Advertisement

Bridging Classical and Molecular Genetics of Cotton Disease Resistance

  • Robert J. Wright
  • Chen Niu
  • Bay Nguyen
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 3)

Abstract

Understanding the series of events that causes a symptomatic disease response brings to light the relationship between a pathogen and its host. More than 50 bacteria, fungi, virus, and nematodes have been implicated in cotton diseases that annually account for an estimated $897 million in lost revenue to the U.S. crop. Advances in cotton genetics have led to the development of several technologies that enable the detailed examination of the cotton genome for genes that function in response to pathogen infection. There is an opportunity to make direct and meaningful comparisons from data generated by forward and reverse genetics. Comparing QTL information with reverse genetics (functional genomics) offers a powerful approach to identify and characterize the key pathways and the genetics involved in disease. Cotton is an interesting taxon in which to study disease because its evolution includes the divergence of resistance (R-genes) through the radiation of species, as well as multiple genetic bottlenecks including polyploid formation and the domestication of a small subset of Gossypium species.

Keywords

Quantitative Trait Locus Quantitative Trait Locus Region Bacterial Blight Resistance Gene Analogue Vegetative Compatibility Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahuja, S.L., Monga, D. and Dhayal, L.S. (2007) Genetics of Resistance to Cotton Leaf Curl Disease in Gossypium hirsutum L. under Field Conditions. J. of Heredity 98, 79–83.CrossRefGoogle Scholar
  2. Ali, M. (1997) Breeding of cotton varieties for resistance to cotton leaf curl virus. Pakistan Journal of Phytopathology 9, 1–7.Google Scholar
  3. Aslam, M., Jiang, C., Wright, R.J. and Paterson, A.H. (1999) Identification of Molecular Markers Linked to Leaf Curl Virus Disease Resistance in Cotton. Pakistan J. Biol. Sci. 2, 124–126.CrossRefGoogle Scholar
  4. Assigbetse, K.B., Fernandez, D., Dubois, M.P. and Geiger, J.P. (1994) Differentiation of Fusarium oxysporum f. sp. vasinfectum races on cotton by random amplified polymorphic DNA (RAPD) analysis. Phytopathology 84, 622–626.CrossRefGoogle Scholar
  5. Barrow, J.R. (1970a) Heterozygosity in inheritance of Verticillium wilt tolerance in cotton. Phytopathology 60:301–303.Google Scholar
  6. Barrow, J.R. (1970b) Critical requirements for genetic expression of Verticillium wilt tolerance in Acala cotton. Phytopathology 60:559–560.Google Scholar
  7. Beasley, J.O. (1942) Meiotic chromosome behavior in species, species hybrids, haploids and induced polyploids of Gossypium. Genetics 27, 25–54.PubMedGoogle Scholar
  8. Bell, A.A. (1994) Mechanisms of disease resistance in Gossypium species and variation in Verticillium dahliae. In: Constable GA, Forrester NW (eds), Challenging the Future: Proceedings of the World Cotton Research Conference-1, February 14–17, Brisbane, Australia, pp. 225–235.Google Scholar
  9. Bird, L.S. (1976) Registration of Tamcot SP21, Tamcot SP23 and Tamcot SP37 cottons. Crop Science 16, 884.CrossRefGoogle Scholar
