Bridging Classical and Molecular Genetics of Abiotic Stress Resistance in Cotton

  • Yehoshua Saranga
  • Andrew H. Paterson
  • Avishag Levi
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 3)


The effect on abiotic stress on productivity of crop plants and particularly cotton is discussed (section 1) with an emphasis on water stress, the major abiotic stress factor (section 2). Plant responses to abiotic stress are briefly discussed (section 3), followed by the origin of cotton and its implications for the available genetic resources for abiotic stress resistance (section 4). The next sections describe attempts to dissect and improve cotton resistance to abiotic stress using classical genetics (section 5), genomic (section 6) and transgenic (section 7) approaches. It is concluded (section 8) that there is an urgent need to improve abiotic stress resistance of cotton, a task that has become more feasible with the currently available knowledge and genomic tools.


Abiotic Stress Upland Cotton Arid Condition Transgenic Cotton Tetraploid Cotton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Z. Peleg for his valuable comments on the manuscript.


  1. Ackerson, R.C. and Krieg, D.R. (1977) Stomatal and non-stomatal regulation of water use in cotton, corn and sorghum. Plant Physiol, 60, 850–853.PubMedCrossRefGoogle Scholar
  2. Ali, Y., Aslam, Z., and Hussain, F. (2005) Genotype and environment interaction effect on yield of cotton under naturally salt stress condition. Int. J. Environ. Sci. Tech. 2, 169–173.Google Scholar
  3. Araus J.L., Slafer G.A., Reynolds M.P., Royo C. (2002) Plant breeding and drought in C3 cereals: What should we breed for? Ann. Bot. 89, 925–940.PubMedCrossRefGoogle Scholar
  4. Araus, J.L., Bort, J., Steduto, P., Villegas, D. and Royo, C. (2003) Breeding cereals for Mediterranean conditions, ecophysilogy clues for biotechnology application. Ann. Appl. Biol. 142, 129–141.CrossRefGoogle Scholar
  5. Ashraf, M. (2002) Salt tolerance of cotton, some new advances. Critical Rev. Plant Sci. 21, 1–30.CrossRefGoogle Scholar
  6. Ashraf, M. and Ahmad, S. (2000) Infuence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crops Res. 66, 115–127.CrossRefGoogle Scholar
  7. Bajaj, S., Targolli, J., Liu, L.F., Ho, T.H.D. and Wu, R. (1999) Transgenic approaches to increase dehydration-stress tolerance in plants. Mol. Breed. 5, 493–503.CrossRefGoogle Scholar
  8. Bartels, D., Furini, A., Ingram, J. and Salamini, F. (1996) Responses of plant to dehydration stress, A molecular analysis. Plant Growth Reg. 20, 111–118.CrossRefGoogle Scholar
  9. Bartels, D. and Sunkar, R. (2005) Drought and Salt Tolerance in Plants. Critical Rev. Plant Sci.CrossRefGoogle Scholar
  10. Blum A. (2005) Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 56, 1159–1168.CrossRefGoogle Scholar
  11. Bohnert, H.J., Nelson, D.E. and Jensen, R.G. (1995) Adaptations to Environmental Stresses. Plant Cell, 7, 1099–1111.PubMedCrossRefGoogle Scholar
  12. Boulanger, J. and Pinheiro, D. (1971) Evolution de la production au nord-est Brasil. Cotton Fibr. Trop. 26, 319–353.Google Scholar
  13. Boyer, J.S. (1982) Plant productivity and environment. Science 218, 443–448.PubMedCrossRefGoogle Scholar
  14. Bray, E. (1993) Molecular responses to water deficit. Plant Physiol. 103, 1035–1040.PubMedGoogle Scholar
