Advertisement

Development and Utilization of Sorghum as a Bioenergy Crop

  • Ana Saballos

Keywords

Ethanol Production Sweet Sorghum Cinnamyl Alcohol Dehydrogenase Stem Borer Bioenergy Crop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharoni, A., Dixit, S., Jetter, R., Thoenes, E., van Arkel, G., and Pereira, A. (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16, 2463–2480PubMedGoogle Scholar
  2. Agrama, H., Widle, G., Reese, J., Campbell, L., and Tuinstra, M. (2002) Genetic mapping of QTLs associated with greenbug resistance and tolerance in Sorghum bicolor. Theor. Appl. Genet. 104, 1373–1378.PubMedGoogle Scholar
  3. Alam, S., Ali, A., Qamar, I. A., Arshad, M., and Sheikh, S. (2001) Correlation of economically important traits in Sorghum bicolor varieties. J. Biol. Sci. 1, 330–331.Google Scholar
  4. Ayyangar, G. N. R. (1942) The description of crop plant characters and their ranges of variation. IV. Variability of Indian sorghum. Indian J. Agric. Sci. 12, 528–563.Google Scholar
  5. Ayyangar, G. N. R., and Ponnaiya, B. W. X. (1937) The occurrence and inheritance of earheads with empty anther sacs in sorghum. Curr. Sci. 8, 116.Google Scholar
  6. Ayyangar, G., Ayyar, M., Rao, V., and NambiarA. (1936) Mendelian segregation for juiciness and sweetness in sorghum stalk. Madras Agric. J. 24, 247.Google Scholar
  7. Bandyopadhyay, R., Frederickson, D. E., McLaren, N. W., Odvody, G. N., and Ryley, M. J. (1998) Ergot: A new disease threat to sorghum in the Americas and Australia. Plant Dis. 82, 356–367.Google Scholar
  8. Bantilan, M. C. S., Deb, U. K., Gowda, C. L. L., Reddy, B. V. S., Obilana, A. B., and Evenson, R. E. (2004) Sorghum Genetic Enhancement: Research Process, Dissemination and Impacts. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India.Google Scholar
  9. Barabas, Z. (1962) Observation of sex differentiation in sorghum by use of induced male- sterile mutants. Nature 195, 257–259.Google Scholar
  10. Battraw, M., and Hall, T. C. (1991) Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and ß-glucuronidase genes. Theor. Appl. Genet. 82, 161–168.Google Scholar
  11. Beraho, E. K., and Olembo, R. J. (1971) Albino and nonpolyploid mutants induced by colchicine in sorghum. J. Hered. 62, 376–379.Google Scholar
  12. Berhan, A. M., Hulbert, S. H., Butler, L. G., and Bennetzen, J. L. (1993) Structure and evolution of the genomes of sorghum bicolor andZea mays. Theor. Appl. Genet. 86, 598–604.Google Scholar
  13. Bhattramakki, D., Dong, J., Chhabra, A. K., and Hart, G. E. (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43, 988–1002.PubMedGoogle Scholar
  14. Bittinger, T. S., Cantrell, R. P., Axtell, J. D. (1981) Allelism tests of the brown-midrib mutants of sorghum. J. Hered. 72, 147–148Google Scholar
  15. Bitzer, M. J. (1997) Production of Sweet Sorghum for syrup in Kentucky. University of Kentucky Cooperative Extension Service, Lexington, KY.Google Scholar
  16. Blum, A. (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 56, 1159–1168.Google Scholar
  17. Bolsen, K. K., H. Ilg, R. V. Pope, M. A. Hinds, and Hoover, J. (1983) Whole-plant forage, grain, or non-heading sorghum silages, cornlage, and feed flavor supplements for growing cattle. Kansas Agric. Exp. Sta. Rep. Progr. 427, 46–52.Google Scholar
  18. Bogo, A. (2001) Biochemical physiopathology or some ergot fungi and other honeydewproducing plant parasites. Ph.D Thesis, Imperial College of Science, Technology and medicine, London, UK.Google Scholar
