Genomics of Cotton Fiber Secondary Wall Deposition and Cellulose Biogenesis

  • Candace H. Haigler
  • Bir Singh
  • Guirong Wang
  • Deshui Zhang
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 3)


The deposition of > 90% cellulose in the cotton fiber secondary wall makes this unique cell powerful for understanding cellulose biogenesis, a process with great importance in nature and industry. This chapter provides an overview of cellulose biogenesis, summarizes how cotton fiber has previously facilitated unique insights in this field, and explains how cellulose is important in terms of cotton fiber physical properties. The nature of the cotton fiber secondary wall transcriptome is discussed, including comparisons to primary-wall-stage fiber and the Arabidopsis proteome. Microarray data, including validation by quantitative reverse transcription PCR, are described to show that transcriptomes for secondary wall deposition in cotton fiber and xylem are similar. The functional context of selected genes that are up-regulated for secondary wall deposition is discussed.


Cotton Fiber Secondary Wall Tension Wood Fiber Development Primary Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Cotton Incorporated, Cary, NC supported the microarray and bioinformatics analyses, with additional support from North Carolina State University. Special thanks go to Curtis Wilkerson and Jeff Landgraf, Research Technology Support Facility/Bioinformatics at Michigan State University, for carrying out the microarray analysis. NSF Plant Genome Research Program grants, #DBI-0211797, R98RA1829, and #DBI-0110173, supported making and sequencing the G.h.fbr-sw SSH library.


  1. Adams, K.L. and Wendel, J.F. (2004) Exploring the genomic mysteries of polyploidy in cotton. Biol. J. Linn. Soc. 82: 573–581.Google Scholar
  2. Amor Y., Haigler, C.H., Johnson, S., Wainscott, M. and Delmer, D.P. (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 92: 9353–9357.PubMedGoogle Scholar
  3. Arpat, A., Waugh, M.P., Sullivan, J., Gonzales, M., Frisch, D., Main, D., Wood, T., Leslie, A., Wing, R. and Wilkins, T. (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol. Biol. 54: 911–929.PubMedGoogle Scholar
  4. Arthur, J.C. (1990) Cotton. In: J.I. Kroschwitz (Ed.), Polymers: Fibers and Textiles, a Compendium, John Wiley and Sons, New York, pp. 118–141.Google Scholar
  5. Aspeborg, H., Schrader, J., Coutinho, P.M., Stam, M., Kallas, A., Djerbi, S., Nilsson, P., Denman, S., Amini, B., Sterky, F., Master, E., Sandberg, G., Mellerowicz, E., Sundberg, G., Henrissat, B. and Teeri, T.T. (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol. 137: 983–997.PubMedGoogle Scholar
  6. Baskin, T.I. (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215: 150–171.PubMedGoogle Scholar
  7. Benedict, C.R., Kohel, R.J. and Jividen, G.M. (1994) Crystalline cellulose and cotton fiber strength. Crop Sci. 34: 147–151.Google Scholar
  8. Benedict, C.R., Kohel, R.J. and Lewis, H.L. (1999) Cotton fiber quality, In: C.W. Smith, J.T. Cothren (Eds.), Cotton: Origin, History, Technology, and Production, John Wiley & Sons, New York, pp. 269–288.Google Scholar
  9. Bieniawska, Z., Paul Barratt, D.H., Garlick, A.P., Thole, V., Kruger, N.J., Martin, C., Zrenner, R. and Smith, A.M. (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J. 49: 810–828.PubMedGoogle Scholar
  10. Bonaldo, M.F., Lennon, G. and Soares, M.B. (1996) Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res. 6:791–806.PubMedGoogle Scholar
  11. Bowman, J.L., Floyd, S.K. and Sakakibara, K. (2007) Green genes—comparative genomics of the green branch of life. Cell 129: 229–234.PubMedGoogle Scholar
