Kumria, R., V.G. Sunnichan, D.K. Das, S.K Gupta, V.S. Reddy, R.K Bhatnagar, S. Leelavathi (2003). High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. Plant Cell Rep. 21:635–639.PubMedGoogle Scholar
  54. Lennon, A.M. U.H.Neuenschwander, M. Ribas-Carbo, L. Giles, J.A. Ryals, J.N. Siedow (1997). The effects of salicylic acid and tobacco mosaic virus infection on the alternative oxidase of tobacco. Plant Physiol 115: 783–791.PubMedGoogle Scholar
  55. Li, L., Y. Zhang, M. Wang, Y. Zhang, X. Wu, X. Guo. (2007). Molecular cloning and expression characteristics of alternative oxidase gene of cotton. Molecular Biology Reports: on line 1573-4928Google Scholar
  56. Li, R., D.M. Stelly and N.L. Trolinder (1989). Cytogenetic abnormalities in cotton (Gossypium hirsutum L.) cell cultures. Genome 32: 1128–1134.CrossRefGoogle Scholar
  57. Liu, Q. S.P. Singh, and A. G. Green (2002). High-Stearic and High-Oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Phys. 129: 1732–1743CrossRefGoogle Scholar
  58. Logan, B.A. G. Monteiro, D. Kornyeyev, P. Payton, R. D. Allen and A.S..Holaday (2003). Transgenic overproduction of glutathione reductase does not protect cotton, Gossypium hirsutum (Malvaceae), from photoinhibition during growth under chilling conditions. American Journal of Botany ;90:1400–1403.PubMedCrossRefGoogle Scholar
  59. Luo, J-H and Gould, J.H. (1999). In vitro shoot-tip grafting improves recovery of cotton plants from culture. Plant Cell Tissue and Organ Culture 57, 211–213.CrossRefGoogle Scholar
  60. Maxwell, D.P, Y. Wang, L. McIntosh (1999). The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276.PubMedCrossRefGoogle Scholar
  61. McCabe, D. E. and Martinell, B. J. (1993). Transformation of elite cotton cultivars via particle bombardment of meristems. Bio/technol. 11,596–8.CrossRefGoogle Scholar
  62. McKersie, B.D., Y. Chen, M deBeus, S.R. Bowley, C Bowler, D. Inze, K. D’Halluin, J. Botterman. (1993). Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sative L.). Plant Physiol. 103:1155–1163.PubMedCrossRefGoogle Scholar
  63. Medberry, S.L., E. Dale, M. Qin, D. W. Ow. (1995). Intra-chromosomal rearrangements generated by Cre/lox site specific recombination. Nucleic Acids Research 23 -485–490.PubMedCrossRefGoogle Scholar
  64. Mishra, R., H-Y Wang, N. Yadav, and Wilkins, T.A. (2003). Development of highly regenerable elite Acala cotton (Gossypium hirsutum L.) A step towards genotype-independent regeneration. Plant Cell Tissue Organ Culture 73, 21–39.CrossRefGoogle Scholar
  65. Mogali, S.C., B.M. Khadi, I.S. Katageri (2007). Pollen tube pathway mediated genetic transformation studies in cotton (Gossypium hirsutum L.). International Cotton Research Conf., Lubbock, Texas.Google Scholar
  66. Oliver, M.J., J.E. Quisenberry, N.L. Trolinder, D.L. Keim (1998) Control of plant gene expression U.S. patent 7,723,765Google Scholar
  67. Oliver, M.J., J. E. Quisenberry, N.L. Trolinder, D. L. Keim (1999a). Control of Plant Gene Expression. U.S. Patent 5,979,441.Google Scholar
  68. Oliver, M.J., J.E. Quisenberry, N.L. Trolinder, D.L. Keim (1999b). Control of plant gene expression. U.S. patent 5,925,808Google Scholar
  69. Payton P., R. Webb, D. Kornyeyev, R. Allen, A. S. Holaday (2001). Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic anti-oxidant enzyme activity. Journal of Experimental Botany 52: 2345–2354PubMedCrossRefGoogle Scholar