  19. Bogo, A., Mantle, P. G., and Harthmann, O. E. L. (2004) Screening of sweet sorghum accessions for inhibition of secondary sporulation and saccharide measurements in honeydew of Claviceps africana. Fitopatol. Bras. 29, 86–90.Google Scholar
  20. Boivin, K., Deu, M., Rami, J. F., Trouche, G., and Hamon, P. (1999) Towards a saturated sorghum map using RFLP and AFLP markers. Theor. Appl. Genet. 98, 320–328.Google Scholar
  21. Borovkova, I. G., Jin, Y., and Steffenson, B. J. (1998) Chromosomal Location and Genetic relationship of leaf rust resistance genes Rph9 and Rph12 in Barley. Phytopathology. 88, 76–80.Google Scholar
  22. Bout, S., and Vermerris, W. (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol. Genet. Genomics. 269, 205–214.PubMedGoogle Scholar
  23. Bowers, J. E., Abbey, C., Anderson, S., Chang, C., Draye, X., Hoppe, A. H., Jessup, R., Lemke, C., Lennington, J., Li, Z., Lin, Y., Liu, S.,. Luo, L., Marler, B., Ming, R., Mitchell., Qiang, D., Reischmann, K., Schulze, S., Skinner, D., Wang, Y., Kresovich, S., Schertz, K., Paterson, A. (2003) A high-density genetic recombination map of sequencetagged sites for sorghum, as a framework for comparative, structural and evolutionary genomics of tropical grains and grasses. Genetics 165, 367–386.PubMedGoogle Scholar
  24. Bramel-Cox, P. J., and Claflin, L. E. (1989) Selection for resistance to Macrophomina phaseolina and Fusarium moniliforme in sorghum. Crop Sci. 29, 1468–1472.Google Scholar
  25. Bucholtz, D. L., Cantrell, R. P., Axtell, J. D., and Lechtenberg, V. L. (1980). Lignin biochemistry of normal and brown midrib mutant sorghum. J. Agric. Food Chem. 28, 1239–1241.Google Scholar
  26. Cai, T., and Butler, L. (1990) Plant regeneration from embryogenic callus initiated from immature inflorescences of several high-tannin sorghums. Plant Cell, Tissue and Organ Culture 20, 101–110.Google Scholar
  27. Cai, T., Ejeta, G., Axtell, J. D., and Butler, L. G. (1990) Somaclonal variation in high tannin sorghums. Theor. Appl. Genet. 79, 737–747.Google Scholar
  28. Caniato, F. F., Guimarães, C. T., Schaffer, R. E., Alves, V.M.C., L. Kochian V., Borém, A., Klein, P. E., and Magalhaes J. V. (2007) Genetic diversity for aluminum tolerance in sorghum. Theor. Appl. Genet 114, 863–876.PubMedGoogle Scholar
  29. Casas, A. M., Kononowicz, A. K., Haan, T. G., Zhang, L., Tomes, D. T., Bressan, R. A., and Hasegawa, P. M. (1997) Transgenic sorghum plants obtained after microporjectile bombardment of immature inflorescences. In Vitro Cell Dev. Biol. Plant. 33, 92–100.Google Scholar
  30. Chang, V. S., and Holtzapple, M. T. (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84, 5–38.PubMedGoogle Scholar
  31. Charles, N., Mansfield, S. D., Mirochnik, O., and Duff, S. J. B. (2003) Effect of oxygen delignification operating parameters on downstream enzymatic hydrolysis of softwood substrates. Biotechnol. Progr. 19, 1606–1611.Google Scholar
  32. Chase, C. D., and Pring, D. R. (1985) Circular plasmid DNAs from mitochondria of Sorghum bicolor. Plant Mol. Biol. 5, 303–311.Google Scholar
  33. Chittenden, L. M., Schertz, K. F., Lin, Y. R., Wing, R. A., and Paterson, A. H. (1994) A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor. Appl. Genet. 87, 925–933.Google Scholar
  34. Curtis, D. L. (1968) The relation between the date of heading of nigerian sorghums and the duration of the growing season. J. Appl. Ecol. 5, 215–226.Google Scholar