  10. Bird, L.S. (1982) The MAR (multi-adversity resistance) system for genetic improvement of cotton. Plant Dis. 66, 172–176.CrossRefGoogle Scholar
  11. Blasingame, D. (1995/2006 separate volumes) Cotton Disease Loss Estimate. Committee Report. Proc. Beltwide Cotton Conf., Cotton Disease Council, National Cotton Council, Memphis, Tenn.Google Scholar
  12. Bolek, Y., El-Zik, K.M., Pepper, A.E., Bell, A.A., Magill, C.W., Thaxton, P.M. and Reddy, O.U.K. (2005) Mapping of Verticillium wilt resistance genes in cotton. Plant Sci. 168, 1581–1590.CrossRefGoogle Scholar
  13. Bent, A.F., Kundel, B.N., Dahlbeck, D., Brown, K.L., Schmidt, R., Giraudat, J., Leung, J. and Staskawicz, B.J. (1994) RPS2 of Arabdopsis thaliana: a Leucine-rich repeat class of plant disease reisistance gene. Science 265:1856–1860.PubMedCrossRefGoogle Scholar
  14. Bridge, P.D., Ismail, M.A. and Rutherford, M.A. (1993) An assessment of aesculin hydrolysis, vegetative compatibility and DNA polymorphism as criteria for characterizing pathogenic races within Fusarium oxysporum f. sp. vasinfectum. Plant Pathol. 42, 264–269.CrossRefGoogle Scholar
  15. Collins, N.C., Webb, C.A., Seah, S., Ellis, J.G., Hulbert, S.H. and Pryor A. (1998) The isolation and mapping of disease resistance gene analogs in Maize. MPMI 11:968–978.PubMedCrossRefGoogle Scholar
  16. Davis, R.D., Moore, N.Y. and Kochman, J.K. (1996) Characterisation of a population of Fusarium oxysporum f. sp. vasinfectum causing wilt of cotton in Australia. Australian Journal of Agriculture Research 47:1143–1156.CrossRefGoogle Scholar
  17. Davis, R.M., Colyer, P.D., Rothrock, C.S. and Kochman, J.K. (2006) Fusarium Wilt of Cotton: Population Diversity and Implications for Management. Plant Disease 90, 692–703.CrossRefGoogle Scholar
  18. De Feyter, R. and Gabriel, D.W. (1991) At least six avirulence genes are clustered on a 90-kilobase plasmid in Xanthomonas campestris pv. malvacearum. Mol. Plant Microbe Interact. 4:423–432.CrossRefGoogle Scholar
  19. De Feyter, R., McFadden, H. and Dennis, L (1998) Five avirulence genes from Xanthomonas campestris pv. malvacearum cause genotype-specific cell death when expressed transiently in cotton. Mol. Plant Microbe Interact. 11:698–701CrossRefGoogle Scholar
  20. Delannoy, E., Lyon, B.R., Marmey, P., Jalloul, A. Daniel, J.F., Montillet, J.L. Essenberg, M. and Nicole, M. (2005) Resistance of Cotton Towards Xanthomonas campestris pv. Malavacearum Annu. Rev. Phytopathol. 43, 63–82.CrossRefGoogle Scholar
  21. Devey, M.E. and Roose, M.L. (1987) Genetic analysis of Verticillium wilt tolerance in cotton using pedigree data from three crosses. Theor. Appl. Genet. 74, 162–167.CrossRefGoogle Scholar
  22. Du, W.S., Du, X.M. and Ma Z.Y., (2004) Studies on SSR markers of resistance gene of Verticillium wilt in cotton. J. Northwest Sci. Tech. Univ. Agric.: Nat. Sci. Ed. 32, 20–24.Google Scholar
  23. Ellis, J. (1998) Structure and function of proteins controlling strain-specific pathogen resistance in plants. Curr. Opin. Plant Biol. 1:288–293.PubMedCrossRefGoogle Scholar
  24. Ellis, J., Dodds, P., and Pryor, T. (2000) Structure, function and evolution of plant disease resistance genes. Curr. Opin. Plant Biol. 3:278–284.PubMedCrossRefGoogle Scholar