  70. Perlak, F. J., R. W. Deaton, T. A. Armstrong, T.A. Fuchs, T. S.R. Sims, J. T. Greenplate. and D.A. Fischoff .(1990). Insect resistant cotton plants. Bio/technol. 8,939–943.CrossRefGoogle Scholar
  71. Perlak, Fredrick J. (2001). Development and commercial use of Bollgard R cotton in the USA –Google Scholar
  72. Smith, R. H., H. J.Price, J.B.Thaxton(1977). Defined conditions for the initiation and growth of cotton callus in vitro. I. Gossypium arboreum. In Vitro 13(5): 329–334.PubMedCrossRefGoogle Scholar
  73. Price, H. J., R.H. Smith (1979). Somatic embryogenesis in suspension cultures of Gossypium klotzschianum Anderss. Planta 145,305–6.CrossRefGoogle Scholar
  74. Qin, M.; D. Baley, J. Stockston, D.W. Ow, (1994). Cre recombinase mediated site-specific recombination between plant chromosomes. Proceedings National Academy Science USA 91: 1706–1710.CrossRefGoogle Scholar
  75. Quma, J.P.; Young, M.M.; and Reichert, N.A. (2004). Rooting of in vitro regenerated cotton (Gossypium hirsutum L) is influenced by genotype, medium composition, explants type and age. African Journal of Biotechnology 3 (6): 313–318.Google Scholar
  76. Rajasekaran, K., Grula, J. W., Hudspeth, R. L., Pofelis, S. and D. M. Anderson, (1996). Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Mol. Breeding 2: 307–19.CrossRefGoogle Scholar
  77. Rangan, T. S.; D. M. Anderson, M. David (1998). Method for producing somaclonal variant cotton plants. U.S. Patent 5,834,292Google Scholar
  78. Rangan, T. S. D.M. Anderson, K. Rajasekaran (1999). Cotton somaclonal variants with increased resistance to fungal pathogens; U.S Patent 5,859,321.Google Scholar
  79. Rangan, T. S., K. Rajasekaen (1997). Regeneration of cotton plants in suspension culture. U.S. patent 5,695,999.Google Scholar
  80. Rangan, T.S. and T. Zavala (1984) . Somatic embryogenesis in tissue culture of Gossypium hirsutum L.). In Vitro 20: 256.Google Scholar
  81. Rangan, T. S., D. M. Anderson, K. Rajasekaran, J.W. Grula, R. L. Hudspeth, R. L. Yenofsky, (2003). Transformation of cotton plants. U.S. Patent 6,724,344.Google Scholar
  82. Reddy, N.S., J.Y. Zhu, J.Y. Rong, T.X. Hong (2004) Pollen tube pathway mediated genetic transformation of cotton. P 356-360. In “ Strategies for sustainable cotton production – a global vision” Proc. Intern. Symp., 23-25 Nov. 2004, UAS, DWR, KRK.Google Scholar
  83. Reichert, N. A. T. Lim, M. Young, (2002). Method for transformation of cotton and organogenic regeneration. U.S. Patent 6,479,287.Google Scholar
  84. Reynaerts, A. , A. De Sonville (2002). Method for Agrobacterium mediated transformation of cotton . U.S. Patent 6,483,013.Google Scholar
  85. Shang, X. M., N. Trolinder (1991). Buffer Capacity of cotton cells and effects of extracellular pH on growth and somatic embryogenesis in cotton cell suspensions. In Vitro Cellular and Developmental Biology – Plant 27 (3): 147–152.Google Scholar
  86. Shoemaker, R.C., L.J. Couche, and D.W. Galbraith (1986). Characterization of somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.) Plant Cell Reports 3: 178–181.CrossRefGoogle Scholar
  87. Song X. , Y. Gu * , G. Qin 2007 Application of a transformation method via the pollen-tube pathway in agriculture molecular breeding. Life Science Journal;4(1):77–79 JGoogle Scholar
  88. Stalker, D.M., J.A. Kiser, G. Baldwin, B. Coulombe, C.M. Houck (1996). Cotton weed control using the BXN system. In: Herbicide-resistant crops: agricultural, environmental, economic, regulatory, and technical Aspects, pp 93–105. Duke, S.O. Ed., Lewis Publishers, New York.Google Scholar
