Advertisement

Genetic Improvement of Sugarcane (Saccharum spp.) as an Energy Crop

  • Thomas L. Tew
  • Robert M. Cobill

Keywords

Sugar Yield Sweet Sorghum Sucrose Content Energy Crop Cane Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, A.G. (1985) The Energy Cane Alternative. Sugar Series, Vol. 6. Elsevier, Amsterdam.Google Scholar
  2. Alexander, A.G. (1991) High energy cane. In: J.H. Payne (Ed.), Cogeneration in the Cane Sugar Industry. Elsevier, New York, pp. 233–242.Google Scholar
  3. Amalraj, V.A. and Balasundaram, N. (2005) On the taxonomy of the members of ‘Saccharum complex’. Genet. Resour. Crop Evol. 53, 35–41.CrossRefGoogle Scholar
  4. Beeharry, R.P. (1996) Extended sugarcane biomass utilisation for exportable electricity production in Mauritius. Biomass Bioenergy 11, 441–449.CrossRefGoogle Scholar
  5. Berding, N. and Roach, B.T. (1987) Germplasm collection, maintenance, and use. In: D.J. Heinz (Ed.), Sugarcane Improvement Through Breeding. Elsevier, New York, pp. 143–210.Google Scholar
  6. Berding, N. and Hurney, A.P. (2005) Flowering and lodging, physiological-based traits affecting cane and sugar yield. Field Crops Res. 92, 261–275.CrossRefGoogle Scholar
  7. Bhat, S.R. and Gill, S.S. (1985) The implications of 2n gametes in nobilization and breeding of sugarcane. Euphytica 34, 377–384.CrossRefGoogle Scholar
  8. Breaux, R.D. (1984) Breeding to enhance sucrose content of sugarcane in Louisiana. Field Crops Res. 9, 59–67.CrossRefGoogle Scholar
  9. Bremer, G. (1923) A cytological investigation of some species and species hybrids within the genus Saccharum. Genetica 5, 97–148, 273–326.CrossRefGoogle Scholar
  10. Brown, J.S., Schnell, R.J., Power, E.J., Douglas, S.L. and Kuhn, D.N. (2007) Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum. A study of inter- and intra species relationships using microsatellite markers. Genet. Res. Crop Evol. 54, 627–648.CrossRefGoogle Scholar
  11. Cai, Q., Aitken, K.S., Deng, H.H., Chen, X.W., Fu, C., Jackson, P.A. and McIntyre, C.L. (2005) Verification of the introgression of Erianthus arundinaceus germplasm into sugarcane using molecular markers. Plant Breed. 124, 322–328.CrossRefGoogle Scholar
  12. Clements, H.F. (1980) Sugarcane Crop Logging and Crop Control: Principles and Practices. University Press of Hawaii, HonoluluGoogle Scholar
  13. Coombs, J. (1984) Sugar-cane as an energy crop. Biotechnol. Genetic Engin. Rev. 1, 311–345.Google Scholar
  14. Cuenya, I. and Mariotti, J.A. (1986) Selection of sugarcane for quality components and ripening ability. Proc. Int. Soc. Sugar Cane Technol. 19, 429–439.Google Scholar
  15. Daniels, J. and Roach, B.T. (1987) Taxonomy and evolution. In: D.J. Heinz (Ed.), Sugarcane Improvement Through Breeding. Elsevier, New York, pp. 7–84.Google Scholar
  16. Dawson, L. and Boopathy, R. (2007) Use of post-harvest sugarcane residue for ethanol production. Bioresour. Technol. 98, 1695–1699.PubMedCrossRefGoogle Scholar
  17. D’Hont, A., Grivet, L., Feldmann, P., Rao, P.S., Berding, N. and Glaszmann, J.C. (1996) Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol. Gen. Genet. 250, 405–413.PubMedGoogle Scholar
  18. D’Hont, A., Paulet, F. and Glaszmann, J.C. (2002) Oligoclonal interspecific origin of ’North Indian’ and ’Chinese’ sugarcanes. Chromosome Res. 10, 253–262.PubMedCrossRefGoogle Scholar
  19. Dunckelman, P.H. and Breaux, R.D. (1972) Breeding sugarcane varieties for Louisiana with new germplasm. Proc. Int. Soc. Sugar Cane Technol. 14, 233–239.Google Scholar
  20. Edmé, S.J., Miller, J.D., Glaz, B., Tai, P.Y.P. and Comstock, J.C. (2005) Genetic contribution to yield gains in the Florida sugarcane industry across 33 years. Crop. Sci. 45, 92–97.Google Scholar
  21. Engard, C.J. and Larsen, N. (1948) Floral development in sugarcane. Hawaii Agric. Exp. Stn. Biennial Rep. 1946–1948, pp. 125–132.Google Scholar