  15. Brubaker, C. L., Paterson, A. H., and Wendel, J. F. (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome, 42, 184–203.CrossRefGoogle Scholar
  16. Bruce, W.B., Edmeades, G.O. and Barker, T.C. (2002) Molecular and physiological approaches to maize improvement for drought tolerance. J. Exp. Bot. 53, 13–25.PubMedCrossRefGoogle Scholar
  17. Chaves, M.M., Maroco, J.P. and Pereira, J.S. (2003) Understanding plant responses to drought – from genes to the whole plant. Functional Plant Biol. 30, 239–264.CrossRefGoogle Scholar
  18. Chaves, M.M. and Oliveira, M.M. (2004) Mechanisms underlying plant resilience to water deficits prospects for water-saving agriculture. J. Exp. Bot. 55, 2365–2384.PubMedCrossRefGoogle Scholar
  19. Chee, P., Draye, X., Jiang, C., Decanini, L., Delmonte, T., Bredhauer, B., Smith, C.W. and Paterson, A.H. (2005a) Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach, I. Fiber elongation. Theor. Appl. Genet. 111, 757–763.Google Scholar
  20. Chee, P., Draye, X., Jiang, C., Decanini, L., Delmonte, T., Bredhauer, B., Smith, C.W. and Paterson, A.H. (2005b) Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach, III. Fiber length. Theor. Appl. Genet. 111, 772–781.Google Scholar
  21. Condon, A.G. and Hall, A.E. (1997) Adaptation to diverse environments, Variation in water-use efficiency within crop species. In: L.E. Jackson (Ed.), Ecology in Agriculture. Academic Press, San-Diego, pp. 79–116.CrossRefGoogle Scholar
  22. Condon, A.G., Richards, R.A., Rebetzke, G.J. and Farquhar, G.D. (2004) Breeding for high water-use efficiency. J. Exp. Bot. 55, 2447–2460.PubMedCrossRefGoogle Scholar
  23. Cornish, K., Radin, J.W., Turcotte, E.L., Lu, Z. and Zeiger, E. (1991) Enhanced photosynthesis and stomatal conductance of Pima cotton (Gossypium barbadense L.) bred for increased yield. Plant Physiol 97, 484–489.PubMedCrossRefGoogle Scholar
  24. Cowan, I.R. (1986) Economics of carbon fixation in higher plants. In: T.J. Givnish (Ed.), On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, pp. 133–170.Google Scholar
  25. Cushman, J.C. and Bohnert, H.J. (2000) Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol. 3, 117–124.PubMedCrossRefGoogle Scholar
  26. Draye, X., Chee, P., Jiang, C., Decanini, L., Delmonte, T., Bredhauer, B., Smith, C.W. and Paterson, A.H. (2005) Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach, II. Fiber fineness. Theor. Appl. Genet. 111, 764–771.CrossRefGoogle Scholar
  27. Edmeades, G.O., Cooper, M., Lafitte, R., Zinselmeier, C., Ribaut, J.-M., Habben, J.E., Loffler, C. and Banziger, M. (2001) Abiotic stresses and staple crops. In: J. Nosberger, H.H. Geiger, and P.C. Struik (Eds.), Crop Science, Progress and Prospects. Proceedings of the Third International Crops Science Congress, 17–21 August, (2000). CABI, Wallingford, UK, pp. 137–154.Google Scholar
  28. Farquhar, G.D., O’Leary, M.H. and Berry, J.A. (1982) On relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9, 121–137.CrossRefGoogle Scholar
  29. Fryxell, P.A. (1979) The Natural History of the Cotton Tribe. Texas A&M Univ. Press, College Station, TX.Google Scholar
  30. Fryxell, P.A. (1984) Taxonomy and germplasm resources. In: R.J. Kohel and C.F. Lewis (Ed.), Cotton. Agron. Monogr. 24. ASA, CSSA, and SSSA, Madison, WI. pp. 27–57.Google Scholar
  31. Fryxell P.A. (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea,108–165.Google Scholar