  89. Stelly, D.M., D. W. Altman, R.J. Kohel, T.S. Rangan, and E. Commiskey (1989). Cyatogenetic abnormalities of cotton somaclones from callus cultures. Genome 32, 762–770.CrossRefGoogle Scholar
  90. Stewart, J. Mc.D, C.L. Hsu (1977). In ovulo embryo culture and seedling development of cotton (Gossypium hirsutum L.,). Planta 137:113–117.CrossRefGoogle Scholar
  91. Stipanovic, R.D., A. Stossel, J.B Stothers, D.W. Altman, A.A. Bell, P Heinstein (1986). The stereochemistry of the biosynthetic precursor of gossypol. J Chem Soc Chem Comm 2: 100–102.CrossRefGoogle Scholar
  92. Stipanovic, R.D., A.A. Bell, M.J. Lukefahr (1977) Natural insecticides from cotton (Gossypium). In PA Hedin, ed, Host Plant Resistance to Pests, Vol 62. American Chemical Society Symposium Series, Washington, DC, 197–214.CrossRefGoogle Scholar
  93. Strickland, S.G. (1998) Cotton transformation. U.S. Patent 5,846,797.Google Scholar
  94. Sun, Y. X. Zhang, C. Huang, ; Y. Nie, X. Guo (2005). Plant regeneration via somatic embryogenesis from protoplasts of six explants in Coker 201 (Gossypium hirsutum) Plant Cell Tissue and Organ Culture 82 (3): 309–315CrossRefGoogle Scholar
  95. Sun, Y. (2006). Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium species). Plant Cell Reports 25 (4).Google Scholar
  96. Sunilkumar, G., L.M. Campbell, L. Puckhaber, R.D. Stipanovic, and K.S. Rathore (2006). Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. PNAS 103(480): 18054–18059.PubMedCrossRefGoogle Scholar
  97. Thomas, J. C., D. G. Adams, V. D. Keppene, C.C. Wasmann, J. K. Brown, M. R. Kanost, H.J. Bohnert (1995). Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep. 14:758–62.CrossRefGoogle Scholar
  98. Townsend, B.J., A. Poole, C.J. Blake, D.J. Llewellyn (2005). Anti-sense Suppression of a (+) - &- Cadinene Synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. Plant Physiol. 138:516–528.PubMedCrossRefGoogle Scholar
  99. Trolinder, N. L .(1985). Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). A Dissertation in Biology (Dec., 1985) Texas Tech Univ.Google Scholar
  100. Trolinder, N. L. (1987) . Genotype specificity of the somatic embryogenesis response in cotton. Plant Cell Reports 8,133–6.CrossRefGoogle Scholar
  101. Trolinder, N. L. and J. R. Goodin, (1987). Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Reports 6: 231–4.CrossRefGoogle Scholar
  102. Trolinder N. L., J.D.Berlin, Goodin JR (1987) Differentiation of cotton fibers from single cells in suspension culture. In Vitro Cell Develop Biol 23:789–794CrossRefGoogle Scholar
  103. Trolinder, N. L.. J. R. Goodin (1988a). Somatic embryogenesis and regeneration in cotton. I. Effects of source of explant and hormone regime. Plant Cell Tissue Organ Culture 12: 31–42.Google Scholar
  104. Trolinder, N. L., J. R. Goodin (1988b). Somatic embryogenesis and regeneration in cotton. II. Requirements for embryo development and plant regeneration. Plant Cell Tissue Organ Culture 12: 43–53Google Scholar
  105. Trolinder, N. L., X. Shang (1991). In vitro selection and regeneration of cotton resistant to high temperature stress. Plant Cell Reports Vol 10 (9): 448–452..CrossRefGoogle Scholar
  106. Trolinder, N.L., J. G Dever, and L. Koonce (1999a) Transformation and regeneration of fertile cotton plants. U.S. Patent 5,986,181.Google Scholar
  107. Trolinder, N.L. (1999b) In planta method for production of transgenic plants. U.S. Patent 5,994,624.Google Scholar