  22. Giamalva, M.J., Clarke, S.J. and Stein, J.M. (1984) Sugarcane hybrids of biomass. Biomass 6, 61–68.CrossRefGoogle Scholar
  23. Gravois, K.A., Bischoff, K.P. and Kimbeng, C.A. (2006) The rise and fall of a monoculture. Sugar J. 69, 18–20.Google Scholar
  24. Hatch, M.D. and Slack, C.R. (1966) Photosynthesis in sugarcane leaves: a new carboxylation reaction and the pathway of sugar formation. Biochem. J. 101, 103–111.PubMedGoogle Scholar
  25. Heinz, D.J. (1967) Wild Saccharumspecies for breeding in Hawaii. Proc. Int. Soc. Sugar Cane Technol. 12, 1037–1043.Google Scholar
  26. Hodkinson, T.R., Chase, M.W. and Renvoize, S.A. (2002) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann. Bot. 89, 627–636.PubMedCrossRefGoogle Scholar
  27. Hogarth, D.M., Wu, K.K. and Heinz, D.J. (1981) Estimating genetic variance in sugarcane using a factorial cross design. Crop Sci. 21, 21–25.Google Scholar
  28. Edmé, S.J., Miller, J.D., Glaz, B., Tai, P.Y.P. and Comstock, J.C. (2005) Genetic contribution to yield gains in the Florida sugarcane industry across 33 years. Crop. Sci. 45, 92–97.Google Scholar
  29. Hogarth, D.M., Cox, M.C. and Bull, J.K. (1997) Sugarcane improvement: past achievements and future prospects. In: M.S. Kang (Ed.), Crop Improvement for the 21st Century. ResearchSignpost, Trivandrum, India, pp. 29–56.Google Scholar
  30. Irvine, J.E. and Benda, G.T.A. (1979) Genetic potential and restraints in Saccharum as an energy source. {\it Symposium on Alternate Uses of Sugarcane for Development in Puerto Rico. San Juan, P.R. (26 Mar 1979). Irvine, J.E. (1999) Saccharumspecies as horticultural classes. Theor. Appl. Genet. 98, 186–194.CrossRefGoogle Scholar
  31. Jackson, P. (1994) Genetic relationships between attributes in sugarcane clones closely related to Saccharum spontaneum. Euphytica 79, 101–108.CrossRefGoogle Scholar
  32. James, N.I. (1980) Sugarcane. In: W.R. Fehr and H.H. Hadley (Eds.), Hybridization of Crop Plants. Am. Soc. Agron., Madison, pp. 617–629.Google Scholar
  33. James, G.L. (2004) Sugarcane. Blackwell, Oxford.Google Scholar
  34. Jenkins, B.M., Baxter, L.L., Miles Jr., T.R. and Miles, T.R. (1998) Combustion properties of biomass. Fuel Proces. Technol. 54, 17–46.CrossRefGoogle Scholar
  35. Kang, M.S., Miller, J.D. and Tai, P.Y.P. (1983) Genetic and phenotypic path analysis and heritability in sugarcane. Crop Sci. 23, 643–647.Google Scholar
  36. Kennedy, A.J. (2000) Building parental populations with very high sucrose content through recurrent selection. Breeding and Germplasm Workshop. Int. Soc. Sugar Cane. Technol. Barbados (http://www.issct.org/bridabs.htm).Google Scholar
  37. Kennedy, A.J. (2005) Breeding improved cultivars for the Caribbean by utilization of total biomass production. Proc. Int. Suc. Sugar Cane Tech. 25, 491–499.Google Scholar
  38. Kortschak, H.P., Hartt, C.E. and Burr, G.O. (1965) Carbon dioxide fixation in sugarcane leaves. Plant Physiol. 40, 209–213.PubMedCrossRefGoogle Scholar
  39. Legendre, B.L. and Burner, D.M. (1995) Biomass production of sugarcane cultivars and earlygeneration hybrids. Biomass Bioenergy 8, 55–61.CrossRefGoogle Scholar
  40. Lima, M.L.A., Garcia, A.A.F., Oliveira, K.M., Matsuoka, S., Arizono, H., de Sousa, C.L. and de Sousa, A.P. (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharumspp.). Theor. Appl. Genet. 104, 30–38.PubMedCrossRefGoogle Scholar
  41. Lingle, S.L., Tew, T.L., Viator, R.P. and Johnson, R.M. (2006) How much has recurrent selection increased sucrose yield in sugarcane? CCSA 51st Annual Meeting. Sect. 57-4 (abstract).Google Scholar
  42. Lo, C.C., Chen, Y.H., Huang, Y.J. and Shih, S.C. (1986) Recent progress in Miscanthus nobilization program. Proc. Int. Soc. Sugar Cane Technol. 19, 514–521.Google Scholar
