Skip to main content

Bridging Traditional and Molecular Genetics in Modifying Cottonseed Oil

  • Chapter
  • First Online:

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 3))

Abstract

Cotton breeding has traditionally focused on improving crop productivity and fiber quality. While this is still the major objective, there is increased interest in improving the nutritional and functional properties of the cotton seed oil. The nutritional and industrial value of cottonseed oil, like other vegetable oils, is determined by its fatty acid profile. Conventional genetics and breeding approaches to altering fatty acid composition have explored natural variation and induced mutations, but have had little if any impact on germplasm development. Recent advances in the understanding of the basic biochemistry of seed oil biosynthesis, coupled with identification of genes for oilseed modification, have set the stage for the genetic engineering of cottonseed to produce designer oils tailored for specific applications. Considerable progress has been achieved in altering the relative levels of the existing fatty acids in cottonseed oil for enhanced nutritional value and expanded industrial applications. Transgenic production in cottonseed oil of novel fatty acids with high industrial value can contribute to the replacement of non-renewable petroleum feedstocks with renewable and sustainable bio-based feedstocks. As functional genomics progresses further non-transgenic methods, such as TILLING, could facilitate the detection and selection of mutations not achievable through traditional breeding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersen, P.C., Hill, K., Gorbet, D.W., Brodbeck, B.V. (1998) Fatty acid and amino acid profiles of selected peanut cultivars and breeding lines. J. Food Composition Anal. 11, 100–111.

    Article  CAS  Google Scholar 

  • Athenstaedt, K. and Daum, G. (2006) The life cycle of neutral lipids: Synthesis, storage and degradation. Cell. Mol. Life Sci. 63, 1355–1369.

    Article  PubMed  CAS  Google Scholar 

  • Auld, D., Bechere, E., Davis, J., Seip, L. and Brown, J. (2006) Lint, cottonseed oil, or biodiesel? -Breeding cotton for the next decade. The ASA-CSSA-SSSA Annual International Meetings, Indianapolis, Nov. 12–16, 2006.

    Google Scholar 

  • Badami, R.C. and Patil, K.B. (1981) Structure and occurrence of unusual fatty acids in minor seed oils. Prog. Lipid Res. 19, 119–153.

    Article  Google Scholar 

  • Bao, X., Katz, S., Pollard, M. and Ohlrogge, J. (2002) Carboxyclic fatty acids in plants: biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida. Proc. Natl. Acad. Sci. USA 99, 7172–7177.

    Article  PubMed  CAS  Google Scholar 

  • Bao, X., Thelen, J.J., Bonaventure, G. and Ohlrogge, J.B. (2003) Characterization of cyclopropane fatty-acid synthase from Sterculia foetida. J. Biol. Chem. 278, 12846–12853.

    Article  PubMed  CAS  Google Scholar 

  • Beisson, F., Koo, A.J.K., Ruuska, S., Schwender, J., Pollard, M., Thelen, J.J., Paddock, T., Salas, J.J., Savage, L., Milcamps, A., Mhaske, V.B., Cho, Y.H. and Ohlrogge, J.B. (2003) Arabidopsis genes involved in acyl lipid metabolism -A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol. 132, 681–697.

    Article  PubMed  CAS  Google Scholar 

  • Benedict, C.R., Alchanati, I., Harvey, P.J., Liu, J., Stipanovic, R.D. and Bell, A.A. (1995) The enzymatic formation of δ-cadinene from farnesyl diphosphate in extracts of cotton. Phytochem. 39, 327–331.

    Article  Google Scholar 

  • Bennett, K.A., Lardizabel, K.D., Keithly, G.E., Mai, J.T., Hill, E.K., Ream, J.E., Wagner, N.N., Colletti, R.F. and Crow, L.J. (2004) Modification of seed oil content in soybean (Glycine max) by expression of a Morterella ramanniana diacylglycerol acyltransferase. Lake Buena Vista, FL, July 24–28, 2004.

    Google Scholar 

  • Berger, A., Jones, P.J.H. and Abumweis, S.S. (2004) Plant sterols: factors affecting their efficacy and safety as functional food ingredients. Lipids in Health and Disease 3, 5.

    Article  PubMed  Google Scholar 

  • Bernerth, R. and Frentzen, M (1990) Utilization of erucoyl-CoA by acyltransferases from developing seeds of Brassica napus (L.) involved in triacylglycerol biosynthesis. Plant Sci. 67, 21–28.

