Advertisement

Responses of the Cotton Genome to Polyploidy

  • Keith L. Adams
  • Lex Flagel
  • Jonathan F. Wendel
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 3)

Abstract

Cotton has been developed as a particularly useful model system for examining the responses of the genome to polyploidy. Recent studies have provided novel insights and perspectives on genome-wide consequences of polyploidy, as well as the responses of individual genes and effects on gene expression. Comparative BAC sequencing has revealed evidence of genome downsizing in G. hirsutum. Expression studies have shown extensive organ-specific gene silencing and expression changes upon allopolyploidy that continue over evolutionary time. Expression patterns can be partitioned between homoeologous genes such that only one copy is expressed in some organs and only the other copy is expressed in other organs. Abiotic stress can have major effects on the expression of homoeologous genes. Larger scale approaches are starting to be employed that discriminate expression of thousands of homoeologs in a single experiment. An improved understanding of the genomic responses to polyploidy will likely have implications and applications for cotton crop improvement.

Keywords

Abiotic Stress Condition Cotton Genome Homoeologous Gene Allopolyploid Species Expression Bias 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank a reviewer for helpful comments on the manuscript. Research on cotton genome and gene expression evolution in the Wendel lab has been funded by the NSF Plant Genome and the USDA NRI programs, whose support we gratefully acknowledge.