  12. Bradow, J.M. and Davidonis, G.W. (2000) Review: Quantitation of fiber quality and the cotton production-processing interface: A physiologist’s perspective. J. Cotton Sci. 4: 34–64.Google Scholar
  13. Brady, S.M., Song, S., Dhugga, K.S., Rafalski, J.A. and Benfey, P.N. (2007) Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol. 143:172–87.PubMedGoogle Scholar
  14. Brocard-Gifford, I., Lynch, T. J., Garcia, E. M., Malhotra, B. and Finklestein, R. R. (2004) The Arabidopsis thaliana abscisic acid insensitive8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16: 406–421.PubMedGoogle Scholar
  15. Brown, D.M., Zeef, L. A.-H., Ellis, J., Goodacre, R. and Turner, S.R. (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell: 17: 2281–2295.PubMedGoogle Scholar
  16. Brown, R.M. Jr. and Saxena, I.M. (Eds.) (2007) Cellulose: Molecular and Structural Biology. Springer, Dordrecht, 379 pp.Google Scholar
  17. Burk, D.H. and Ye, Z.-H. (2002) Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule severing protein. Plant Cell 14: 2145–2160.PubMedGoogle Scholar
  18. Busch, W. and Lohmann, J.U. (2007) Profiling a plant: expression analysis in Arabidopsis. Curr. Opin. Plant Biol. 10: 136–141.PubMedGoogle Scholar
  19. Carpita, N.C. and Delmer, D.P. (1981) Concentration and metabolic turnover of UDP-glucose in developing cotton fibers. J. Biol. Chem. 256: 308–315.PubMedGoogle Scholar
  20. Chanzy, H., Imada, K. and Vuong, R. (1978) Electron diffraction from the primary wall of cotton fibers. Protoplasma 94: 299–306.Google Scholar
  21. Chu, A., Chen, H., Zhang, Y., Zhang, Z., Zheng, N., Yin, B., Yan, H., Zhu, L., Zhao, X., Yuan, M., Zhang, X. and Xie, Q. (2007) Knockout of the AtCESA2 gene affects microtubule orientation and causes abnormal cell expansion in Arabidopsis. Plant Physiol. 143: 213–224.PubMedGoogle Scholar
  22. Cronn, R.C., Small, R.L. and Wendel, J.F. (1999) Duplicated genes evolve independently after polyploidy formation in cotton. Proc. Natl. Acad. Sci. USA 96: 14406–14411.PubMedGoogle Scholar
  23. Delmer, D.P. (1999 Cellulose biosynthesis in developing cotton fibers. In: A.S. Basra (Ed.), Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing, The Haworth Press, New York, pp. 85–112.Google Scholar
  24. Diatchenko, L., Lau, Y.C., Campbell, A.P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K. Gurskaya, N., Sverdlov, E.D. and Siebert, P.D. (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93:6025–6030.PubMedGoogle Scholar
  25. Diotallevi, F. and Mulder, B. (2007) The cellulose synthase complex: a polymerization driven supramolecular motor. Biophys. J. 92: 2666–2673.PubMedGoogle Scholar
  26. Endrizzi, J.E., Turcotte, E.L. and Kohel, R.J. (1985) Genetics, cytology, and evolution of Gossypium. Adv. Gen. 23: 271–354.Google Scholar
  27. Farrokhi, N., Burton, R.A., Brownfield, L., Hrmova, M., Wilson, S.M., Bacic, A. and Fincher, G.B. (2006) Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to identification of key genes. Plant Biotech. J. 4: 145–167.Google Scholar
  28. Franz, G. (1969) Soluble nucleotides in growing cotton hair. Phytochem. 8: 737–741.Google Scholar
  29. Fryxell, P.A. (1979) The Natural History of the Cotton Tribe (Malvaceae, Tribe Gossypieae). Texas A&M University Press, College Station, 245 pp.Google Scholar
  30. Gipson, J.R. (1986) Temperature effects on growth, development, and fiber properties. In: J.R. Mauney and J. McD. Stewart (Eds.), Cotton Physiology, The Cotton Foundation, Memphis, pp. 47–56.Google Scholar
  31. Guo, J.-Y., Wang, L.-J., Chen, S.-P., Hu, W.-L. and Chen, X.-Y. (2007) Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary wall synthesis. Cell Research 2007: 1–13.Google Scholar