  32. Glenn, E.P., Brown, J.J. and Blumwald, E. (1999) Salt Tolerance and Crop Potential of Halophytes. Critical Rev. Plant Sci.CrossRefGoogle Scholar
  33. Gotemare, V. and Singh P. (2004) Use of wild species for cotton improvement in India. ICAC Recorder, Vol. XXII, 12–14.Google Scholar
  34. Gur, A., and Zamir, D. (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol. 2, 1610–1615.CrossRefGoogle Scholar
  35. Hamdy, A., Ragab, R. and Scarascia-Mugnozza, E. (2003) Coping with water scarcity, water saving and increasing water productivity. Irrig. Drain. 52, 3–20.CrossRefGoogle Scholar
  36. Hazen, S.P., Wu, Y. and Kreps, J.A. (2003) Gene expression profiling of plant responses to abiotic stress. Funct. Integ. Genomics. 3, 105–111.CrossRefGoogle Scholar
  37. He, C.X., Yan, J.Q., Shen, G.X., Fu, L.H., Holaday, A.S., Auld, D., Blumwald, E. and Zhang, H. (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol. 46, 1848–1854.PubMedCrossRefGoogle Scholar
  38. Huang, B. and Liu, J.Y. (2006) A cotton dehydration responsive element binding protein functions as a transcriptional repressor of DRE-mediated gene expression. Biochem. Biophys. Res. Commun. 343, 1023–1031.PubMedCrossRefGoogle Scholar
  39. Hutmacher, R.B. and Krieg, D.R. (1983) Photosynthetic rate control in cotton – stomatal and nonstomatal factors (Gossypium hirsutum). Plant Physiol. 73, 658–661.PubMedCrossRefGoogle Scholar
  40. Ingram, J. and Bartels, D. (1996) The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 377–403.PubMedCrossRefGoogle Scholar
  41. Jiang, C., Chee, P., Draye, X., Morrell, P., Smith, C.W. and Paterson, A.H. (2000) Multi-locus interactions restrict gene flow in advanced-generation interspecific populations of polyploid Gossypium (cotton). Evolution 54, 798–814.PubMedGoogle Scholar
  42. Jiang, C., Wright, R., El-Zik, K. and Paterson, A.H. (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc. Nat. Acad. Sci. USA, 95, 4419–4424.PubMedCrossRefGoogle Scholar
  43. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287–291.PubMedCrossRefGoogle Scholar
  44. Kohel, R.J. (1974) Influence of certain morphological characters on yield. Cotton Grow. Rev. 51, 281–292.Google Scholar
  45. Kramer, P.J. (1980). Drought, stress, and the origin of adaptation. In: N.C. Turner and P.J. Kramer (Eds), Adaptation of Plants to Water and High Temperature Stress. John Wiley and Sons, NY, pp. 7–20.Google Scholar
  46. Lan, T-H., Cook, C. and Paterson, A.H. (1999) Identification of a RAPD marker linked to a male-fertility restoration gene in cotton (Gossypium hirsutum L.). J. Agr. Genomics, Volume 4.
  47. Lee, J.A. (1984) Cotton as a world crop. In: R.J. Kohel and C.F. Lewis (Eds.), Cotton. Agron. Monogr. 24. ASA, CSSA, and SSSA, Madison, WI, pp. 6–25.Google Scholar
  48. Levitt, J. (1972) Responses of Plant to Environment Stress. Academic Press. N.Y.Google Scholar
  49. Levi, A., Paterson, A.H., Barak, V., Yakir, D., Wang, B., Chee, P.W. and Saranga, Y. (2009) Field evalution of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. Mol. Breeding (in press).Google Scholar
  50. Light, G.G., Mahan, J.R., Roxas, V.P. and Allen, R.D. (2005) Transgenic cotton (Gossypium hirsutum L.)seedlings expressing a tobacco glutathione S-transferase fail to provide improved stress tolerance. Planta 222, 346–354.PubMedCrossRefGoogle Scholar
