The Worldwide Gene Pool of Gossypium barbadense L. and Its Improvement

  • Richard G. Percy
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 3)


This chapter describes the improved and unimproved gene pools of Gossypium barbadense. Section one discusses the taxonomic and geographic structure of species diversity. Section two describes the origin and development of modern improved germplasm pools, beginning with Sea Island cottons developed in the Caribbean and the coastal Southeast of the United States in the late 18th century. The origins and development of the Egyptian and Amercian Pima germplasm pools are sketched. Finally, smaller but significant gene pools created in Peru, Israel, and Australia are discussed. The role of interspecific introgression with G. hirsutum in broadening the improved germplasm pool is noted. In section three unimproved genetic resources in situ and in germplasm collections are examined.


Gene Pool Fusarium Wilt Fiber Quality Germplasm Pool Bacterial Blight Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Balls, W.L. (1919) The Cotton Plant in Egypt. MacMillan and Co., London.Google Scholar
  2. Barroso, P.A., Batisita, C.E., Hoffman, L.V. and Ciampi, A.Y. (2006) Genetic structure and in situ conservation of natural populations of Gossypium mustelinum. Int. Cotton Genome Initiative Res. Conf. Brasilia, Brazil.Google Scholar
  3. Brown, C.H. (1953) Egyptian Cotton. Leonard Hill Ltd., London.Google Scholar
  4. Brown, H.B. (1938) Cotton. McGraw-Hill, New York.Google Scholar
  5. Constable, G. (2007) Program Leader, Cotton Management and Improvement, CSIRO, Australia, personal communication.Google Scholar
  6. Davis, D.D. (1978) Hybrid cotton − specific problems and potentials. Adv. Agron. 30, 129–157.CrossRefGoogle Scholar
  7. Dessauw, D. and Hau, B. (2007) Inventory and history of the CIRAD cotton (Gossypium spp.) germplasm collection. Plant Gen. Res. Newsletter 147, 53–58.
  8. Dunn, R.P. (1949) Cotton in Egypt. National Cotton Council, Memphis, TN.Google Scholar
  9. Feaster, C.V., and Turcotte, E.L. (1962) Genetic basis for varietal improvement of Pima cottons. USDA-ARS Bull. 34–31.Google Scholar
  10. Feaster, C.V., and Turcotte, E.L. (1965) Fruiting height response: a consideration in varietal improvement of Pima cotton, Gossypium barbadense L. Crop Sci. 5, 460–464.CrossRefGoogle Scholar
  11. Feaster, C.V., and Turcotte, E.L. (1976) Registration of Pima S-4 cotton. Crop Sci. 16, 604.Google Scholar
  12. Feaster, C.V., and Turcotte, E.L. (1976) Registration of Pima S-5 cotton. Crop Sci. 16, 604.Google Scholar
  13. Feaster, C.V., and Turcotte, E.L. (1984) Registration of Pima S-6 cotton. Crop Sci. 24, 382.CrossRefGoogle Scholar
  14. Feaster, C.V., Turcotte, E.L. and Young, E.F. (1967) Pima cotton varieties for low and high elevations. USDA-ARS Bull. 34–90.Google Scholar
  15. Feaster, C.V., Young, E.F. and Turcotte, E.L. (1980) Comparison of artificial and natural selection in American Pima cotton under different environments. Crop Sci. 20, 555–559.CrossRefGoogle Scholar
  16. Fishler, G. 2007. The history and performance of the Eden Fusarium resistant Pima varieties (compiled from Hebrew reports 1986–1987). Personal communication.Google Scholar
  17. Fryxell, P.A. (1965) Stages in the evolution of Gossypium L. Advan. Front. Pl. Sci. 10, 31–56.Google Scholar
  18. Fryxell, P.A. (1979) The Natural History of the Cotton Tribe. Texas A&M University Press, College Station and London.Google Scholar
  19. Harland, S.C. (1936) Some notes on cotton in Columbia. Trop. Agric. Trinidad 13, 1–13.Google Scholar
  20. Hutchinson, J.B. (1959) The Application of Genetics to Cotton Improvement. Cambridge University Press, Cambridge.Google Scholar
  21. Hutchinson, J. B. and Manning, H.L. (1943) The efficiency of progeny row breeding in cotton improvement. Emp. J. Exp. Agr. 11, 140.Google Scholar
  22. Hutchinson, J.B., Silow, R.A., and Stephens, S.G. (1947) The Evolution of Gossypium. Oxford University Press, London, New York, Toronto.Google Scholar
  23. Hutmacher, R.B., Davis, R.M., Ulloa, M., Wright, S., Munk, D.S., Vargas, R.N., Roberts, B.A., Marsh, B.H., Keeley, M.P., Kim, Y. and Percy, R.G. (2005) Fusarium in Acala and Pima cotton: symptoms and disease development. Proc. Beltwide Cotton Conf., New Orleans, LA, pp. 245–246.Google Scholar
  24. Kearney, T.H. (1943) Egyptian-type cottons: their origin and characteristics. Report of Division of Cotton and Other Fiber Crops and Diseases, USDA Mimeo (unnumbered).Google Scholar
  25. Kerr, T. (1960) The potentials of barbadense cottons. Proc. 12th Ann. Cotton Imp. Conf., Memphis, TN, pp 57–60.Google Scholar
  26. Kim, Y., Hutmacher, R.B. and Davis, R.M. (2005) Characterization of California isolates of Fusarium oxysporum f. sp. vasinfectum. Plant Dis. 89, 366–372.CrossRefGoogle Scholar