  32. Gutierrez, R.A., Green, P.J., Keegstra, K. and Ohlrogge, J.B. (2004) Phylogenetic profiling of the Arabidopsis thaliana proteome: what proteins distinguish plants from other organisms. Genome Biology 5:R53 (
  33. Haigler, C.H. (1985) The functions and biogenesis of native cellulose, In: S.H. Zeronian and T.P. Nevell TP (Eds.), Cellulose Chemistry and its Applications, Ellis Horwood, Chichester, pp 30–83.Google Scholar
  34. Haigler, C.H. (1991) The relationship between polymerization and crystallization in cellulose biogenesis, In: C.H. Haigler and P. Weimer (Eds.), Biosynthesis and Biodegradation of Cellulose, Marcel Dekker, New York, pp 99–124.Google Scholar
  35. Haigler, C.H., Ivanova-Datcheva, M., Hogan, P.S. Salnikov, V.V., Hwang, S., Martin, L.K. and Delmer, D.P. (2001) Carbon partitioning to cellulose synthesis. Plant Mol. Biol. 47: 29–51.PubMedGoogle Scholar
  36. Haigler, C.H., Zhang, D. and Wilkerson, C.G. (2005) Biotechnological improvement of cotton fibre maturity. Physiol. Plant. 124: 285–294.Google Scholar
  37. Haigler, C.H. (2006) Establishing the cellular and biophysical context of cellulose synthesis. In: T. Hayashi (Ed.), The Science and Lore of the Plant Cell Wall: Biosynthesis, Structure and Function, BrownWalker Press: Boca Raton, pp. 97–105.Google Scholar
  38. Haigler, C.H. (2007) Substrate supply for cellulose synthesis and its stress sensitivity in the cotton fiber. In: R.M. Brown Jr, and I. Saxena (Eds.), Cellulose: Molecular and Structural Biology, Springer: New York, pp. 145–166.Google Scholar
  39. Haigler, C.H., Singh, B., Zhang, D., Hwang, S., Wu, C., Cai, W.X., Hozain, M., Kang, W., Kiedaisch, B., Strauss, R.E., Hequet, E.F., Wyatt, B.G., Jividen, G.M. and Holaday, A.S. (2007) Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions. Plant Mol. Biol. 63: 815–832.PubMedGoogle Scholar
  40. Han, Z.G., Guo, W.Z., Song, X.L. and Zhang, T.Z, (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol. Gen. Genom. 272: 308–327.Google Scholar
  41. Hardin, S.C., Duncan, K.A. and Huber, S.C. (2006) Determination of structural requirements and probable regulatory effectors for membrane association of maize sucrose synthase. Plant Physiol. 141: 1106–1119.PubMedGoogle Scholar
  42. Heinze ,T. (1998) New ionic polymers by cellulose functionalization. Macromol. Chem. Phys. 1999: 2341–2364.Google Scholar
  43. Hertzberg, M., Aspeborg, H., Schrader. J., Andersson, A., Erlandsson, R., Blomqvist, K., Bhalerao, R., Uhlén, M., Teeri, T.T., Lundeberg, J., Sundberg, B., Nilsson, and P. Sandberg, G. (2001) A transcriptional roadmap to wood formation. Proc. Natl. Acad. Sci. USA 98: 14732–14737.PubMedGoogle Scholar
  44. Hindeleh, A.M., Johnson, D.J. and Monatgue, P.E. (1980) Computational methods for profile resolution and crystallite size evaluation in fibrous polymers, In: A.D. French and K.H. Gardener (Eds.), Fiber Diffraction Methods: ACS Symposia no. 141, p. 149–182.Google Scholar
  45. Howles, P.A., Birch, R.J., Collings, D.A., Gebbie, L.K., Hurley, U.A., Hocart, C.H., Arioli, T. and Williamson, R.E. (2006) A mutation in an Arabidopsis ribose 5-phosphate isomerase reduces cellulose synthesis and is rescued by exogenous uridine. Plant J. 48: 606–618.PubMedGoogle Scholar
  46. Hsieh, Y.-L. (1999) Structural development of cotton fibers and linkages to fiber quality. In: A.S. Basra (Ed.), Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing, The Haworth Press, New York, pp. 137–166.Google Scholar
  47. Hsieh, Y.-L., Hu, X.P. and Nguyen, A. (1997) Strength and crystalline structure of developing Acala cotton. Text. Res. J. 67: 529–536.Google Scholar