    Article  CAS  Google Scholar 

  • Bernstein, E., Caudy, A.A., Hammond, S.M. and Hannon, G.J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Bonanome, A. and Grundy, S.M. (1988) Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N. Engl. J. Med. 318, 1244–1248

    Article  PubMed  CAS  Google Scholar 

  • Bouvier-Nave, P., Benveniste, P., Oelkers, P., Sturley, S.L. and Schaller, H. (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur. J. Biochem. 267, 85–96.

    Article  PubMed  CAS  Google Scholar 

  • Broun, P., Gettner, S. and Somerville, C. (1999) Genetic engineering of plant lipids. Annu. Rev. Nutr. 19, 197–216.

    Article  PubMed  CAS  Google Scholar 

  • Browse, J. and Ohlrogge, J. (1995) Lipid biosynthesis. Plant Cell 7, 957–970.

    PubMed  Google Scholar 

  • Buhr, T., Sato, S., Ebrahim, F., Xing, A.Q., Zhou, Y., Mathiesen, M, Schweiger, B., Kinney, A., Staswick, P. and Clemente, T. (2002) Nuclear localization of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J. 30, 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Burton, J.W., Miller, J.F., Vick, B.A., Scarth, R. and Holbrook, C.C. (2004) Altering fatty acid composition in oil seed crops. Adv. Agron. 4, 273–306.

    Article  CAS  Google Scholar 

  • Cahoon, E.B. (2003) Genetic enhancement of soybean oil for industrial uses: prospects and challenges. AgBioForum 6, 11–13.

    Google Scholar 

  • Cahoon, E.B. and Kinney, A.J. (2005) Production of vegetable oils with novel properties: using genomic tools to probe and manipulate fatty acid metabolism. Eur. J. Lipid Sci. Technol. 107, 239–243.

    Article  CAS  Google Scholar 

  • Chapman, K.D. (2004) Occurrence, metabolism, and prospective functions of N-acylethanola-mines in plants. Prog. Lipid Res. 43, 302–327.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, K.D., Austin-Brown, S., Sparace, S.A., Kinney, A.J., Ripp, K.G., Pirtle, I.L. and Pirtle, R.M. (2001) Transgenic cotton plants with increased seed oleic acid content. J. Am. Oil Chem. Soc. 78, 941–947.

    Article  CAS  Google Scholar 

  • Chapman, K.D., Neogi, P.B., Hake, K.D., Stawska, A.A., Speed, T.R., Cotter, M.Q., Garrett, D.C., Kerby, T., Richardson, C.D., Ayre, B.G., Ghosh, S. and Kinney, A.J. (2008) Reduced oil accumulation in cottonseeds transformed with a Brassica nonfunctional allele of a delta-12 fatty acid desaturase (FAD2). Crop Sci 48, 1470–1481.

    Google Scholar 

  • Chapman, K.D., Venables, B.J., Dian, E.E. and Gross, G.W. (2003) Identification and quantification of neuroactive N-acylethanolamines in cottonseed processing fractions. J. Am. Oil Chem. Soc. 80, 223–229.

    Article  CAS  Google Scholar 

  • Cherry, J.P. (1983) Cottonseed oil. J. Am. Oil Chem. Soc. 60, 360–367.

    Article  CAS  Google Scholar 

  • Cherry, J.P. and Leffler, H.R. (1984) Chapter 13: Seed. In: R.J. Kohel, and C.F. Lewis (Eds.) Cotton No. 24 in Agronomy series; American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America. Madison, WI, pp. 511–569.

    Google Scholar 

  • Cherry, J.P., Kohel, R.J., Jones, L.A. and Powell, W.H. (1981) Cottonseed quality: factors affecting feed and food uses. In: J.M. Brown (Ed.) Proceedings Beltwide Cotton Production Research Conference. Memphis, TN, pp. 266–283.

    Google Scholar 

  • Cherry, J.P., Kohel, R.J., Jones, L.A. and Powell, W.H. (1986) Food and feed quality of cottonseed. In: J.R. Mauney and J.McD. Stewart (Eds.) Cotton Physiology. The Cotton Foundation: Memphis, TN, pp. 557–595.