  25. El-Zik, K.M. and Bird, L.S. (1970) Effectiveness of specific genes and gene combinations in conferring resistance to races of Xanthomonas malvacearum in Upland cotton. Phytopathology 60, 441–447.CrossRefGoogle Scholar
  26. Essenberg, M, Bayles, M.B., Samad, R.A., Hall, J.A., Brinkerhoff, L.A. and Verhalen, L.M. (2002) Four new-isogenic lines of cotton with different genes for bacterial blight resistance. Phytopathology 92:1323–1328.PubMedCrossRefGoogle Scholar
  27. Fernandez, D., Assigbetse, K., Dubois, M.P. and Geiger, J.P. (1994) Molecular characterization of races and vegetative compatibility groups in Fusarium oxysporum f. sp. vasinfectum. Appl. Environ. Microbiol. 60, 4039–4046.PubMedGoogle Scholar
  28. Follin, J.C., Girardot, B., Mangano, V. and Benitez, R. (1988) New results on inheritance of immunity to bacterial blight (Xanthomonas campestris pv. malvacearum (Smith) Dye, race 18 and 20) in the cotton plant (Gossypium hirsutum L.). Coton et Fibres Tropicales 43, 167–175.Google Scholar
  29. Gabriel, D.W. (1999) The Xanthomonas avr/pth gene family. In Plant-Microbe Interactions, ed. G Stacey, NT Keen, 4:39–55. St Paul, MN: APS PressGoogle Scholar
  30. Gao, Y.Q., Nie, Y.C. and Zhang, X.L. (2003) QTL mapping of genes resistant to Verticillium wilt in cotton. Cotton Sci. 15: 73–78.Google Scholar
  31. Hameed, S., Khalid, S., Ehsan-ul-Haq, Hashrni, A.A. (1993) Cotton leaf curl disease in Pakistan caused by a whitefly-transmitted geminivirus. Plant Dis 78: 529Google Scholar
  32. He L., Du, C., Covaleda, L., Xu, Z., Robinson, A.F., Yu, J.Z., Kohel, R.J., and Zhang H-B. (2004) Cloning, characterization, and evolution of the NBS-LRR-encoding resistance gene analogue family in polyploid cotton (Gossypium hirsutum L.). Mol Plant–Microbe Interact 17:1234–1241PubMedCrossRefGoogle Scholar
  33. Hillocks, R.J. (1983) Infection of cotton seed by Fusarium oxysporum f.sp. vasinfectum in cotton varieties resistant or susceptible to Fusarium wilt. Trop. Agric. (Trinidad) 60, 141–143.Google Scholar
  34. Hillocks, R.J. (1992) Cotton Disease. CAB International, Wallingford, UK.Google Scholar
  35. Hillocks, R.J.and Kibani, T.H.M (2002) Factors affecting the distribution, incidence and spread of Fusarium wilt of cotton in Tanzania. Expl. Agric. 38, 13–27.CrossRefGoogle Scholar
  36. Hinchliffe, D. J., Lu, Y. Z., Potenza, C., Segupta-Gopalan, C., Cantrell, R. G. and Zhang, J. F. (2005) Resistance gene analogue markers are mapped to homeologous chromosomes in cultivated tetraploid cotton. Theor. Appl. Genet. 110:1074–1085PubMedCrossRefGoogle Scholar
  37. Innes, N.L. (1983) Bacterial blight of cotton. Biol. Rev. 58, 157–176.CrossRefGoogle Scholar
  38. Kim, Y., Hutmacher, R.B. and Davis, R.M. (2005) Characterization of California Isolates of Fusarium oxysporum f. sp. vasinfectum. Plant Dis 89, 366–372.CrossRefGoogle Scholar
  39. Kirkpatrick, T.L. and Rothrock, C.S. (2001) Compendium of Cotton Disease. The American Phytopathological Society, St. Paul, Minnesota.Google Scholar
  40. Knight, R.L. (1948) The role of major genes in the evolution of economic characters. J. Genet. 48: 370–387.PubMedCrossRefGoogle Scholar