  48. Hu, X.P. and Hsieh, Y.-L. (1996) Crystalline structure of developing cotton fibers. J. Polym. Sci.: Part B: Polym. Phys. 34: 1451–1459.Google Scholar
  49. Hu, H.Y., Zhong, R., Morrison, W. and Ye, Z. (2003) The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization. Planta 217: 912–921.PubMedGoogle Scholar
  50. Hutchinson, J.B., Stephens, S.G. and Dodds, K.S. (1945) The seed hairs of Gossypium. Ann. Bot. IX (36): 360–368.Google Scholar
  51. Jacob-Wilk, D., Kurek, I., Hogan, P. and Delmer, D.P. (2006) The cotton fiber zinc-binding domain of cellulose synthase A1 from Gossypium hirsutum displays rapid turnover in vitro and in vivo. Proc. Natl. Acad. Sci. USA 103: 12191–12196.PubMedGoogle Scholar
  52. Ji, S.J., Lu,Y.C., Feng,J.X., Wei,G., Li,J., Shi,Y.H., Fu,Q., Liu,D., Luo,J.C. and Zhu, Y.X. (2003) Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res. 31: 2534–2543.PubMedGoogle Scholar
  53. Jiang, C., Wright, R.J., El-Zik, K.M. and Paterson, A.H. (1998) Polyploid formation created unique avenues for response to selection in Gossypium. Proc. Natl. Acad. Sci. USA 95(8): 4419–4424.PubMedGoogle Scholar
  54. Joshi, C.P. and Mansfield, S.D. (2007) The cellulose paradox—simple molecule, complex biosynthesis. Curr. Opin. Plant Biol. 10: 220–226.PubMedGoogle Scholar
  55. Ko, J.-H., Beers, E.P. and Han, K.H. (2006) Global comparative transcriptome analysis identifies gene network regulating secondary xylem development in Arabidopsis thaliana. Mol. Gen. Genet. 276: 517–531.Google Scholar
  56. Kim, H.J. and Triplett, B.A. (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 127: 1361–1366.PubMedGoogle Scholar
  57. Kim, H.J., Williams, M.Y. and Triplett, B.A. (2002) A novel expression assay system for fiber-specific promoters in developing cotton fibers. Plant Mol, Biol. Rep 20: 7–18.Google Scholar
  58. Kurek, I., Kawogoe, Y., Jacob-Wilk, D., Doblin, M. and Delmer, D. (2002) Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domain. Proc. Natl. Acad. Sci. 99: 11109–11114.PubMedGoogle Scholar
  59. Lafarguette, F., Leple, J.-C., Dejardin, A., Laurans, F., Costa, G., Lesage-Descauses, M.-C. and Pilate, G. (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol. 164: 107–121.Google Scholar
  60. Laosinchai, W. (2002) Molecular and biochemical studies of cellulose and callose synthase. Ph.D. Dissertation, The University of Texas at Austin, 207 pp.Google Scholar
  61. Lertpiriyapong, K. and Sung, Z. R. (2003) The elongation defective1 mutant of Arabidopsis is impaired in the gene encoding a serine-rich secreted protein. Plant Mol. Biol. 53: 581–595.PubMedGoogle Scholar
  62. Lewin, M. and Pearce, E.M. (Eds.) (1998) Handbook of Fiber Chemistry, 2nd edn, Marcel Dekker: NY, 724 pp.Google Scholar
  63. Lutfiyya, L.L,, Xu, N., D’Ordine, R.L., Morrell, J.A., Miller, P.W. and Duff, S.M.G. (2006) Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. J. Plant Physiol. Doi:10.1016/j/jpiph.2006.04.014.Google Scholar
  64. Martin, L.K. and Haigler, C.H. (2004) Cool temperature hinders flux from glucose to sucrose during cellulose synthesis in secondary wall stage cotton fibers. Cellulose 11:339–349.Google Scholar
  65. Meinert, M.C. and Delmer, D.P. (1977) Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol. 59: 1088–1097.PubMedGoogle Scholar
  66. Nakajima, K., Kawamura, T. and Hashimoto. T. (2006) Role of the SPIRAL1 gene family in anisotropic growth of Arabidopsis. Plant Cell Physiol. 47: 513–522.PubMedGoogle Scholar
  67. Niklas, K.J. (1992) Plant Biomechanics, An Engineering Approach to Plant Form and Function, Univ Chicago Press, Chicago, 607 pp.Google Scholar
  68. Paradez, A.R., Someville, C.R. and Erhardt, D.W. (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312: 1491–1495.Google Scholar