  43. Loomis, R.S. and Williams, W.A. (1963) Maximum crop productivity: an estimate. Crop. Sci. 3, 67–72.Google Scholar
  44. Macedo, I.C., Leal, M.R.L.V. and da Silva, J.E.A.R. (2004) Assessment of greenhouse gas emissions in the production and use of fuel ethanol in Brazil. Sao Paulo. (http://www.unica.com.br/i_pages/files/pdf_ingles.pdf).Google Scholar
  45. Macedo, I.C. (2005) Sugar Cane’s Energy – Twelve Studies on Brazilian Sugar Cane Agribusiness and its Sustainability, UNICA, Brazil.Google Scholar
  46. Mangelsdorf, A.J. (1946) Sugar-cane breeding in Hawaii. Part I – 1778–1920. Hawaii. Plant. Rec. 50, 141–160.Google Scholar
  47. Matsuo, K., Chuenpreecha, T., Matsumoto, N. and Ponragdee, W. (2006) Eco-physical characteristics of Erianthusspp. and yielding abilities of three forages under conditions of cattle feces application. JIRCAS Working Report No. 30.Google Scholar
  48. McKendry, P. (2002) Energy production from biomass (part 1): overview of biomass. Bioresource Technol. 83, 37–46.CrossRefGoogle Scholar
  49. Miller, J.D. (1977) Combining ability and yield component analyses in a five-parent diallel cross in sugar cane. Crop Sci. 17, 545–547.Google Scholar
  50. Milligan, S.B., Gravois, K.A., Bischoff, K.P. and Martin, F.A. (1990) Crop effects on broadsense heritabilities and genetic variances on sugarcane yield components. Crop Sci. 30, 344–349.Google Scholar
  51. Ming, R., Moore, P.H., Wu, K.K., D’Hont, A., Tew, T.L., Mirkov, T.E., da Silva, J., Schnell, R.J., Brumbley, S.M., Lakshmanan, P., Jifon, J., Rai, M., Comstock, J.C., Glaszmann, J.C. and Paterson, A.H. (2006) Sugarcane improvement through breeding and biotechnology. Plant Breed. Rev. 27, 17–118.Google Scholar
  52. Moore, P.H. (1987) Anatomy and morphology. In: D.J. Heinz (Ed.), Sugarcane Improvement Through Breeding. Elsevier, New York, pp. 85–142.Google Scholar
  53. Moore, P.H. and Nuss, K.J. (1987) Flowering and flower synchronization. In: D.J. Heinz (Ed.), Sugarcane Improvement Through Breeding. Elsevier, New York, pp. 273–311.Google Scholar
  54. Moore, P.H., Botha, F.C., Furbank, R. and Grof, C. (1997) Potential for overcoming physiobiochemical limits to sucrose accumulation. In: B.A. Keating and J.R. Wilson (Eds.), Intensive Sugarcane Production: Meeting the Challenges Beyond 2000. CAB Int., Wallingford, U.K., pp. 141–155.Google Scholar
  55. Mrini, M., Senhaji, F. and Pimentel, D. (2001) Energy analysis of sugarcane production in Morocco. Environ. Develop. Sustain. 3, 109–126.CrossRefGoogle Scholar
  56. Muchow, R.C., Spilman, M.F., Wood, W.W. and Thomas, M.R. (1994) Radiation interception and biomass accumulation in a sugarcane crop under irrigated tropical conditions. Aus. J. Agr. Res. 45, 3–49.Google Scholar
  57. Mukherjee, S.K. (1950) Search for wild relatives of sugarcane in India. Int. Sugar J. 52, 261–262.Google Scholar
  58. Mukherjee, S.K. (1957) Origin and distribution of Saccharum. Bot. Gaz. 119, 55–61.CrossRefGoogle Scholar
  59. Osgood, R.V. (2003) Cane planter, sugarcane yield and record yield. Sugar J. 66, 7.Google Scholar
  60. Panje, R.R. and Babu, C.N. (1960) Studies in Saccharum spontaneum. Distribution and geographical association of chromosome numbers. Cytologia 25, 152–172.Google Scholar
  61. Panje, R.R. (1972) The role of Saccharum spontaneum in sugarcane breeding. Proc. Int. Soc. Sugar Cane Technol. 14, 217–223.Google Scholar
  62. Payne, J.H. (1991) Cogeneration in the cane sugar industry. Elsevier, New York.Google Scholar
  63. Pellegrini, L.F. and de Oliveira Jr., S. (2007) Exergy analysis of sugarcane bagasse gasification. Energy 32, 314–327.CrossRefGoogle Scholar
  64. Pimentel, D. and Patzek, T. (2007) Ethanol production: energy and economic issues related to U.S. and Brazilian sugarcane. Nat. Resour. Res. 16, 235–242.CrossRefGoogle Scholar