  108. Trolinder, N.L., T.A. Wilkins (2002). Creation of a gene knockout population of cotton, International Cotton Research Inititive Workshop, Nanjing, China S561.Google Scholar
  109. Trolinder, L., J. Gwyn, M. Debeuckeleer (2004). Herbicide tolerant plants having event EE-GH1. U.S. Patent 6,818,807.Google Scholar
  110. Trolinder, N. L.; L.K. Koonce. J.K Dever. (2006). Methods for producing transgenic cotton plants using chilled apical shoot tips. US Patent 7,122,722.Google Scholar
  111. Tuli, R.; A. K. Srivastana, S. K. Gupta, (2001). Tissue Culture process for producing a large number of viable cotton plants in vitro. U.S. Patent 6,242,257Google Scholar
  112. Ulian, E.C., R.H. Smith, J.H. Gould, and T. D. McKnight. (1988). Transformation of plants via the shoot apex. In Vitro Cell & Devel. Bio. 24:951–954.CrossRefGoogle Scholar
  113. Umbeck, P. F. (1991). Genetic engineering of cotton plants and lines. US Patent No. 5,004,863.Google Scholar
  114. Umbeck, P. F. (1992). Genetic engineering of cotton plants and lines. US Patent No. 5,159,135Google Scholar
  115. Umbeck, P. F, Johnson, G., Barton, K. and Swain, W. (1987). Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio/technol. 5,263–6.CrossRefGoogle Scholar
  116. Van Haaren, M. J.J.; Ow, D.W. (1993). Prospects of applying a combination of DNA transposition and site specific recombination in plants. Plant Molecular Biology 23: 525–533.PubMedCrossRefGoogle Scholar
  117. Veech, J.A., R.D. Stipanovic, A.A. Bell (1976). Peroxidative conversion of hemigossypol to gossypol: a revised structure for isohemigossypol. J Chem Soc Chem Comm: 144–145Google Scholar
  118. Wagner, A.M., A.L. Moore (1997) Structure and function of the plant alternative oxidase: its putative role in the oxygen defence mechanism. Biosci Rep 17:319–333.PubMedCrossRefGoogle Scholar
  119. Wang, Y., X., Z. Ma, G. Zhang, G. Han. (2006). Somatic embryogenesis and plant regeneration from two recalcitrant genotypes of Gossypium hirsutum L Chinas Agricultural Science 05.Google Scholar
  120. Wilkins, T. A., R. Mishra, and N.L. Trolinder (2004). Agrobacterium-mediated transformation and regeneration of cotton. Food, Agriculture & Environ 2(1):179–187.Google Scholar
  121. Willems, K, R. Swennen (2006). Protoplast to plant regeneration in cotton (Gossypium hirsutum L cv Coker 312) using feeder layers. Plant Cell Reports 13(3–4) 208–211.Google Scholar
  122. Yan, J., C. He, J. Wang, Z. Mao, S.A. Holaday, R. D. Allen and H. Zhang. (2004). Overexpression of the Arabidopsis 14–3-3 Protein GF14 in Cotton Leads to a “Stay-Green” Phenotype and Improves Stress Tolerance under Moderate Drought Conditions. Plant and Cell Physiology 45(8):1007–1014.PubMedCrossRefGoogle Scholar
  123. Zeng, F.;, X. Zhang, L. Zhu, X. Guo, Y. Nie (2006). Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Molecular Biology Vol 60(2) 167–183.PubMedCrossRefGoogle Scholar
  124. Zhong, H., E. Boudreau, S. Rouse, E. Dunder, W.. Gu, Y. Chang, (2005). Methods for stable transformation of plants. U. S. patent 6,858,777.Google Scholar
  125. Zhang, B. R. Feng, F. Lin, Q. Wang, (2001). High frequency somatic embryogenesis and plant regeneration of an elite Chinese cotton variety. Bot. Bull Acad Sin 42: 9–16.Google Scholar
  126. Zhou, G.-Y., Weng, J., Zeng, Y.-S., Huang, J.-G., Qian, S.-Y. and Liu, G.-L. 1983. Introduction of exogenous DNA into cotton embryos. Methods in Enzymology 101,433–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Norma L. Trolinder

There are no affiliations available

Personalised recommendations