  69. Pear, J., Kawagoe, Y., Schreckengost, W., Delmer, D.P. and Stalker, D. (1996) Higher plants contain homologs of the CelA genes that encode the catalytic subunit of the bacterial cellulose synthases. Proc. Natl. Acad. Sci. USA 93: 12637–12642.PubMedGoogle Scholar
  70. Pena, M.J., Zhong, R., Zhou, G.-K., Richardson, E.A., O’Neill, M.A., Darvill, A.G., York, W.S. and Ye, Z.-H. (2007) Arabidopsis irregular xylem8 and irregular xylem 9: Implications for the complexity of glucuoronxylan biosynthesis. Plant Cell 19: 549–563.PubMedGoogle Scholar
  71. Peng, L., Kawagoe, Y., Hogan, P. and Delmer, D. (2002) Sitosterol-ß-glucoside as primer for cellulose synthesis in plants. Science 295: 147–150.PubMedGoogle Scholar
  72. Persson S., Wei, H., Milne, J., Page, G.P. and Somerville, C.R. (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc. Natl. Acad. Sci. USA 102: 8633–8638.PubMedGoogle Scholar
  73. Pilate, G., Dejardin, A., Laurans, F. and Leple, J.-C. (2004) Tension wood as a model for functional genomics of wood formation. New Phytol. 164: 63–72.Google Scholar
  74. Piling, E. and Hofte, H. (2003) Feedback from the wall. Curr, Opin. Plant Biol. 6: 611–616.Google Scholar
  75. Potikha, T.S., Collins, C.C., Johnson, D.I., Delmer, D.P. and Levine, A. (1999) The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 119: 849–858.PubMedGoogle Scholar
  76. R Development Core Team (2005). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, URL
  77. Ranocha, P., Chabannes, M., Chamayou, S., Danoun, S., Jauneau, A., Boudet, A.-M. and Goffner, D. (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol. 129: 145–155.PubMedGoogle Scholar
  78. Rebenfield, L. (1990) Fibers. In: J.I. Kroschwitz (Ed.), Polymers: Fibers and Textiles, a Compendium. John Wiley and Sons, New York, pp. 219–305.Google Scholar
  79. Robert, S., Bichet, A., Grandjean, O., Kierzkowski, D., Satiat-Jeunemaitre, B., Pelletier, S., Hauser, M.-T., Hofte, H. and Vernhettes, S. (2005) An Arabidopsis endo-1,4-ß-D-glucanase involved in cellulose synthesis undergoes regulated intracellular cycling. Plant Cell 17: 3378–3389.PubMedGoogle Scholar
  80. Roberts, E.M., Nunna, R.R., Huang, J.Y., Trolinder, N.L. and Haigler, C.H. (1992) Effects of cycling temperatures on fiber metabolism in cultured cotton ovules. Plant Physiol. 100: 979–986.PubMedGoogle Scholar
  81. Rowland, S.P. and Bertoniere, N.R. (1985) Chemical methods for studying supramolecular structure. In: T.P. Nevell and S.H. Zeronian (Eds.), Cellulose Chemistry and its Applications, Ellis Horwood, Chichester, pp. 112–137.Google Scholar
  82. Ruan, Y.-L. (2007) Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar: insights from the single-celled cotton fiber. Func. Plant Biol. 34: 1–10Google Scholar
  83. Ryser, U. (1985) Cell wall biosynthesis in differentiating cotton fiber. Eur. J. Cell Biol. 39: 236–256.Google Scholar
  84. Ryser, U. (1999) Cotton fiber initiation and histodifferentiation. In: A.S. Basra (Ed.), Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing, The Haworth Press, New York, pp. 1–46.Google Scholar
  85. Salnikov, V., Grimson, M.J., Seagull, R.W. and Haigler, C.H. (2003) Localization of sucrose synthase and callose in freeze substituted, secondary wall stage, cotton fibers. Protoplasma 221: 175–184.PubMedGoogle Scholar
  86. Saxena, I.M. and Brown, R.M. (2005) Cellulose biosynthesis: Current views and evolving concepts. Ann. Bot. 96: 9–21.PubMedGoogle Scholar
  87. Scheible, W.-R. and Pauly, M. (2004) Glycosyltransferases and cell wall biosynthesis: novel players and insights. Curr. Opin. Plant. Biol. 7: 1–11.Google Scholar