  41. Knight, R.L. (1953) The genetics of blackarm resistance. IX. The gene B 6 M from Gossypium arboreum. J. Genet. 51, 270–275.CrossRefGoogle Scholar
  42. Knight, R.L. (1963) The genetics of blackarm resistance. XII. Transference of resistance from Gossypium herbaceum to Gossypium barbadense. Genetics 50, 36–58.Google Scholar
  43. Knight, R.L. and Hutchinson, J.B. (1950) The evolution of blackarm resistance in cotton. J. Genet. 50: 36–58.CrossRefGoogle Scholar
  44. Lawrence, G.J., Finnegan, E.J., Ayliffe, M.A., and Ellis, J.G. (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7:1195–1206.PubMedCrossRefGoogle Scholar
  45. Leach, J.E. and White, F.F. (1997) Avirulence genes. In Plant-Microbe Interactions, ed. G Stacey, NT Keen, 2:61–98. New York: Chapman & HallCrossRefGoogle Scholar
  46. Luckett, D.J., Thomson N.J. and Reid P.E. (1986) Quality requirements and cotton breeding in Australia. In ‘Plant Breeding Symposium’. Lincoln, New Zealand.Google Scholar
  47. Martin, G.B. (1999) Functional analysis of plant disease resistance genes and their downstream effectors. Curr. Opin. Plant Biol. 2:273–279.PubMedCrossRefGoogle Scholar
  48. Mansoor, S., Briddon, R.W., Bull, S.E., Bedford, I.D., Bashir, A., Hussain, M., Saeed, M., Zafar, Y., Malik, K.A., Fauquet, C., Markham, P.G. (2003) Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNA β. Archives of Virology 148, 1969–1986.PubMedCrossRefGoogle Scholar
  49. McFadden, H., Beasley, D. and Brubaker, C.L. (2004) Assessment of Gossypium sturtianum and G. australe as potential sources of Fusarium wilt resistance to cotton. Euphytica 138:61–72.CrossRefGoogle Scholar
  50. Mert, M., Kurt, S., Gencer, O., Akiscan, Y., Boyaci, K. and Tok, F.M. (2005) Inheritance of resistance to Verticillium wilt (Verticillium dahlia) in cotton (Gossypium hirsutum L.). Plant Breeding 124, 102–104.CrossRefGoogle Scholar
  51. Nelson, R.R. (1978) Genetics of horizontal resistance to plant diseases. Annu. Rev. Phytopathol. 16, 359–378.CrossRefGoogle Scholar
  52. Niu, C., Hinchliffe, D.J., Cantrell, R.G., Wang, C., Roberts, P.A. and Zhang, J.F. (2007) Identification of molecular markers associated with root-knot nematode resistance in Upland cotton. Crop Sci. 47, 951–960.CrossRefGoogle Scholar
  53. Niu, C., Lister, H.E., Nguyen, B., Wheeler, T.A. and Wright, R.J. (2008) Quantitative trait loci controlling resistance to Thielaviopsis basicola in diploid cotton. Theor. Appl. Genet. 117, 1313–1323.Google Scholar
  54. Ohmori T., Murata, M. and Motoyoshi, F. (1998) Characterization of disease resistance gene-like sequences in near-isogenic lines of tomato. Theor. Appl. Genet. 96, 331–338.CrossRefGoogle Scholar
  55. Pan, J.J., Zhang, T.Z., Kuai, B.K., Guo, X.P. and Wang, M. (1994) Studies on the inheritance of resistance Verticillium dahlia in cotton. J. Nanjing Agric. Univ. 17, 8–18.Google Scholar
  56. Patil, M.A, Pierce, M.L., Phillips, A.L., Venters, B.J. and Essenberg, M. (2005) Identification of genes up-regulated in bacterial-blight-resistant uplant cotton in response to inoculation with Xanthomonas campestris pv. malvacearum. Physiological and Molecular Plant Pathology 67: 319–335.CrossRefGoogle Scholar