    Google Scholar 

  • Coppock, C.E., Lanham, J.K. and Horner, J.L. (1987) A review of the nutritive value and utilization of whole cottonseed, cottonseed meal and associated by-products by dairy cattle. Anim. Feed Sci. Technol. 18, 89–129.

    Article  Google Scholar 

  • Crandall, L. (2002) Bioplastics: A burgeoning industry. INFORM 13, 626–630.

    Google Scholar 

  • Downey, R.K. and Craig, B.M. (1964) Genetic control of fatty acid biosynthesis in rapeseed (Brassica napus L.). J. Am. Oil Chem. Soc. 41, 475–478.

    Article  CAS  Google Scholar 

  • Dyer, J.M. and Mullen, R.T. (2005) Development and potential of genetically engineered oilseeds. Seed Sci. Res. 15, 255–267.

    Article  CAS  Google Scholar 

  • Felder, C.C., Dickason-Chesterfield, A.K. and Moore, S.A. (2006) Cannabinoids biology: the search for new therapeutic targets. Mol. Interv. 6, 149–161.

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Martínez, J. del Río, M., de Hare, A. (1993) Survey of safflower (Carthamus tinctorius L.) germplasm for variants in fatty acid composition and other seed characters. Euphytica 69, 115–122.

    Article  Google Scholar 

  • Fofana, B., Cloutier, S., Duguid, S., Ching, J. and Rampitsch, C. (2006) Gene expression of stearoyl-ACP desaturase and Δ12 fatty acid desaturase 2 is modulated during seed development of flax (Linum usitatissimum). Lipids 41, 705–712.

    Article  PubMed  CAS  Google Scholar 

  • Fofana, B., Duguid, S. and Cloutier, S. (2004) Cloning of fatty acid biosynthetic genes beta-ketoacyl CoA synthase, fatty acid elongase, stearoyl-ACP desaturase, and fatty acid desaturase and analysis of expression in the early developmental stages of flax (Linum usitatissimum L.) seeds. Plant Sci. 166, 1487–1496.

    Article  CAS  Google Scholar 

  • Fourmann, M., Barrel, P., Renard, M., Pelletier, G., Delourme, R. and Brunel, D. (1998) The two genes homologous to Arabidopsis FAE1 co-segregate with the two loci governing erucic fatty acid content in Brassica napus. Theor. Appl. Genet. 96, 852–858.

    Article  CAS  Google Scholar 

  • Fryer, M.J. (1992) The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant Cell Environ. 1, 211–215.

    Google Scholar 

  • Girke, Todd, J., Ruuska, S., White, J., Benning, C. and Ohlrogge, J. (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol. 124, 1570–1581.

    Article  PubMed  CAS  Google Scholar 

  • Gotmare, V., Singh, P., Mayee, C.D., Deshpande, V. and Bhagat, C. (2004) Genetic variability for seed oil content and seed index in some wild species and perennial races of cotton. Plant Breed. 123, 207–208.

    Article  Google Scholar 

  • Graef, G.L., Fehr, W.R. and Hamond, E.G. (1985) Inheritance of three stearic acid mutants of soybean. Crop Sci. 25, 1076–1079.

    Article  Google Scholar 

  • Green, A.G. and Dribnenki, J.C.P. (1994) Linola -A new premium polyunsaturated oil. Lipid Technol. 6, 29–33.

    Google Scholar 

  • Green, A.G. and Marshall, D.R. (1984) Isolation of induced mutants in linseed (Linum usitatissimum) having reduced linolenic acid content. Euphytica 33, 321–328.

    Article  CAS  Google Scholar 

  • Griffiths, G. and Harwood, J.L. (1991) The regulation of triacylglycerol biosynthesis in cocoa (Theobroma cacao L.) Planta 184, 279–284.

    Article  CAS  Google Scholar 

  • Hammond, S.M., Bernstein, E., Beach, D. and Hannon, G.J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Harker, M., Hellyer, A., Clayton, J.C., Duvoix, A., Lanot, A. and Safford, R. (2003) Co-ordinate regulation of sterol biosynthesis enzyme activity during accumulation of sterols in developing rape and tobacco seed. Planta 216, 707–715.

    PubMed  CAS  Google Scholar 

  • Hawkins, D.J. and Kridl, J.C. (1998) Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. Plant J. 13, 743–752.

    Article  PubMed  CAS  Google Scholar 

  • Hill, K. (2000) Fats and oils as oleochemical raw materials. Pure Appl. Chem. 72, 1255–1264.