  35. Dahlberg, J. A., Bandyopadhyay, R., Rooney, W. L., Odvody, G. N., and Madera-Torres, P. (2001) Evaluation of sorghum germplasm used in US breeding programmes for sources of sugary disease resistance. Plant Pathol. 50, 681–689.Google Scholar
  36. Dang, L. H., and Pring, D. R. (1986) A physical map of the sorghum chloroplast genome. Plant Mol. Biol. 6, 119–123.Google Scholar
  37. Dercas, N., and Liakatas, A. (2007) Water and radiation effect on sweet sorghum productivity. Water Resour. Manag. 21, 1585–1600.Google Scholar
  38. Doggett, H. (1988) Sorghum, 2nd edition. Wiley, New York.Google Scholar
  39. Downes, R. W. (1970) Effect of light intensity and leaf temperature on photosynthesis and transpiration in wheat and sorghum. Aust. J. Biol. Sci. 23, 775–782.Google Scholar
  40. Draude, K. M., Kurniawan, C. B., and Duff, S. J. B. (2001) Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Biores. Technol. 79, 113–120.Google Scholar
  41. Ejeta, G., and Grenier, C. (2005) Sorghum and its weedy hybrids. In: Gressel, J, (ed.), Crop Ferality and Volunteerism, CRC Press, Taylor and Francis Group, USA. pp. 123–135Google Scholar
  42. Ekanayake, I. J., and Garrity, D. P. (1985) Root pulling resistance in rice: Inheritance and association with drought tolerance. Euphytica 34, 905–913Google Scholar
  43. Erpelding, J., and Prom, L. (2006) Variation for anthracnose resistance within the sorghum germplasm collection from Mozambique, Africa. J. Plant Pathol. 5, 28–34.Google Scholar
  44. Erpelding, J., and Wang, M. (2007) Response to anthracnose infection for a random selection of sorghum germplasm. Plant Pathol. J. 6, 127–133.Google Scholar
  45. Erpelding, J. E., and Louis, K. (2004) Evaluation of Malian sorghum germplasm for rsistance against anthracnose. Plant Pathol. J. 3, 65–71.Google Scholar
  46. Erpelding, J. E., Prom, L. K., and Rooney, W. L. (2005) Variation in anthracnose resistance within the Sudanese sorghum germplasm collection. Plant Genet. Res. Newsl. 141, 11–14.Google Scholar
  47. Fehr, W. R. (1991) Principles of Cultivar Development. Theory and Technique, 2nd edition. Volume 1. Iowa State University, Ames, Iowa.Google Scholar
  48. Feltus, F., Hart, G., Schertz, K., Casa, A., Kresovich, S., Abraham, S., Klein, P., Brown, P., and Paterson, A. (2006) Alignment of genetic maps and QTLs between inter- and intraspecific sorghum populations. Theor. Appl. Genet. 112, 1295–1305.PubMedGoogle Scholar
  49. Frederiksen, R. A. (2000) Diseases and disease management in Sorghum, In: C. W. Smith, and R. A. Frederiksen, (Eds.), Sorghum: Origin, History, Technology and Production. John Wiley, New York, pp. 497–533.Google Scholar
  50. Frederiksen, R. A., and Odvody, G., eds. (2000) Compendium of Sorghum Diseases 2nd edition. APS Press, St. Paul, MN.Google Scholar
  51. Freeman, K. W., Girma, K., Arnall, D. B., Mullen, R. W., Martin, K. L., Teal, R. K., and Raun, W. R. (2007) By-plant prediction of corn forage biomass and nitrogen uptake at various growth stages using remote sensing and plant height. Agron J 99, 530–536.Google Scholar
  52. Funnell, D. L. (2006) Reaction of sorghum lines genetically modified for reduced lignin content to infection by Fusarium and Alternaria spp. Plant Dis. 90, 331–338.Google Scholar
  53. Gao, Z. S., Jayaraj, J., Muthukrishnan, S., Claflin, L., and Liang, G. H. (2005) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48, 321–333. PubMedGoogle Scholar