  51. Lu, Z., Chen, J., Percy, R.G., Sharifi, M.R., Rundel, P.W. and Zeiger, E. (1996) Genetic variation in carbone isotop discrimination and its relation to stomatal conductance in Pima cotton (Gossypium barbadense). Aust. J. Plant Physiol. 23, 127–132.CrossRefGoogle Scholar
  52. Maroco, J.P., Petreira, J.S. and Chaves, M.M. (2000) Growth, photosynthesis and water-use efficiency of two C4 Sahelian grasses subjected to water deficits. J. Arid. Env. 45, 119–137.CrossRefGoogle Scholar
  53. McCarty, J. and Jenkins, J. (1992) Cotton germplasm, Characteristics of 79 day-neutral primitive race accessions. Miss. Agric. For. Expt. Stn., Tech. Bull. 184.Google Scholar
  54. Meredith, W.R.Jr., and Bridge, R.R. (1984) Genetic contributions to yield changes in Upland cotton.. In: W.R. Fehr (Ed.), Genetic contribution to yield gains of five major crop plants. ASA and CSSA, Stoneville, MS, pp. 75–87.Google Scholar
  55. Mimura, T., Kura-Hotta, M., Tsujimura, T., Ohnishi, M., Miura, M., Okazaki, Y., Mimura, M., Maeshima, M. and Washitani-Nemoto, S. (2003) Rapid increase of vacuolar volume in response to salt stress. Planta, 216, 397–402Google Scholar
  56. Mooney, H.A., Pearcy, R.W. and Ehleringer, J. (1987) Plant physiology ecology today. BioScience 37, 18–20.CrossRefGoogle Scholar
  57. Morgan, J.M. (1984) Osmoregulation and water stress in higher plants. Annu. Rev. Plant. Physiol. 35, 299–319.CrossRefGoogle Scholar
  58. Munns, R. (2005) Genes and salt tolerance, bringing rhem together. New Phytol. 167, 645–663.PubMedCrossRefGoogle Scholar
  59. Munns, R, James, R.A., Lauchli, A. (2006) Approaches to increase the salt tolerance of wheat and other cereals. J. Exp. Bot. 57, 1025–1043.PubMedCrossRefGoogle Scholar
  60. Ozturk, N.Z., Talame, V., Deyholos, M., Michalowski, C.B., Galbraith, D.W., Gozukirmizi, N., Tuberosa, R. and Bohnert, H.J. (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol. Biol. 48, 551–573.CrossRefGoogle Scholar
  61. Parry, M.A.J., Flexas, J. and Medrano, H. (2005) Prospects for crop production under drought, research priorities and future directions. Ann. Appl. Biol., 147, 211–226.CrossRefGoogle Scholar
  62. Paterson, A. H., Saranga, Y., Menz, M., Jiang, C. and Wright, R. (2002) QTL Analysis of Genotype x Environment Interactions Affecting Cotton Fiber Quality. Theor. Appl. Genet., 106, 384–396.PubMedGoogle Scholar
  63. Paterson, A.H., Lander, E.S., Hewitt, J.D., Peterson, S., Lincoln, S.E. and Tanksley, S.D. (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335, 721–726.PubMedCrossRefGoogle Scholar
  64. Pettigrew, W.T. (2004) Physiological consequences of moisture deficit stress in cotton. Crop Sci. 44, 1265–1272.CrossRefGoogle Scholar
  65. Pickergill, B., Barrett, S.C.H. and de Andrade-Lima, D. (1975) Wild cotton in northeast Brazil. Biotropica 7, 42–54.CrossRefGoogle Scholar
  66. Plucknett, D.L., Smith, N.J.H., Williams, J.T. and Anishetty, N.M. (1987) Gene Banks and the World's Food. Princeton University Press, Princeton, NJ, USA.Google Scholar
  67. Quisenberry, J.E., Jordan, W.R., Roark, B.A. and Fryrear, D.W. (1981) Exotic cottons as genetic sources for drought resistance. Crop Sci. 21, 889–895.CrossRefGoogle Scholar
  68. Radin, J.W. (1989) When is stomatal control of water loss consistent with the thermal kinetic window concept? In: Proc Beltwide Cotton Conf., Nat. Cotton Council Am., Memphis, TN, pp 46–49.Google Scholar