    Article  CAS  Google Scholar 

  • Howell, R.W. (1971) Breeding for improved oilseeds. J. Am. Oil Chem. Soc. 48, 492–494.

    Article  CAS  Google Scholar 

  • Jako, C., Kumar, A., Wei, Y., Zou, J., Barton, D.L., Giblin, E.M., Covello, P.S. and Taylor, D.C. (2001) Seed-specific over-expression of an Arabidopsis encoding a diacylglyercol acyltransferase enhances seed oil content and seed weight. Plant Physiol. 126, 861–874.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, A.R., Pearson, J.A., Shenstone, F.S. and Fogrty, A.C. (1967) Inhibition of stearic to oleic acid by cyclopropene fatty acids. Nature 214, 1244–1245.

    Article  PubMed  CAS  Google Scholar 

  • Jones, A., Davies, H.M and Voelker, T.A. (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7, 359–371.

    Article  PubMed  CAS  Google Scholar 

  • Jones, L. and King, C. (1993) Cottonseed Oil. National Cottonseed Products Associations, Inc. and the Cotton Foundation, Memphis, TN, USA.

    Google Scholar 

  • Kinney, A.J. (1996a) Improving soybean seed quality. Nature Biotechnol. 14, 946.

    Google Scholar 

  • Kinney, A.J. (1996b) β-ketocyl-ACP synthetase II genes from plants. US patent 5,500,361.

    Google Scholar 

  • Kinney, A.J. and Clemente, T.E. (2005) Modifying soybean oil for enhanced performance in biodiesel blends. Fuel Proc. Techn. 86, 1137–1147.

    Article  CAS  Google Scholar 

  • Kinney, A.J., Knowlton, S., Cahoon, E.B. and Hitz, W.D. (1998) Re-engineering oilseed crops to produce industrially useful fatty acids. In: J. Sánchez, E. Cerdá-Olmedo and E. Martinez-Force (Eds) Advances in Plant Lipid Research. University of Seville Press, Seville, pp. 623–628.

    Google Scholar 

  • Kleingartner, L.W. (2002) NuSun sunflower oil: Redirection of an industry. In: J. Janick and A. Whipkey (Eds) Trends in New Crops and New Uses. ASHS Press, Alexandria, VA. pp 135–138.

    Google Scholar 

  • Knutzon, D.S., Thompson, G.A., Radke, S.E., Johnson, W.B., Knauf, V.C. and Kridl, J.C. (1992) Modification of Brassica seed oil by antisense expression of a stearyol-acyl carrier protein desaturase gene. Proc. Natl. Acad. Sci. USA 89, 2624–2628.

    Article  PubMed  CAS  Google Scholar 

  • Kris-Etherton, P.M., Derr, J., Mitchell, D.C., Mustard, V.A., Russell, M.E., McDonnell, E.T. Salabsky, D. and Pearson, T.A. (1993a) The role of fatty acid saturation on plasma lipids, lipoproteins and apolipoproteins: I. Effects of whole food diets high in cocoa butter, olive oil, soybean oil, diary butter and milk chocolate on plasma lipids of young men. Metabolism 42, 121–129.

    Google Scholar 

  • Kris-Etherton, P.M., Mustad, V. and Derr, J.A. (1993b) Effects of dietary stearic acid on plasma lipids and thrombosis. Nutrition-today (USA). 28, 30–38.

    Google Scholar 

  • Kristott, J. (2003) High-oleic oils: how good are they for frying? Lipid Techn. 15, 29–32.

    CAS  Google Scholar 

  • Kritchevsky, D. (1998) Phytosterols. In: D. Kritchevsky and C. Bonfield (Eds) Dietary Fiber in Health and Disease. Plenum Press, New York, pp 235–243.

    Google Scholar 

  • Lee, M., Lenman, M., Banas, A., Bafor, M., Singh, S., Schweizer, M., Nilsson, R., Liljenberg, C., Dahlqvist, A., Gummeson, P.O., Sjodahl, S., Green, A. and Stymne, S. (1998) Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science 280, 915–918.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein, A.H., Appel, L.J., Brands, M., Carnethon, M., Daniels, S., Franch, H.A., Franklin, B., Kris-Etherton, P., Harris, W.S., Howard, B., Karanja, N., Lefevre, M., Rudel, L., Sacks, F., Van Horn, L., Winston, M. and Wylie-Rosett, J. (2006) Diet and lifestyle recommendations revision 2006: A scientific statement from the American heart association nutrition committee. Circulation 114, 82–96.