  54. Godwin, I., and Chikwamba, R. (1994) Transgenic grain sorghum (Sorghum bicolor) plants via Agrobacterium In: R. J. Henry, and J. A. Ronalds (Eds.), Improvement of Cereal Quality by Genetic Engineering. Plenum Press, New York. pp. 47–53.Google Scholar
  55. Gomez, M. I., Nurul Islam-Faridi, M., Woo, S. S., Schertz, K. F., Czeschin, D., Zwick, M. S., Wing, R. A., Stelly, D. M., and Price, H. J. (1997) Fish of a maize SH 2-selected sorghum BAC to chromosomes of Sorghum bicolor. Genome 40, 475–478.PubMedGoogle Scholar
  56. Gowda, P. S. B., Xu, G. W., Frederiksen, R. A., and Magill, C. W. (1995) DNA markers for downy mildew resistance genes in sorghum. Genome 38, 823–826.PubMedGoogle Scholar
  57. Greene, D. (1997) Biomass Yield and Chemical Composition of Sorghum and Rye Doublecropped on Marginal Land. Thesis, Purdue University, West Lafayette, IN.Google Scholar
  58. Hagio, T., Blowers, A. D., and Earle, E. D. (1991) Stable transformation of sorghum cell cultures after bombardment with DNA-coated microprojectiles. Plant Cell Rep. 10, 260– 264.Google Scholar
  59. Harris, K., Subudhi, P.K., Borrell, A., Jordan, D., Rosenow, D., Nguyen, H., Klein, P., Klein, R., and Mullet, J. (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J. Exp. Bot. 58, 327–38.PubMedGoogle Scholar
  60. Hart, G. E., Schertz, K. F., Peng, Y., and Syed, N. H. (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor. Appl. Genet. 103, 1232–1242.Google Scholar
  61. Haussmann, B., Mahalakshmi, V., Reddy, B., Seetharama, N., Hash, C., and Geiger, H. (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor. Appl. Genet. 106, 133–142.PubMedGoogle Scholar
  62. Hodnett, G. L., Burson, B. L., Rooney, W. L., Dillon, S. L., and Price, H. J. (2005) Pollenpistil interactions result in reproductive isolation between Sorghum bicolor and divergent sorghum species. Crop Sci. 45, 1403–1409.Google Scholar
  63. Hoffmann-Thoma, G., Hinkel, K., Nicolay, P., and Willenbrink, J. (1996) Sucrose accumulation in sweet sorghum stem internodes in relation to growth. Physiol. Plant. 97, 277–284.Google Scholar
  64. Holmes, M. G., and Keiller, D.R. (2002) Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ. 25, 85–93.Google Scholar
  65. Hondroyianni, D. K., Papakosta, A. A., Gagianas, K. A., and Tsatsarelis, E. (2000) Corn stalk traits related to lodging resistance in two soils of differing salinity. Maydica 45, 125–134.Google Scholar
  66. House, L. R. (1985) A Guide to Sorghum Breeding, 2nd edition. International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India.Google Scholar
  67. Howe, A., Sato, S., Dweikat, I., Fromm, M., and Clemente, T. (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep. 25, 784–791.PubMedGoogle Scholar
  68. Hulbert, S. H., Richter, T. E., Axtell, J. D., and Bennetzen, J. L. (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc. Natl. Acad. Sci. USA 87, 4251–4255.PubMedGoogle Scholar
  69. Jang, C., Kamps, T., Skinner, D., Schulze, S., Vencill, W., Paterson, A. (2006) Functional classification, genomic organization, putatively cis-acting regulatory elements, and relationship to quantitative trait loci, of sorghum genes with rhizome-enriched expression. Plant Physiol. 1148–1159.Google Scholar
  70. Jenks, M. A., Rich, P. J., Peters, P. J., Axtell, J. D., and Ashworth, E. N. (1992) Epicuticular wax morphology of bloomless (bm) mutants in Sorghum bicolor. Int. J. Plant Sci. 153, 311–319.Google Scholar
  71. Kaeppler, H. F., and Pedersen, J. F. (1997) Evaluation of 41 elite and exotic inbred sorghum genotypes for high quality callus production. Plant Cell Tissue Organ Cult. 48, 71–75.Google Scholar