  27. Lazo, J. (2007) Ficha Tecnica de la variedad Pima-IPA-59. Release notice of Instituto Peruano del Algodon − IPA (Peruvian Cotton Institute).Google Scholar
  28. Lu, Z., Percy, R.G., and E. Zeiger. (1998) Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures. J. Exp. Bot. 49, 453–460.CrossRefGoogle Scholar
  29. Mauer, F.M. (1930) The cottons of Mexico, Guatemala, and Colombia. Bull. Appl. Bot. Genet. Pl. Breed. Suppl. 47, 543–553.Google Scholar
  30. McGowan, J.C. (1961) History of Extra-long Staple Cottons. Hill Printing Co., El Paso, Tex.Google Scholar
  31. Peebles, R.H. (1950) 1950 long staple picture changed. Cotton Trade J., April 14, 7–8.Google Scholar
  32. Peebles, R.H. (1954) Current status of American-Egyptian cotton breeding. Proc. 6th Cotton Imp. Conf. 1954, 1–8.Google Scholar
  33. Percy, R.G. (1998) Registration of extra-long staple cotton germplasm, 89590 and 8810. Crop Sci. 38, 1407.CrossRefGoogle Scholar
  34. Percy, R.G. (2002) Registration of five extra-long staple cotton germplasm lines possessing superior fiber length and strength. Crop Sci. 42, 988.CrossRefGoogle Scholar
  35. Percy, R.G. and Wendel, J.F. (1990) Allozyme evidence for the origin and diversification of Gossypium barbadense L. Theor. Appl. Genet. 79, 529–542.CrossRefGoogle Scholar
  36. Piperno, D.R. and Pearsall, D.M. (1998) The Origins of Agriculture in the Lowland Neotropics. Academic Press, San Diego.Google Scholar
  37. Radin, J.W., Lu, Z., Percy, R.G., and Zeiger, E. (1994) Genetic variation for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation. Proc. Natl. Acad. Sci. 91, 7217–7221.PubMedCrossRefGoogle Scholar
  38. Rossen, J., Dillehay, T.D., and Ugent, D. (1996) Ancient cultigens or modern intrusions? Evaluating plant remains in an Andean case study. J. Archaeol. Sci, 23, 391–407.CrossRefGoogle Scholar
  39. Rubenstein, K.D., Heisey, P., Shoemaker, R., Sullivan, J. and Frisvold, G. (2005) Crop genetic resources. An economic appraisal. USDA-ERS, Economic Information Bull. 2.
  40. Scofield, C.S., Kearney, T.H., Brand, C.J., Cook, O.F., and Swingle, W.T. (1919) Production of American Egyptian cotton. USDA Bull. 742.Google Scholar
  41. Singh, V.V., Mohan, P., Kulkarni, V.N., Baitule, S.J. and Pathak, B.R. (2003) Explorations within India for collection of cotton species germplasm. Plant Gen. Res. Newsletter 136, 40–46. Google Scholar
  42. Smith, C.W., Cantrell, R.G., Moser, H.S., and Oakley, S.R. (1999) History of cultivar development in the United States. In: C.W. Smith and J.T. Cothren (Eds.), Cotton. John Wiley, New York, pp. 99–171.Google Scholar
  43. Stephens, S.G. (1975) Some observations on photoperiodism and the development of annual forms of domesticated cottons. Econ. Bot. 30, 409–418.CrossRefGoogle Scholar
  44. Stephens, S.G. (1976) The origin of Sea Island cotton. Agric. Hist. 50, 391–399.Google Scholar
  45. Stephens, S.G. and Moseley, M.E. (1974) Early domesticated cottons from archaeological sites in central coastal Peru. Am. Antiquity 39, 109–122.CrossRefGoogle Scholar
  46. Ulloa, M., Hutmacher, R.B., Davis, R.M., Wright, S.D., Percy, R.G., and Marsh, B. (2006) Breeding for Fusarium Wilt race 4 resistance in cotton under field and greenhouse conditions. J. Cotton Sci. 10, 114–127.Google Scholar
  47. U.N. FAO (1996b) Report on the state of the world’s plant genetic resources. FAO, Rome, Italy.
  48. USDA-ARS-National Genetic Resources Program (2007) Germplasm Resources Information Network (GRIN) database.
  49. Wang, G.L., Dong, J.M. and Paterson, A.H. (1995) The distribution of Gossypium hirsutum chromatin in G. barbadense germ plasm: molecular analysis of introgressive plant breeding. Theor. Appl. Genet. 91, 1153–1161.Google Scholar
  50. Ware, J.O. (1936) Plant breeding and the cotton industry. In: Yearbook of Agriculture. United States Dept. Agriculture, Government Printing Office, Washington, DC, pp. 657–744.Google Scholar
  51. Watt, G. (1907) TheWild and Cultivated Cotton Plants of the World. Longmans, Green, and Co. London, New York, Bombay, and Calcutta.Google Scholar
  52. Wendel, J.F. and Percy, R.G. (1990) Allozyme diversity and introgression in the Galapagos-Islands endemic Gossypium darwinii and its relationship to continental Gossypium barbadense. Biochem. Syst. Ecol. 18, 517–528.CrossRefGoogle Scholar
  53. Weidong, G., Fang, J., Zheng, D., Li, Y., Lu, X., Rao, R., Hodgkin, T. and Zongwen, Z. (2000) Utilization of germplasm conserved in Chinese national genebanks − a survey. Plant Gen. Res. Newsletter 123, 1–8
  54. Westengen, O.T., Huaman, Z., and Heun, M. (2005) Genetic diversity and geographic pattern in early South American cotton domestication. Theor. Appl. Genet. 110, 392–402.PubMedCrossRefGoogle Scholar
  55. Young, E.F., Feaster, C.V., and Turcotte, E.L. (1976) Registration of Pima S-3 cotton. Crop Sci. 16, 604.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.USDA-ARS, Southern Plains Agricultural Research CenterCollege StationUSA

Personalised recommendations