    Article  PubMed  Google Scholar 

  • Ligresti, A., Cascio, M.G. and Di Marzo, V. (2005) Endocannabinoid metabolic pathways and enzymes. Curr. Drug Targets CNS Neurol. Disord. 4, 615–623.

    Article  PubMed  CAS  Google Scholar 

  • Lindsey, S., Benattar, J., Pronczuk, A. and Hayes, K.C. (1990) Dietary palmitic acid (16:0) enhances high density lipoprotein cholesterol and low density lipoprotein receptor mRNA abundance in hamsters. Exp. Biol. Med. 195, 261–169.

    CAS  Google Scholar 

  • Ling, W.H. and Jones, P.J.H. (1995) Dietary phytosterols: a review of metabolism, benefits and side effects. Life Sci. 57, 195–206.

    Article  PubMed  CAS  Google Scholar 

  • List, G.R., Steidley, K.R. and Neff, W.E. (2000) Commercial spreads formulation, structure and properties. INFORM 11, 980–986.

    Google Scholar 

  • Liu, Q., Bao, X., Singh, S., Pons, G., Hurlstone, C., Dowd, C., McFadden, H., Pollard, M., Ohlrogge, J.B. and Green, A. (2004) Studies on cotton cyclopropane fatty acid synthase. In: 16th International Symposium on Plant Lipids. Budapest, Hungary, June 1–6 2004.

    Google Scholar 

  • Liu, Q., Singh, S., Sharp, P.J., Green, A.G. and Marshall, D.R. (1996) Nucleotide sequence of a cDNA from Gossypium hirsutum encoding a stearoyl-acyl carrier protein desaturase (Accession No. X95988) (OGR96-012). Plant Physiol. 110, 1435.

    Google Scholar 

  • Liu, Q., Singh, S.P. and Green, A.G. (2002) High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol. 129, 1732–1743.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Singh, S.P., Brubaker, C.L. and Green, A.G. (1999a) Cloning and sequence analysis of a novel member (accession No. Y10112) of the microsomal ω-6 fatty acid desaturase family from cotton (Gossypium hirsutum). Plant Physiol. 120, 339.

    Google Scholar 

  • Liu, Q., Singh, S.P., Brubaker, C.L., Sharp, P.J., Green, A.G. and Marshall, D.R. (1999b) Molecular cloning and expression of a cDNA encoding a microsomal ω-6 fatty acid desaturase in cotton (Gossypium hirsutum L.). Aust. J. Plant Physiol. 26, 101–106.

    Google Scholar 

  • Lukonge, E., Labuschagne, M.T. and Hugo, A. (2007) The evaluation of oil and fatty acid composition in seed of cotton accessions from various countries. J. Sci. Food Agri. 87, 340–347.

    Article  CAS  Google Scholar 

  • McCallum, C.M., Comai, L., Greene, E.A. and Henikoff, S. (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol. 123, 439–442.

    Article  PubMed  CAS  Google Scholar 

  • McMichael, S.C. (1954) Glandless boll in upland cotton and its use in the study of natural crossing. Agron. J. 46, 527–528.

    Article  Google Scholar 

  • McMichael, S.C. (1959) Hope cotton, a source of cottonseed free of gossypol pigments. Agron. J. 51, 630.

    Article  Google Scholar 

  • Meng, Y-L., Jia, J-W., Liu, C-J., Liang, W-Q., Heinstein, P. and Chen, X-Y. (1999) Coordinated accumulation of (+)-δ-cadinene synthase mRNAs and gossypol in developing seeds of Gossypium hirsutum and a new member of the cad1 family from G. arboreum. J. Nat. Prod. 62, 248–252.

    Article  PubMed  CAS  Google Scholar 

  • Millar, A., Smith, M. and Kunst, L. (2000) All fatty acids are not equal: discrimination in plant membrane lipids. Trends Plant Sci. 5, 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Mohamed, O.E., Satter, L.D., Grummer, R.R. and Ehle, F.R. (1988) Influence of dietary cottonseed and soybean on milk production and composition. J. Dairy Sci. 71, 2677.