  72. Kamala, V., Singh, S. D., Bramel, P. J., and Rao, D. M. (2002) Sources of resistance to downy mildew in wild and weedy sorghums. Crop Sci. 42, 1357-1360.Google Scholar
  73. Karper, R. E., and Stephens, J. C. (1936). Floral abnormalities in sorghum. J. Hered. 27, 183– 194.Google Scholar
  74. Katsar, C. S., Paterson, A. H., Teetes, G. L., and Peterson, G. C. (2002) Molecular analysis of sorghum resistance to the greenbug (Homoptera: Aphididae). J. Econ. Entomol. 95, 448– 457.PubMedGoogle Scholar
  75. Keating, B. A., Webster, A. J., Hoare, C. P., and Sutherland, R. F. (2004) Observations of the harvesting, transporting and trial crushing of sweet sorghum in a sugar mill. 2004 Conference of the Australian Society of Sugar Cane Technologists, 4–7 May 2004, Brisbane, Queensland, Australia,.Google Scholar
  76. Kimber, C. T. (2000) Origins of comesticated sorghum and its early diffusion to India and China, In: C. W. Smith, and R. A. Frederiksen (Eds.), Sorghum: Origin, History, Technology and Production. John Wiley, New York, pp. 3–98.Google Scholar
  77. Klein, P. E., Klein, R. R., Cartinhour, S. W., Ulanch, P. E., Dong, J., Obert, J. A., Morishige, D. T., Schlueter, S. D., Childs, K. L., Ale, M., and Mullet, J. E. (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10, 789–807.PubMedGoogle Scholar
  78. Klein, R. R., Rodriguez-Herrera, R., Schlueter, J. A., Klein, P. E., Yu, Z. H., and Rooney, W. L. (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor. Appl. Genet. 102, 307–319.Google Scholar
  79. Kochian, L. V., Hoekenga, O. A., and Pineros, M. A. (2004) How do crops plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Annu. Rev. Plant Biol. 55, 459–493PubMedGoogle Scholar
  80. Krishnasamy, R., Jegadeeswari, D., Surendran, U., Sudhalakshmi, C. (2006) Screening of sorghum (Sorghum bicolor) genotypes. 18th World Congress of Soil Science, 9–15 July 2006, Philadelphia, PA.Google Scholar
  81. Kundiyana, D., Bellmer, D., Huhnke, R., and Wilkins, M. (2006) "Sorganol": Production of Ethanol from Sweet Sorghum. 2006 American Society of Agricultural and Biological Engineers Annual International Meeting, Portland, Oregon.Google Scholar
  82. Li, G., Gu, W., and Chapman, K. (2004) Sweet Sorghum. China Agricultural Science and Technology Press, Beijing, China.Google Scholar
  83. Lin, Y. R., Schertz, K. F., and Paterson, A. H. (1995) Comparative analysis of QTLs affecting plant height and maturity across the poaceae, in reference to an interspecific sorghum Population. Genetics 141, 391–411.PubMedGoogle Scholar
  84. Ma, H., Gu, M., and Liang, G. H. (1987) Plant regeneration from cultured immature embryos of Sorghum bicolor (L.) Moench. Theor. Appl. Genet. 73, 389–394.Google Scholar
  85. Magalhaes, J. V., Garvin, D. F., Wang, Y., Sorrells, M. E., Klein, P. E., Schaffert, R. E., Li, L., and Kochian, L. V. (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167, 1905–1914PubMedGoogle Scholar
  86. Marley, P. S., and Ajayi, O. (2002) Assessment of anthracnose resistance (Colletotrichum graminicola) in sorghum (Sorghum bicolor) germplasm under field Conditions in Nigeria. J. Agric. Sci. 138, 201–208.Google Scholar
  87. Martin, J., Waldren, R., and Stamp, D. (2006) Principles of Field Crop Production 4th edition. Pearson Prentice Hall, Upper Saddle River, N.J.Google Scholar
  88. Massacci, A., Battistelli, A., and Loreto, F. (1996) Effect of drought stress on photosynthetic characteristics, growth and sugar accumulation of field-grown sweet sorghum. Funct. Plant Biol. 23, 331–340.Google Scholar