References

  1. Adams K.L., Cronn R., Percifield R., and Wendel J.F. (2003). Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100, 4649–4654.PubMedCrossRefGoogle Scholar
  2. Adams K.L., Percifield R., and Wendel J.F. (2004). Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics 168, 2217–2226.PubMedCrossRefGoogle Scholar
  3. Adams K.L. and Wendel J.F. (2005). Allele-specific, Bi-directional Silencing of an Alcohol Dehydrogenase Gene in Different Organs of Interspecific Diploid Cotton Hybrids. Genetics. 171, 2139–2142.PubMedCrossRefGoogle Scholar
  4. Adams K.L. (2008) Insights into the evolution of deplicated gene expression in polyploids from Gossypium. Botany 86, 827–834.Google Scholar
  5. Bennett, M.D. and Leitch, I.J. (2005) Genome size evolution in plants. In: T. R. Gregory (Ed.) The evolution of the genome. Elsevier, San Diego, pp. 89–162.Google Scholar
  6. Brubaker, C. L., Paterson, A. H., and Wendel, J. F. (1999). Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42, 184–203.CrossRefGoogle Scholar
  7. Cronn, R. C., Zhao, X., Paterson, A. H., and Wendel, J. F. (1996). Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J. Mol. Evol. 42, 685–705.PubMedCrossRefGoogle Scholar
  8. Cronn, R., Small, R. L., and Wendel, J. F. (1999). Duplicated genes evolve independently following polyploid formation in cotton. Proc. Natl. Acad. Sci. USA 96, 14406–14411.PubMedCrossRefGoogle Scholar
  9. Elder, J. F., and Turner, B. J. (1995). Concerted evolution of repetitive DNA sequences in eukaryotes. Quart. Rev. Biol. 70, 297–320.PubMedCrossRefGoogle Scholar
  10. Feldman, M., Liu, B., Segal, G., Abbo, S., Levy, A. A., and Vega, J. M. (1997). Rapid elimination of low-copy DNA sequences in polyploid wheat: A possible mechanism for differentiation of homoeologous chromosomes. Genetics 147, 1381–1387.PubMedGoogle Scholar
  11. Flagel L., Udall J., Nettleton D., Wendel J.F. (2008) Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol. 6(16).Google Scholar
  12. Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y.-L., and Postlethwait, J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545.PubMedGoogle Scholar
  13. Grover C.E., Kim H., Wing R.A., Paterson A.H., and Wendel J.F. (2007) Microcolinearity and genome evolution in the AdhA region of diploid and polyploid cotton (Gossypium). Plant J. 50, 995–1006.PubMedCrossRefGoogle Scholar
  14. Grover CE, Kim H, Wing RA, Paterson AH, Wendel JF. (2004) Incongruent patterns of local and global genome size evolution in cotton. Genome Res. 14, 1474–1482.PubMedCrossRefGoogle Scholar
  15. Hanson, R. E., Islam-Faridi, M. N., Crane, C. F., Zwick, M. S., Czeschin, D. G., Wendel, J. F., Mcknight, T. D., Price, H. J., and Stelly, D. M. (1999). Ty1-copia-retrotransposon behavior in a polyploid cotton. Chromosome Res. 8, 73–76.CrossRefGoogle Scholar
  16. Hanson, R. E., Zhao, X.-P., Islam-Faridi, M. N., Paterson, A. H., Zwick, M. S., Crane, C. F., McKnight, T. D., Stelly, D. M., and Price, H. J. (1998). Evolution of interspersed repetitive elements in Gossypium (Malvaceae). Amer. J. Bot. 85, 1364–1368.CrossRefGoogle Scholar
  17. Joly S, Rauscher JT, Sherman-Broyles SL, Brown AH, Doyle JJ. (2004) Evolutionary dynamics and preferential expression of homoeologous 18S-5.8S-26S nuclear ribosomal genes in natural and artificial glycine allopolyploids. Mol Biol Evol. 21, 1409–1421.PubMedCrossRefGoogle Scholar
  18. Lim K.Y., Skalicka K., Koukalova B., Volkov R.A., Matyasek R., Hemleben V., Leitch A.R., Kovarik A. (2004). Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana. Genetics. 166, 1935–1946.PubMedCrossRefGoogle Scholar
  19. Liu, B., Vega, J. M., and Feldman, M. (1998a). Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome 41, 535–542.Google Scholar
  20. Liu, B., Vega, J. M., Segal, G., Abbo, S., Rodova, M., and Feldman, M. (1998b). Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy non-coding DNA sequences. Genome 41, 272–277.Google Scholar
  21. Liu, B., Brubaker, C. L., G M. Cronn, R. C., and Wendel, J. F. (2001). Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 43, 874–880.CrossRefGoogle Scholar
  22. Liu, Z. and Adams, K. L. (2007) Expression partitioning of genes duplicated by polyploidy in response to abiotic stress and during organ development. Curr. Biol., in press.Google Scholar
  23. Lukens L.N, Pires J.C, Leon E., Vogelzang R., Oslach L., and Osborn T., (2006). Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140, 336–348.PubMedCrossRefGoogle Scholar
  24. Lynch M., and Force A.G., (2000). The probability of duplicate gene preservation by subfunctionalization. Genetics 154: 459–473.PubMedGoogle Scholar
  25. Liu, B. and J. F. Wendel. (2002) Non-Mendelian phenomena in allopolyploid genome evolution. Current Genomics 3, 489–506.CrossRefGoogle Scholar
  26. Ozkan, H., Levy, A. A., and Feldman, M. (2001). Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13, 1735–1747.PubMedCrossRefGoogle Scholar
  27. Senchina, D. S., Alvarez, I., Cronn, R. C., Liu, B., Rong, J., Noyes, R. D., Paterson, A. H., Wing, R. A., Wilkins, T. A., and Wendel, J. F. (2003). Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol. Biol. Evol. 20, 633–643.PubMedCrossRefGoogle Scholar
  28. Shaked, H., Kashkush, K., Ozkan, H., Feldman, M., and Levy, A. A. (2001). Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13: 1749–1759.PubMedCrossRefGoogle Scholar
  29. Small, R. L., Ryburn, J. A., and Wendel, J. F. (1999). Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). Mol. Biol. Evol. 16, 491–501.PubMedGoogle Scholar
  30. Small, R. L., and Wendel, J. F. 2002. Differential evolutionary dynamics of duplicated paralogous Adh loci in allotetraploid cotton (Gossypium). Mol. Biol. Evol. 19, 597–607.PubMedCrossRefGoogle Scholar
  31. Song, K., Lu, P., Tang, K., and Osborn, T. C. (1995). Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc. Natl. Acad. Sci. USA 92, 7719–7723.PubMedCrossRefGoogle Scholar
  32. Udall, J. A., Swanson, J. M., Nettleton, D., Percifield, R. J., and J. F. Wendel, (2006) Genetics 173, 1823–1827.PubMedCrossRefGoogle Scholar
  33. Wendel, J. F., Schnabel, A., and Seelanan, T. (1995). Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl. Acad. Sci. USA 92: 280–284.PubMedCrossRefGoogle Scholar
  34. Wendel, J. F. (2000). Genome evolution in polyploids. Plant Mol. Biol. 42, 225–249.PubMedCrossRefGoogle Scholar
  35. Zhao, X.-P., Si, Y., Hanson, R. E., Crane, C. F., Price, H. J., Stelly, D. M., Wendel, J. F., and Paterson, A. H. (1998). Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res. 8, 479–492.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Keith L. Adams
    • 1
  • Lex Flagel
  • Jonathan F. Wendel
  1. 1.Department of Botany and UBC Botanical Garden and Centre for Plant ResearchUniversity of British ColumbiaVancouverCanada

Personalised recommendations