    Article  Google Scholar 

  • Möllers, C. (2002) Development of oleic acid oilseed rape. In: Presentation at the 8th International Conference for Renewable Resources and Plant Biotechnology. Biotechnology NAROSSA 2002. Magdeburg, June 10–11, 2002.

    Google Scholar 

  • Mozaffarian, D., Katan, M.B., Ascherio, A., Stampfer, M.J. and Willett, W.C. (2006) Trans fatty acids and cardiovascular disease. N. Engl. J. Med. 354, 1601–1613.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, D.J. (2006) Molecular breeding strategies for the modification of lipid composition. In Vitro Cell. Dev. Biol. -Plant 42, 89–99.

    Article  CAS  Google Scholar 

  • Nguyen, H.T., Pidkowich, M.S., Whittle, E. and Shanklin, J. (2006) FAB1, encoding β-ketoacyl-ACP synthase II, is an essential gene in Arabidopsis. 17th International Symposium on Plant Lipids. East Lansing, MI, July 16–21, 2006.

    Google Scholar 

  • Nicolosi, R.J. and Rogers, E.J. (1997) Regulation of plasma lipoprotein levels by dietary triglycerides enriched with different fatty acids. Med. Sci. Sports Exerc. 29, 1422–1428.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, R.D. (2002) Cottonseed Oil. In: F.D. Gunstone (Ed.) Vegetable Oils in Food Technology: Composition, Properties and Uses. Blackwell Publishing, Oxford, pp. 203–230.

    Google Scholar 

  • Ohlrogge, J.B. and Jaworski, J.G. (1997) Regulation of fatty acid synthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48, 109–136.

    Article  CAS  Google Scholar 

  • Oomen, C.M., Ocke, M.C., Feskens, E.J., van Erp-Baart, M.A., Kok, F.J. and Kromhout, D. (2001) Association between trans fatty acid intake and 10-year risk of coronary heart disease in the Zutphen Elderly Study: A perspective population-based study. Lancet 357, 746–751.

    Article  PubMed  CAS  Google Scholar 

  • Osorio, J., Fernandez-Martínez, J., Mancha, M. and Garcés, R. (1995) Mutant sunflower with high concentration of saturated fatty acids in the oil. Crop Sci. 35, 739–742.

    Article  CAS  Google Scholar 

  • Pandey, S.N. and Suri, L.K. (1982) Cyclopropenoid fatty acid content and iodine value of crude oils from Indian cottonseed. J. Am. Oil Chem. Soc. 59, 99–101.

    Article  CAS  Google Scholar 

  • Pandian, A., Liu, Q., Hurlestone, C., Singh, S., Salisbury, P. and Green, A. (2004) Development of nutritionally superior Brassica napus and B. juncea oils using RNAi-mediated gene silencing. 4th International Crop Science Congress. Brisbane, Australia. Sept. 26-Oct. 01, 2004.

    Google Scholar 

  • Percival, A.E. and Kohel, R.J. (1990) Distribution, collection and evaluation of Gossypium. Ad. Agron. 44, 225–256.

    Article  Google Scholar 

  • Phelps, R.A., Shenstone, F.S., Kemmerer, A.R. and Evans, R.J. (1965) A review of cyclopropenoid compounds: Biological effects of some derivatives. Poult. Sci. 44, 358–394.

    PubMed  CAS  Google Scholar 

  • Pirtle, I.L., Kongcharoensuntorn, W., Nampaisansuk, M., Knesek, J.E., Chapman, K.D. and Pirtle, R.M. (2001) Molecular cloning and functional expression of the gene for a cotton Δ-12 fatty acid desaturase (FAD2). Biochim. Biophys. Acta 1522, 122–129.

    PubMed  CAS  Google Scholar 

  • Rahman, S.M., Takagi, Y., Miyamoto, K., Kawakita, T. (1995) High stearic acid soybean mutant induced by X-ray irradiation. Biosci. Biotechnol. Biochem. 59, 922–923.

    Article  CAS  Google Scholar 

  • Raju, P.K. and Reiser, R. (1972) Inhibition of fatty acyl desaturase by cyclopropene fatty acids. J. Biol. Chem. 247, 3700–3701.

    PubMed  CAS  Google Scholar 

  • Raju, P.K. and Reiser, R. (1973) Hepatic stearoyl-CoA desaturase activity in mice as affected by early postnatal dietary cyclopropene fatty acids 1. J. Nutr. 103, 904–907.