  57. Rahman, M., Hussain, D., Malik, T.A. and Zafar, Y. (2005) Genetics of resistance to cotton leaf curl disease in Gossypium hirsutum. Plant Pathology 54, 764–772.CrossRefGoogle Scholar
  58. Roberts, C.L. and Staten, G. (1972) Heritability of Verticillium wilt tolerance in crosses of American upland cotton. Crop Sci. 12, 63–66.CrossRefGoogle Scholar
  59. Robinson, A.F., Bell, A.A., Dighe, N.D., Menz, M.A., Nichols, R.L. and Stelly D.M. (2007) Introgression of resistance to nematode Rotylenchulus reniformis into Upland Cotton (Gossypium hirsutum) from Gossypium longicalyx. Crop Sci. 47, 1865–1877.CrossRefGoogle Scholar
  60. Rong, J., Abbey, C., Bowers, J.E., Brubaker, C.L., Chang, C., Chee, P-W, Delmonte, T.A., Ding, X., Garza, J.J., Marler, B.S., Park, C-H, Pierce, G.J., Rainey, K.M., Rastogi, V.K., Schultze, S.R., Trolinder, N.L., Wendel, J.F., Wilkins, T.A., Williams-Coplin, D., Wing, R.A., Wright, R.J., Zhao, X., Zhu, L. and Paterson, A.H. (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics: 166, 389–417PubMedCrossRefGoogle Scholar
  61. Rong J., Bowers, J.E., Schulze, S.R., Waghmare, V.N., Rogers, C.J., Pierce, G.J., Zhang, H., Estill, J.C., Paterson, A.H. (2005) Comparative genomics of Gossypium and Arabidopsis: Unraveling the consequences of both ancient and recent polyploidy. Genome Res. 15:1198–1210PubMedCrossRefGoogle Scholar
  62. Rong, J., Feltus, F.A., Waghmare, V.N., Pierce, G.J., Chee, P.W., Draye, X., Saranga, Y., Wright, R.J., Wilkins, T.A., May, O.L., Smith, C.W., Gannaway, J.R., Wendel, J.F. and Paterson, A.H. (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588PubMedCrossRefGoogle Scholar
  63. Rungis, D., Llewellyn, D., Dennis, E.S. and Lyon, B.R. (2002) Investigation of the chromosomal location of the bacterial blight resistance gene present in an Australian cotton (Gossypium hirsutum L.) cultivar. Aust. J. Agric. Res. 53, 551–560CrossRefGoogle Scholar
  64. Saunders, J.H. and Innes, N.L. (1963) The genetics of bacterial blight resistance in cotton: Further evidence on the gene B 6m. Genet. Res. Camb. 4, 382.CrossRefGoogle Scholar
  65. Shen, X., Becelaere, G. V., Kumar, P., Davis, R. F., May, O. L. and Chee, P. (2006) QTL mapping for resistance to root-knot nematodes in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source. Theor. Appl. Genet. 113, 1539–1549.PubMedCrossRefGoogle Scholar
  66. Skovgaard, K., Nirenberg, H.I., O’Donnell, K. and Rosendahl, S. (2001) Evolution of Fusarium oxysporum f. sp. vasinfectum races inferred from multigene genealogies. Phytopathology 91:1231–1237.PubMedCrossRefGoogle Scholar
  67. Taliercio, E., Allen, R.A., Essenberg, M., Klueva, N., Nguyen, H., Patil, M.A., Payton, P., Millena, A.C.M., Phillips, A.L., Pierce, M.L., Scheffler, B., Turley, R., Wang, J., Zhang, D. and Scheffler, J. (2006) Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs. Genome 49, 306–319.PubMedCrossRefGoogle Scholar
  68. Tan H., Callahan, F.E., Zhang, X-D, Karaca, M., Saha, S., Jenkins, J.N., Creech, R.G. and Ma, D-P. (2003) Identification of resistance gene analogs in cotton (Gossypium hirsutum L.). Euphytica 134:1–7CrossRefGoogle Scholar