  89. Masteller, V. J., and Holden, D. J. (1970) The growth of and organ formation from callus tissue of sorghum. Plant Physiol. 45, 362–364.PubMedGoogle Scholar
  90. McIntyre, C. L., Hermann, S. M., Casu, R. E., Knight, D., Drenth, J., Tao, Y., Brumbley, S. M., Godwin, I. D., Williams, S., Smith, G. R., and Manners, J. M. (2004) Homologues of the maize rust resistance gene Rp1-D are genetically associated with a major rust resistance QTL in sorghum. Theor. Appl. Genet. 109, 875–883.PubMedGoogle Scholar
  91. Mehta, P. J., Wiltse, C. C., Rooney, W. L., Collins, S. D., Frederiksen, R. A., Hess, D. E., Chisi, M., and TeBeest, D. O. (2005) Classification and inheritance of genetic resistance to anthracnose in sorghum. Field Crops Res. 93, 1–9.Google Scholar
  92. Menz, M. A., Klein, R. R., Mullet, J. E., Obert, J. A., Unruh, N. C., and Klein, P. E. (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP{\textregistered}, RFLP and SSR markers. Plant Mol. Biol. 48, 483–499.PubMedGoogle Scholar
  93. Menz, M. A., Klein, R. R., Unruh, N. C., Rooney, W. L., Klein, P. E., and Mullet, J. E. (2004) Genetic diversity of public inbreds of sorghum determined by mapped AFLP and SSR markers. Crop Sci. 44, 1236–1244.Google Scholar
  94. Mihashi, S., and Mori, S. (1989) Characterization of mugineic acid Fe transporter in Fedeficient barley roots using the multicompartment transport box method. Biol. Metals 2, 146–154.Google Scholar
  95. Ming, R., Wang Y., Draye, X. Moore, P. Irvine J., and Paterson A. (2002) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor. Appl. Genet. 105, 332–345.PubMedGoogle Scholar
  96. Mohan, D. D., and Axtell, J. D. (1975) Diethyl sulfate induced high lysine mutants in sorghum. Proceedings of the 9th Biennial Grain Sorghum Research and Utilization Conference, Lubbock, TX.Google Scholar
  97. Moore, G., Devos, K. M., Wang, Z., and Gale, M. D. (1995) Cereal genome evolution: Grasses, line up and form a circle. Curr. Biol. 5, 737–739.PubMedGoogle Scholar
  98. Moyer, J. L., Fritz, J. O., and Higgins, J. J. (2004) Trends in forage yield and nutritive value of Sorghum spp. Agron. J. 96, 1453–1458Google Scholar
  99. Nagaraj, N., Reese, J. C., Tuinstra, M. R., Smith, C. M., St. Amand, P., Kirkham, M. B., Kofoid, K. D., Campbell, L. R., and Wilde, G. E. (2005) Molecular mapping of sorghum genes expressing tolerance to damage by greenbug (Homoptera: Aphididae). J. Econ. Entomol. 98, 595–602.PubMedGoogle Scholar
  100. Nathan, R. A. (1978) Fuels from Sugar Crops: Systems Study for Sugarcane, Sweet Sorghum, and Sugar Beets. University Press of the Pacific, Honolulu, HI. NationalGoogle Scholar
  101. Natoli, A., Gorni, C., Chegdani, F., Ajmone Marsan, P., Colombi, C., Lorenzoni, C., and Marocco, A. (2002) Identification o QTLs associated with sweet sorghum quality. Maydica 17, 311–322.Google Scholar
  102. Norwood, C. (1994) Profile water distribution and grain yield as affected by cropping system and tillage. Agron. J. 86, 558-563.Google Scholar
  103. Palonen, H., Tjerneld, F., Zacchi, G., and Tenkanen, M. (2004) Adsorption of purified Trichoderma reesei cellulases and their catalytic domains to steam pretreated softwood and isolated lignin. J. Biotechnol. 107, 65–72.PubMedGoogle Scholar
  104. Parh, D. K., Jordan, D. R., Aitken, E. A. B., Gogel, B. J., McIntyre, C. L., and Godwin, I. D. (2006) Genetic Components of variance and the role of pollen traits in sorghum ergot resistance. Crop Sci. 46, 2387–2395.Google Scholar