    PubMed  CAS  Google Scholar 

  • Roehm, J.N., Lee, D.J., Wales, J.H., Polityka, S.D. and Sinnhuber, P.D. (1970) The effect of the dietary sterculic acid on the hepatic lipids of rainbow trout. Lipids 5, 80–84.

    Article  PubMed  CAS  Google Scholar 

  • Ruuska, S.A., Girke, T., Benning, C. and Ohlrogge, J.B. (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14, 1191–1206.

    Article  PubMed  CAS  Google Scholar 

  • Shenstone, F.S. and Vickery, J.R. (1961) Occurrence of cylco-propene acids in some plants of the order malvales. Nature 190, 68–169.

    Article  Google Scholar 

  • Shintani, D. and DellaPenna, D. (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 228, 2098–2100.

    Article  Google Scholar 

  • Singh, S., Zhou, X-R., Liu, Q., Stymne, S. and Green, A.G. (2005) Metabolic engineering of new fatty acids in plants. Cur. Opin. Plant Biol. 8, 197–203.

    Article  CAS  Google Scholar 

  • Slocombe, S.P., Pianelli, P., Fairbairn, D., Bowra, S., Hatzopoulos, P., Tsiantis, M. and Murphy, D.J. (1994) Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein desaturase gene. Plant Physiol. 104, 1167–1176.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C.W. and Creelman, R.A. (2001) Vitamin E concentration in upland cottonseeds. Crop Sci. 41, 577–579.

    Article  CAS  Google Scholar 

  • Stoll, C., Lühs, W., Zarhloul, M.K. and Friedt, W. (2005) Genetic modification of saturated fatty acids in oilseed rape (Brassica napus). Eur. J. Lipid Sci. Techn. 107, 4244–4248.

    Google Scholar 

  • Sudweeks, E.M. (2002) Feeding whole cottonseed to diary cows and replacements. Texas A&M University, College Station, TX, U.S.A. Publication 13277101 -cottonsd.wp6.

    Google Scholar 

  • Suh, C., Schultz, D.J. and Ohlrogge, J.B. (2002) What limits production of unusual monoenoic fatty acids in transgenic plants? Planta 215, 584–595.

    Article  PubMed  CAS  Google Scholar 

  • Sunilkumar, G., Campbell, L.M., Hossen, M., Connell, J.P., Hernandez, E., Reddy, A.S., Smith, C.W. and Rathore, K.S. (2005) A comprehensive study of the use of a homologous promoter in antisense cotton lines exhibiting a high seed oleic acid phenotype. Plant Biotechn. J. 3, 319–330.

    Article  CAS  Google Scholar 

  • Sunilkumar, G., Campbell, L.M., Puckhaber, L., Stipanovic, R.D. and Rathore, K.S. (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc. Natl. Acad. Sci. USA 103, 18054–18059.

    Article  PubMed  CAS  Google Scholar 

  • Tarrago-Trani, M.T., Philips, K.M.; Lemar, L.E. and Holden, J.M. (2006) New and existing oils and fats used in products with reduced trans-fatty acid content. J. Am. Diet. Assoc. 106, 867–880.

    Article  PubMed  CAS  Google Scholar 

  • Thomaeus, S., Carlsson, A.S. and Stymne, S. (2001) Distribution of fatty acids in polar and neutral lipids during seed development in Arabidopsis thaliana genetically engineered to produce acetylenic, epoxy and hydroxy fatty acids. Plant Sci. 161, 997–1003.

    Article  CAS  Google Scholar 

  • Thompson, G.A. and Li, C. (1997) Altered fatty acid composition of membrane lipids in seeds and seedling tissues of high-saturate canola. In: J.P. Williams, M.U. Khan, and N.M. Lem (Eds.) Physiology, Biochemistry and Molecular Biology of Plant Lipids. Kluwer Academic Publishers, Dordrecht, pp. 313–315.

    Google Scholar 

  • Töpfer, R., Martini, N. and Schell, J. (1995) Modification of plant lipid synthesis. Science 268, 681–686.

    Article  PubMed  Google Scholar 

  • Townsend, B.J., Poole, A., Blake, C.J. and Llewellyn, D.J. (2005) Antisense suppression of a (+)-δ-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. Plant Physiol. 138, 516–528.