  65. Rao, P.S. and Kennedy, A. (2004) Genetic improvement of sugarcane for sugar, fibre and biomass. Ministry of Agriculture and Rural Development, Barbados, National Agric. Conf. [http://www.agriculture.gov.bb/default.asp?V_DOC_ID=1639].Google Scholar
  66. Richard Jr., E.P., (1999) Management of chopper harvester-generated green cane trash blankets: a new concern for Louisiana. Proc. Inter. Soc. Sugar Cane Technol. 23, 52–62.Google Scholar
  67. Roach, B.T. (1978) Utilization of Saccharum spontaneumin sugarcane breeding. Proc. Int. Soc. Sugar Cane Technol. 16, 43–58.Google Scholar
  68. Salassi, M.E. and Breaux, J.B. (2005) Allocation of sugarcane planting costs in 2005. Staff Report No. 2005-01. LSU AgCenter, Baton Rouge. [http://www.agecon.lsu.edu/Extension_Pubs/Allocation%20of%20Sugarcane%20Planting%20Costs%20in%202005.pdf].Google Scholar
  69. Samuels, G. (1986) Growing sugarcane as a renewable energy crop. Soil and Crop Sci. Soc. Fla. Proc. 45, 103–105.Google Scholar
  70. Shang, K.C., Juang, P.Y., Chu, T.L. and Huang, S.T. (1969) A study on the transmission of some important characteristics of Taiwan originated wild cane Saccharum spontaneum L. Proc. Int. Soc. Sugar Cane Technol. 13, 968–974.Google Scholar
  71. Shapouri, H., Salassi, M. and Fairbanks, J.N. (2006) The economic feasibility of ethanol production from sugar in the United States. OEPNU/OCE/USDA/LSU Report. [http://louisianalawnandgarden.org/NR/rdonlyres/0EF2C03C-1C69-455E-AB51-C16D165C2F41/28608/EthanolSugarFeasibilityReport3Julyreleasedcopy.pdf].Google Scholar
  72. Simmonds, N.W. (1976) Sugarcane. In: N.W. Simmonds (Ed.) Evolution of Crop Plants. Longmans, London, pp. 104–108.Google Scholar
  73. Sreenivasan, T.V. (1987) Cytogenetics. In: D.J. Heinz (Ed.), Sugarcane Improvement Through Breeding. Elsevier, New York, pp. 211–253.Google Scholar
  74. Stevenson, G.C. (1965) Genetics and Breeding of Sugar Cane. Longman, London.Google Scholar
  75. Stricker, J.A., Prine, G.M., Anderson, D.L., Shibles, D.B. and Riddle, T.C. (1993) Energy from crops: production and management of biomass/energy crops on phosphatic clay in central Florida. Circular 1084. Fla. Coop. Ext. Serv., U. Florida. [http://edis.ifas.ufl. edu/EH213].Google Scholar
  76. Sugimoto, A., Ponragdee, W., Sansayawichai, T., Kawashima, T., Thippayarugs, S., Suriyaphan, P., Matsuoka, M., Lerdprasertrat, K. and Pramanee, P. (2002). Collecting and evaluating of wild relatives of sugarcane as breeding materials of new type sugarcane cultivars of cattle feed in northeast Thailand. JIRCAS Working Report 55–60.Google Scholar
  77. Tew, T.L. (1987) New varieties. In: D.J. Heinz (Ed.), Sugarcane Improvement Through Breeding. Elsevier, New York, pp. 559–594.Google Scholar
  78. Tew, T.L. (2003) World sugarcane variety census – year 2000. Sugar Cane International March/April, pp. 12–18.Google Scholar
  79. Viator, R.P., Johnson, R.M., Grimm, C.C. and Richard Jr., E.P. (2006) Allelopathic, autotoxic, and hormetic effects of postharvest sugarcane residue. Agron J. 98, 1526–1531.CrossRefGoogle Scholar
  80. Walker, D.I.T. (1972) Utilization of noble and Saccharum spontaneumgermplasm in the West Indies. Proc. Int. Soc. Sugar Cane Technol. 14, 224–232.Google Scholar
  81. Walter, A., Dolzan, P. and Piacente, E. (2006) Biomass energy and bio-energy trade: historic developments in Brazil and current opportunities. Country Report: Brazil – Task 40 – Sustainable Bio-energy Trade; Securing Supply and Demand. State University of Campinas, Campinas, Brazil.Google Scholar
  82. Xavier, R.M. (2007) The Brazilian ethanol experience. Competitive Enterprise Institute, Washington DC. [http://www.cei.org/pdf/5774.pdf].Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Thomas L. Tew
    • 1
  • Robert M. Cobill
    • 2
  1. 1.USDA–ARS Sugarcane Research UnitHoumaUSA
  2. 2.USDA–ARS Sugarcane Research UnitHoumaUSA

Personalised recommendations