  88. Schneider, M., Schwart, J.P.J. and Sanderson, R.D. (1996) Biological variation in the degree of polymerization of cotton lint cellulose produced in South Africa Part II: Comparing Acala 1517 of the Middle Transvaal and the Northern Cape. Text. Res. J. 66: 428–435.Google Scholar
  89. Schrick, K., Fukioka, S., Takatsuto, S., Stierhof, Y.-D., Stransky, H., Yoshida, S. and Jurgens, G, (2004) A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. Plant J. 38: 227–243.PubMedGoogle Scholar
  90. Seagull, R.W. (1993) Cytoskeletal involvement in cotton fiber growth and development. Micron 24: 643–660.Google Scholar
  91. Shi, Y.-H., Zhu, S.-W., Mao, X.-Z., Feng, J.-X., Qin, Y.-M., Zhang, L., Cheng, J., Wei, L.-P., Wang, Z.-Y. and Zhu, Y.-X. (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18: 651–664.PubMedGoogle Scholar
  92. Smyth, G. K. and Speed, T. P. (2003). Normalization of cDNA microarray data. Methods 31: 265–273.PubMedGoogle Scholar
  93. Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3(1): Article 3.Google Scholar
  94. Smyth, G. K. (2005). Limma: linear models for microarray data. In: R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, and W. Huber (Eds.), Bioinformatics and Computational Biology Solutions using R and Bioconductor, Springer, New York, pages 397–420.Google Scholar
  95. Smyth, G. K., Michaud, J. and Scott, H. (2005). The use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21: 2067–2075.PubMedGoogle Scholar
  96. Soltis, P.S., Endress, P.K., Chase, M.W. and Soltis, D.E. (2005) Phylogeny & Evolution of Angiosperms. Sinauer Associates, Inc.: Sunderland, p. 190.Google Scholar
  97. Somerville, C. (2006) Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22: 53–78.PubMedGoogle Scholar
  98. Stephens, S.G. (1970) The botanical identification of archaeological cotton. Amer. Antiguity 35 (3): 368–373.Google Scholar
  99. Stone, B. (2001) Cellulose: Structure and distribution, in Encyclopedia of Life Sciences, Nature Publishing Group, pp. 1–9.Google Scholar
  100. Szyjanowicz, P.M.J., McKinnon, I., Taylor, N.G., Gardiner, J., Jarvis, M.C. and Turner, S.R. (2004) The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J. 37: 730–740.PubMedGoogle Scholar
  101. Taylor, N. G., Howells, R. M., Huttly, A. K., Vickers, K. and Turner, S. R. (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis, Proc. Natl. Acad. Sci. USA 100: 1450–1455.PubMedGoogle Scholar
  102. Timpa, J.D. (1991) Application of universal calibration in gel permeation chromatography for molecular weight determination of plant cell wall polymers: Cotton fiber. J. Agric. Food Chem. 39: 270–275.Google Scholar
  103. Timpa, J.D. and Triplett, B.A. (1993) Analysis of cell-wall polymers during cotton fiber development. Planta 189: 101–108.Google Scholar
  104. Timpa, J.D. and Ramey, H.H. (1989) Molecular characterization of three cotton varieties. Text. Res. J. 59: 661–664.Google Scholar
  105. Timpa, J.D. and Ramey, H.H. (1994) Relationship between cotton fiber strength and cellulose molecular weight distribution: HVI calibration standards. Text. Res. J. 64: 557–562.Google Scholar
  106. Truernit, E., Siemering, K.R., Hodge, S., Vojislava, G. and Haseloff, J. (2006) A map of KNAT gene expression in the Arabidopsis root. Plant Mol. Biol. 60: 1–20.PubMedGoogle Scholar
  107. Tu, L.-L., Zhang, X.-L., Liang, S.-G., Liu, D.-Q., Zhu, L.-F., Zeng, F.-C., Liu, D.-Q., Zhu, L.-F., Zeng, F.-C., Nie, Y.-C., Guo, X.-P., Deng, F.-L., Tan, J.-F. and Xu, L. (2007) Gene expression analysis of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep DOI 10.1007/s00299-007-0337-4.Google Scholar