  105. Paterson, A. H., Schertz, K. F., Lin, Y., Liu, S., and Chang, Y. (1995) The weediness of wild ing dispersal and persistence of Johnsongrass, Sorghum halepense (L.). Proc. Natl. Acad. Sci. USA. 92, 6127–6131.PubMedGoogle Scholar
  106. Patil-Kulkarni, B. G., Puttarudrappa, A., Kajjari, N. B., and Goud, J. V. (1972) Breeding for rust resistance in sorghum. Indian Phytopathol. 25, 166–168.Google Scholar
  107. Pedersen, J., and Fritz, J. (2000) Forages and Fodder, In: C. W. Smith, and R. A. Frederiksen, (Eds.), Sorghum: Origin, History, Technology and Production. John Wiley, New York, pp. 797–810.Google Scholar
  108. Pedersen, J. F., and Rooney, W. L. (2004) Sorghum. In: L.E. Mosher, B. L. Burton, and L. E. Sollenberger (Eds.), Warm-Season (C4) Grasses. ASA/CSSA/SSSA, Madison. WI.Google Scholar
  109. Pedersen, J., Vogel, K., and Funnell, D. (2005) Impact of reduced lignin on plant fitness. Crop Sci. 45, 812–819.Google Scholar
  110. Pillonel, C., Moulder, M., Boon, J., Foster, B., and Binder, A. (1991) Involvement of cinnamyl- alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Moench. Planta 185, 538–544.Google Scholar
  111. Poirier, Y., Thoma, S., Somerville, C., and Schiefelbein, J. (1991) Mutant of arabidopsis deficient in xylem loading of phosphate. Plant Physiol. 97, 1087–1093.PubMedGoogle Scholar
  112. Porter, K. S., Axtell, J. D., Lechtenberg, V. L., and Colenbrander, V. F. (1978) Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci. 18, 205–208.Google Scholar
  113. Potter, K. N., Jones, O. R., Torbert, H. A., and Unger, P. W. (1997) Crop rotation and tillage effects on organic carbon sequestration in the semiarid southern Great Plains. Soil Sci. Am. J. 162, 140–147.Google Scholar
  114. Premachandra, G. S., Hahn, D. T., Rhodes, D., and Joly, R. J. (1995) Leaf water relations and solute accumulation in two grain sorghum lines exhibiting contrasting drought tolerance. J. Exp. Bot. 46, 1833.Google Scholar
  115. Price, H. J., Hodnett, G. L., Burson, B. L., Dillon, S. L., Stelly, D. M., and Rooney, W. L. (2006) Genotype Dependent Interspecific Hybridization of Sorghum bicolor. Crop Sci. 46, 2617–2622.Google Scholar
  116. Prom, L. K., Erpelding, J. E., and Montes-Garcia, N. (2007) Chinese sorghum germplasm evaluated for resistance to downy mildew and anthracnose. Comm. Biometry Crop Sci. 2, 26–31.Google Scholar
  117. Quinby, J., and Karper, R. E. (1954) Inheritance of height in sorghum. Agron. J. 46, 211–216.Google Scholar
  118. Quinby, J. R. (1966) Fourth maturity gene locus in sorghum. Crop Sci. 6, 516–518.Google Scholar
  119. Quinby, J. R. (1967) The maturity genes of sorghum. Adv. Agron. 19, 267–305.Google Scholar
  120. Quinby, J. R. (1973) The genetic control of flowering and growth in sorghum. Adv. Agron. 25, 125–162.Google Scholar
  121. Quinby, J. R., Hesketh, J. D., and Voigt, R. L. (1973) Influence of temperature and photoperiod on floral initiation and leaf number in sorghum. Crop Sci. 13, 243–246.Google Scholar
  122. Quinby, J. R., and Karper, R. E. (1961) Inheritance of duration of growth in the milo group of sorghum. Crop Sci. 1, 8–10.Google Scholar
  123. Rana, B. S., Tripathi, D. P., and Rao, N. G. (1976) Genetic analysis of some exotic x Indian crosses in sorghum. XV. Inheritance of resistance to sorghum rust. Indian J Genet Plant Breed 36, 244–249.Google Scholar