    Article  PubMed  CAS  Google Scholar 

  • Traber, M.G. and Sies, H. (1996) Vitamin E in humans: Demand and delivery. Annu. Rev. Nutr. 16, 321–347.

    Article  PubMed  CAS  Google Scholar 

  • Venables, B.J., Waggoner, C.A. and Chapman, K.D. (2005) N-Acylethanolamines in seeds of selected legumes. Phytochem. 66, 1913–1918.

    Article  CAS  Google Scholar 

  • Venkatramesh, M., Karunanandaa, B.S., Gunter, C., Thorne, G. and Crowley, J.J. (2000) Increased sterol content in oilseeds trough biotechnology. Annual meeting of the American Society of Plant Physiology, San Diego, CA, July 15–19, 2000.

    Google Scholar 

  • Voelker, T. and Kinney, A.J. (2001) Variation in the biosynthesis of seed-storage lipids. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52, 335–361.

    Article  CAS  Google Scholar 

  • Voelker, T.A., Hayes, T.R., Cranmer, A.M., Turner, J.C. and Davies, H.M. (1996) Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. Plant J. 9, 229–241.

    Article  CAS  Google Scholar 

  • Voelker, T.A., Jones, A., Cranmer, A.M., Davies, H.M. and Knutzon, D.S. (1997) Broad-range and binary-range acyl-acyl-carrier protein thioesterases suggest an alternative mechanism for medium-chain production in seeds. Plant Physiol. 114, 669–677.

    Article  PubMed  CAS  Google Scholar 

  • Voelker, T.A., Worrell, A.C. Anderson, L., Bleibaum, J., Fan, C., Hawkins, D.J., Radke, S.E. and Davies, H.M. (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257, 72–74.

    Google Scholar 

  • Waterhouse, P.M., Graham, M.W. and Wang, M.-B. (1998) Virus resistance and gene silencing in plants is induced by double-stranded RNA. Proc. Nat. Acad. Sci. USA. 95, 13959–13964.

    Article  PubMed  CAS  Google Scholar 

  • Weselake, R., Shah, S., Taylor, D., Harwood, J., Laroche, A., Moloney, M., Rakow, G. and Raney, P. (2006) Increasing seed oil content in canola through over-expression of type-1 diacylglycerol acyltransferase. 17th International Symposium on Plant Lipids. East Lansing, MI, July 16–21, 2006.

    Google Scholar 

  • Whillhit, G. (2003) Oil seed production: U.S. cottonseed industry facing hurdles. Oil Mill Gazetteer 18, 4–8.

    Google Scholar 

  • Wu, Y.R., Machdo, A.C., White, R.G., Llewellyn, D.J. and Dennis, E.S. (2006) Expression profiling identifies genes expressed early during lint fiber initiation in cotton. Plant Cell Physiol. 47, 107–127.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, D., Pirtlle, I.L., Park, S.J., Nampaisansuk, M., Neogi, P., Wanjie, S.W., Pirtle, R.M., and Chapman, K.D. (2009) Identification and expression of a new delta-12 fatty acid desaturase (FAD2-4) gene in upland cotton and its functional expression in yeast and Arabidopsis thaliana plants. Plant Physiology et Biochemistry, in press.

    Google Scholar 

  • Zhou, X-R., Singh, S., Liu, Q. and Green, A. (2006) Combined transgenic expression of Δ12-desaturase and Δ12-epoxygenase in high linoleic acid seeds to increased accumulation of vernolic acid. Func. Plant Biol. 33, 585–592.

    Article  CAS  Google Scholar 

  • Zock, P.L. and Katan, M.B. (1992) Hydrogenation alternatives: effects of trans fatty acids and stearic acid versus linoleic acid on serum lipids and lipoproteins in humans. J. Lipid Res. 33, 399–410.

    PubMed  CAS  Google Scholar 

  • Zarins, Z.M. and Cherry, J.P. (1981) Storage proteins of glandless cottonseed flour. J. Food Sci. 46, 1855–1859.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, Q., Singh, S., Chapman, K., Green, A. (2009). Bridging Traditional and Molecular Genetics in Modifying Cottonseed Oil. In: Paterson, A.H. (eds) Genetics and Genomics of Cotton. Plant Genetics and Genomics: Crops and Models, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70810-2_15

Download citation

Publish with us

Policies and ethics