  108. Ubeda-Tomas, S., Edvardsson, E., Eland, C., Singh, S.K., Zadik, D., Aspeborg, H., Gorzsas, A., Teeri, T.T., Sundberg, B., Persson, P., Bennett, M. and Marchant, A. (2007) Genomic-assisted identification of genes involved in secondary growth in Arabidopsis utilizing transcript profiling of poplar wood-forming tissues. Physiol. Plant. 129: 415–428.Google Scholar
  109. Udall, J.A., Swanson, J.M., Haller, K., Rapp, R.A., Sparks, M.E., Hatfield, J., Yu, Y., Wu, Y., Dowd, C., Arpat, A.B., Sickler, B.A., Wilkins, T.A., Guo, J.Y., Chen, X.Y., Scheffler, J., Talierco, E., Turley, R., McFadden, H., Payton, P., Allen, R., Zhang, D., Haigler, C., Wilkerson, C., Suo, J., Schulze, S.R., Pierce, M.L., Essenberg, M., Kim, H., Llewellyn, D.J., Dennis, E.S., Kudrna, D., Wing, R., Paterson, A.H., Soderlund, C. and Wendel, J.F. (2006) A global assembly of cotton ESTs. Gen. Res. 16: 441–50.Google Scholar
  110. Wang, J., Howles, P.A., Cork, A.H., Birch, R.J. and Williamson, R.E. (2006) Chimeric proteins suggest that the catalytic and/or C-terminal domains give CesA1 and CesA3 access to their specific sites in the cellulose synthase of primary walls. Plant Physiol. 142: 685–695.PubMedGoogle Scholar
  111. Wendel, J.F. and Cronn, R.C. (2002) Polyploidy and evolutionary history of cotton. Adv. Agron. 78: 139–186.Google Scholar
  112. Whittaker, D.J. and Triplett, B.A. (1999) Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers. Plant Physiol. 121: 181–188.PubMedGoogle Scholar
  113. Willison, J.H.M. and Brown, R.M. (1977) An examination of the developing cotton fiber: wall and plasmalemma. Protoplasma 92: 21–41.Google Scholar
  114. Wu, Y.-T. and Liu, J.-Y. (2005) Molecular cloning and characterization of a cotton glucuronosyltransferase gene. J. Plant Physiol. 162: 573–582.PubMedGoogle Scholar
  115. Yatsu, L.Y. (1983) Morphological and physical effects of colchicine treatment on cotton (Gossypium hirsutum L.) fibers. Text. Res. J. 53: 515–519.Google Scholar
  116. Yuen, C.Y.L., Sedbrook, J.C., Perrin, R.M., Carroll, K.L. and Masson, P.H. (2005) Loss-of-function mutations of ROOT HAIR DEFECTIVE3 suppress root waving, skewing, and epidermal cell file rotation in Arabidopsis. Plant Physiol. 138: 701–714.PubMedGoogle Scholar
  117. Zhang, D., Choi, D.W., Wanamaker, S., Fenton, R.D., Chin, A., Malatrasi, M., Turuspekov, Y., Walia, H., Akhunov, E.D., Kianian, P., Otto, C., Simons, K., Deal, K.R., Echenique, V., Stamova, B., Ross, K., Butler, G.E., Strader, L., Verhey, S.D., Johnson, R., Altenbach, S., Kothari, K., Tanaka, C., Shah, M.M., Laudencia-Chingcuanco, D., Han, P., Miller, R.E., Crossman, C.C., Chao, S., Lazo, G.R., Klueva, N., Gustafson, J.P., Kianian, S.F., Dubcovsky, J., Walker-Simmons, M.K., Gill, K.S., Dvorak, J., Anderson, O.D., Sorrells, M.E., McGuire, P.E., Qualset, C.O., Nguyen, H.T. and Close, T.J. (2004a) Construction and evaluation of cDNA libraries for large-scale expressed sequence tag sequencing in wheat (Triticum aestivum L.). Genetics 168: 595–608.Google Scholar
  118. Zhang, D., Hrmova, M., Wan, C.-H., Wu. C., Balzen, J., Cai, W., Wang, J., Densmore, L.D., Fincher, G.B., Zhang, H. and Haigler, C.H. (2004b) Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls. Plant Mol. Biol. 54:353–372.Google Scholar
  119. Zhong R., Kayes, S. J., Schroeder, B. P. and Ye, Z.H. (2002) Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell 14: 165–179.PubMedGoogle Scholar
  120. Zhong, R., Richardson, E.A. and Ye, Z.-H. (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225: 1603–1611.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Candace H. Haigler
    • 1
  • Bir Singh
  • Guirong Wang
  • Deshui Zhang
  1. 1.Department of Crop Science and Department of Plant BiologyNorth Carolina State University

Personalised recommendations