  69. Radin, J.W., Kimball, B.A., Hendrix, D.L. and Mauney, J.R. (1987) Photosynthesis of cotton plants exposed to elevated levels of carbon dioxide in the field. Photosynth Res. 12, 191–203.CrossRefGoogle Scholar
  70. Radin, J.W., Lu, Z., Percy, R.G. and Zeiger, E. (1994) Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation. Proc. Nat. Acad. Sci. USA 91, 7217–7221.PubMedCrossRefGoogle Scholar
  71. Ramanjulu, S. and Bartels, D. (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant, Cell and Environ. 25, 141–151.CrossRefGoogle Scholar
  72. Reinisch, A.R., Dong, J.-M., Brubaker, C., Stelly, D., Wendel, J. and Paterson, A.H. (1994) A detailed RFLP map of cotton (Gossypium hirsutum x G. barbadense), Chromosome organization and evolution in a disomic polyploid genome. Genetics, 138, 829–847.PubMedGoogle Scholar
  73. Rong, J., Abbey, C., Bowers, J.E., Brubaker, C.L., Chang, C., Chee, P.W., Delmonte, T.A., Ding, X., Garza, J.J., Marler, B.S., Park, C-H., Pierce, G.J., Rainey K.M., Rastogi, V.K., Schulze, S.R., Trolinder, N.L., Wendel, J.F., Wilkins, T.A., Williams-Coplin, T.D., Wing, R.A., Wright, R.J., Zhao, X., Zhu, L. and Paterson, A.H. (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166, 389–417.PubMedCrossRefGoogle Scholar
  74. Rong, J., Bowers, J.E., Schulze, S.R., Waghmare, V., Rogers, C., Pierce, G., Zhang, H., Estill, J. C. and Paterson, A.H. (2005) Comparative genomics of Gossypium and Arabidopsis, Unraveling the consequences of both ancient and recent polyploidy. Genome Res. 15, 1198–1210.PubMedCrossRefGoogle Scholar
  75. Rosenow, D.T., Quisenberry, J.E., Wendt, C.W. and Clark, L.E. (1983) Drought tolerant sorghum and cotton germplasm. Agric. Water Manag. 7, 207–222.CrossRefGoogle Scholar
  76. Salvi, S. and Tuberosa, R. (2005) To clone or not to clone plant QTLs, present and future challenges. Trends in Plant Sci.10, 297–304.CrossRefGoogle Scholar
  77. Saranga, Y., Flash, Y. and Yakir, D. (1998) Variation in water-use efficiency and its relation to carbon isotope ratio in cotton. Crop Sci. 38,782–787.CrossRefGoogle Scholar
  78. Saranga, Y., Jiang, C., Wright, R., Yakir, D. and Paterson, A.H. (2004) Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant Cell Environ. 27, 263–277.CrossRefGoogle Scholar
  79. Saranga, Y., Menz. M., Jiang, C., Wright, R., Yakir, D. and Paterson, A.H. (2001) Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions. Genome Res. 11, 1988–1995.PubMedCrossRefGoogle Scholar
  80. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y. and Shinozaki, K. (2001) Monitoring the expression pattern of 1300 arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13, 61–72.PubMedCrossRefGoogle Scholar
  81. Shinozaki, K. and Yamaguchi-Shinozaki, K. (1997) Gene expression and signal transduction in water-stress response. Plant Physiol. 115, 327–334.PubMedCrossRefGoogle Scholar
  82. Silva, T.M.S., Camara, C.A., Medeiros, F.D., Oliviera, E.J., Agra, M.F., Harley, R.M. and Giulietti, A.B. (2006) Phaeophytins from Gossypium mustelinum Miers ex Watt (Malvaceae). Biocem. System. Ecol. 34, 263–264.CrossRefGoogle Scholar
  83. Simmonds, N.W. (1979) Evolution of Crop Plants. Longman Scientfic and Technical Press, Essex, England.Google Scholar
  84. Singh, R.P., Prasad, P.V.V., Sunita, K., Giri, S.N. and Reddy, K.R. (2007) Influence of high temperature and breeding for heat tolerance in cotton, a review. Adv. Agron. 93, 313–385.CrossRefGoogle Scholar