  69. Udall, J.A., Swanson, J.M., Haller, K., Rapp, R.A., Sparks, M.E., Hatfield, J., Yu, Y., Wu, Y., Dowd, C., Arpat, A.B., Sickler, B.A., Wilkins, T.A., Guo, J.Y., Chen, X.Y., Scheffler, J., Taliercio, E., Turley, R., McFadden, H., Payton, P., Klueva, N., Allen, R., Zhang, D., Haigler, C., Wilkerson, C., Suo, J., Schulze, S.R., Pierce, M.L., Essenberg, M., Kim, H., Llewellyn, D.J., Dennis, E.S., Kudrna, D., Wing, R., Paterson, A.H., Soderlund, C. and Wendel, J.F. (2006) A global assembly of cotton ESTs. Genome Res. 16: 441–450.PubMedCrossRefGoogle Scholar
  70. Ulloa, M., Hutmacher, R. B., Davis, R. M., Wright, S. D., Percy, R. and Marsh, B. (2006) Breeding for Fusarium Wilt Race 4 Resistance in Cotton under Field and Greenhouse Conditions. J. Cotton Sci 10, 114–127.Google Scholar
  71. Verhalen, L.M., Brinkerhoff, L.A., Fun, K.C. and Morrison, W.C. (1971) A quantitative genetic study of Verticillium wilt resistance among selected lines of upland cotton. Crop Sci. 11, 407–412.CrossRefGoogle Scholar
  72. Wang, H.M, Zhang, X.L., He, D.H., Lin, Z.X., Nie, Y.C., Li, Y.H. and Chen W. (2005) Detection of DNA markers associated with resistance to Verticillium dahlia in cotton. Acta Phytopathol. Sin. 34, 333–339.Google Scholar
  73. Wheeler, T. A., Gannaway, J. R. and Keating, K. (1999) Identification of resistance to Thielaviopsis basicola in diploid cotton. Plant Dis. 83, 831–833.CrossRefGoogle Scholar
  74. Wheeler, T. A. and Gannaway, J. R. (2007) Identification of germplasm resistant to Thielaviopsis basicola in the USDA cotton germplasm collection. In World Cotton Conference-4, 10–14 Sept, 2007, Lubbock, TX. (In press)Google Scholar
  75. Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C. and Baker, B. (1994) The product of the tobacco mosaic virus resistance gene N: similarity to the Toll and the interlukin-1 receptor. Cell 78:1101–1115.PubMedCrossRefGoogle Scholar
  76. Wright, R.J., Thaxton, P.M., El-Zik, K.M. and Paterson, A.H. (1998) D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics 149, 1987–1996PubMedGoogle Scholar
  77. Yang, C., Guo, W., Li, G., Gao, F., Lin, S. and Zhang, T. (2008) QTL mapping of Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. Plant Science 174, 290–298.CrossRefGoogle Scholar
  78. Yang, Y. and Gabriel, D.W. (1995) Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol. Plant Microbe Interact. 8, 627–631.PubMedCrossRefGoogle Scholar
  79. Yang, Y., Yuan, Q. and Gabriel, D.W. (1996) Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family. Mol. Plant Microbe Interact. 9:105–113CrossRefGoogle Scholar
  80. Zhang, J., Yuan, Y., Niu, C., Hinchliffe, D.J., Lu, Y., Yu, S., Percy, R.G., Ulloa, M. and Cantrell, R.G. (2007) AFLP-RGA markers in comparison with RGA and AFLP in cultivated tetraploid cotton. Crop Science 47:180–187CrossRefGoogle Scholar
  81. Zhen, R., Wang, X.F., Ma, Z.Y., Zhang, G.Y. and Wang, X. (2006) A SSR marker linked with the gene of Verticillium wilt resistance in Gossypium barbadense. Cotton Sci. 18, 269–272.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Robert J. Wright
  • Chen Niu
  • Bay Nguyen

There are no affiliations available

Personalised recommendations