  85. Sonnewald, U. (2003) Plant biotechnology, from basic science to industrial applications. J. Plant Physiol. 160, 723–725CrossRefGoogle Scholar
  86. Tanksley, S.D. and McCouch, S.R. (1997) Seed banks and molecular maps, unlocking genetic potential from the wild. Science 277, 1063–1066.PubMedCrossRefGoogle Scholar
  87. Tuberosa, R. and Salvi, S. (2006) Genomics-based approaches to improve drought tolerance of crops. Trends in Plant Sci. 11, 405–412.CrossRefGoogle Scholar
  88. Turner, N.C. (1986) Crop water deficits, a decade of progress. Adv. Agron. 39, 1–51.CrossRefGoogle Scholar
  89. Udall, J.A., Swanson, J.M., Nettleton, D., Percifield, R.J. and Wendel, J.F. (2006) A novel approach for characterizing expression levels of genes duplicated by polyploidy. Genetics 173, 1823–1827.PubMedCrossRefGoogle Scholar
  90. Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2006) Engineering drought tolerance in plants, discovering and tailoring genes to unlock the future. Curr. Opin. Biotechnol. 17, 113–122.PubMedCrossRefGoogle Scholar
  91. Vinocur, B. and Altman, A. (2005) Recent advances in engineering plant tolerance to abiotic stress, achievements and limitations. Curr. Opin. Biotechnol. 16, 123–132.PubMedCrossRefGoogle Scholar
  92. Vorosmarty, C.J., Green, P., Salisbury, J. and Lammers, R. B. (2000) Global water resources, vulnerability from climate change and population growth. Science 289, 284–288.PubMedCrossRefGoogle Scholar
  93. Waghmare, V.N., Rong, J., Rogers, C.J., Pierce, G.J., Wendel, J.F. and Paterson, A.H. (2005) Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, G. tomentosum. Theor. Appl. Genet. 111, 665–676.PubMedCrossRefGoogle Scholar
  94. Wendel, J. (1989) New World tetraploid cottons contain Old World cytoplasm. Proc. Natl. Acad. Sci. USA 86, 4132–4136.PubMedCrossRefGoogle Scholar
  95. Wang, G., Dong, J. and Paterson, A.H. (1995) The distribution of Gossypium hirsutum chromatin in G. barbadense germplasm, molecular analysis of introgressive plant breeding. Theor. Appl. Genet., 91, 1153–1161.Google Scholar
  96. Wright, R., Thaxton, P., Paterson, A.H. and El-Zik, K. (1998) Polyploid formation in Gossypium has created novel avenues for response to selection for disease resistance. Genetics 149, 1987–1996.PubMedGoogle Scholar
  97. Wright, R., Thaxton, P., Paterson, A.H. and El-Zik, K. (1999) Molecular mapping of genes affecting pubescence of cotton. J. Heredity, 90, 215–219.CrossRefGoogle Scholar
  98. Wu, C.A., Yang, G.D., Meng, Q.W. and Zheng, C.C. (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol. 45, 600–607.PubMedCrossRefGoogle Scholar
  99. Yakir, D., De Niro, M.J. and Ephrath, J.E. (1990) Effect of water stress on oxygen, hydrogen and carbon isotope ratios in two species of cotton plants. Plant Cell Environ. 13, 949–955.CrossRefGoogle Scholar
  100. Yan, J.Q., He, C.X., Wang, J., Mao, Z.H., Holaday, S.A., Allen, R.D. and Zhang, H. (2004) Overexpression of the Arabidopsis 14–3-3 protein GF14 λ in cotton leads to a “Stay-Green” phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol. 45, 1007–1014.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yehoshua Saranga
    • 1
  • Andrew H. Paterson
  • Avishag Levi
  1. 1.The RH Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of JerusalemIsrael

Personalised recommendations