  124. Reddy, S. P., Fakrudin, B. S., Rajkumar, Punnuri, S. M., Arun, S. S., Kuruvinashetti, M. S., Das, I. K., and Seetharama, N. (2008) Molecular mapping of genomic regions harboring QTLs for stalk rot resistance in sorghum. Euphytica. 159, 191–198.Google Scholar
  125. Reddy, B., Ramesh, S., Reddy, P. S., Ashok Kumar, A. A., Sharma, K. K., Karuppan Chetty, S. M., and Palaniswamy, A. R. (2007a) Sweet Sorghum: Food, Feed, Fodder and Fuel Crop. International Crops Research Institute for the Semi-Arid Tropics. Patancheru , Andhra Pradesh, India.Google Scholar
  126. Reddy, B. V. S., Kumar, A. A., and Ramesh, S. (2007b) Sweet sorghum: A Water Saving Bioenergy Crop, In: International conference on Linkages between Energy and Water Management for Agriculture in Developing Countries. International Crops Research Institute for the Semi-Arid Tropics. ICRISAT Campus, Hyderabad, India.Google Scholar
  127. Reed, J. D., Ramundo, B. A., Claflin, L. E., and Tuinstra, M. R. (2002) Analysis of resistance to ergot in sorghum and potential alternate hosts. Crop Sci. 42, 1135–1138.Google Scholar
  128. Römheld, V., and Marschner, H. (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Physiol. 70, 175–180Google Scholar
  129. Rooney, L. W., and Pflugfelder, R. L. (1986) Factors affecting starch digestibility with special emphasis on sorghum and corn. J. Anim. Sci. 63, 1607–1623PubMedGoogle Scholar
  130. Rooney, W. L. (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci. 39, 397–400.Google Scholar
  131. Rooney, W. L. (2000) Genetics and Cytogenetics, In: C. W. Smith, and R. A. Frederiksen, (Eds.), Sorghum: Origin, History, Technology and Production, John Wiley, New York, pp. 261-307.Google Scholar
  132. Rooney, W., Blumenthal, J., Bean, B., and Mullet, J. (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod. Bioref. 1, 147–157.Google Scholar
  133. Rosenow, D. T., and Dahlberg, J. A. (2000) Collection, conversion, and utilization of sorghum. In: C. W. Smith, and R. A. Frederiksen, (Eds.), Sorghum: History, Technology and Production, John Wiley, New York, pp. 309–328.Google Scholar
  134. Saballos, A., Vermerris, W., and Ejeta, G. (2005) Allelic variation among brown midrib mutants of sorghum. 50th ASA-CSSA-SSSA International Annual Meetings. 6–10 November 2005,, Salt Lake City, UT.Google Scholar
  135. Saballos, A., Ejeta, G., and Vermerris, W. (2007) Genome-enabled analysis of the CAD gene family in sorghum. XIth Cell Wall Meeting. 12–17 August 2007, Copenhagen, Denmark.Google Scholar
  136. Sanchez, A.C., Subudhi, P.K., Rosenow, D.T., and Nguyen, H.T., (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench) Plant Mol. Biol. 48, 713–726.PubMedGoogle Scholar
  137. Serraj, R., and Sinclair, T. R. (2002) Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant Cell Environ. 25, 333–341PubMedGoogle Scholar
  138. Sharma, H. C., Reddy, B. V. S., Dhillon, M. K., Venkateswaran, K., Pampapathy, G., Folkertsma, R., Hash, C. T., and Sharma, K. K. (2005) Host plant resistance to insects in sorghum: Present status and need for future research. Int. Sorghum Millet Newsl. 46, 36–43.Google Scholar
  139. Sherwood, S. P. (1923) Starch in sorghum juice. Ind. Eng. Chem. 15, 727–728.Google Scholar
  140. Sieglinger, J. B. (1936). Leaf number of sorghum stalks. J. Amer. Soc. Agron. 28, 636.Google Scholar
  141. Singh K., Chino M., Nishizawa N.K., Ohata T., and Mori, S. (1993) Genotypic variation among Indian graminaceous species with respect to phytosiderophore secretion. In: Randall R. J., Delhaize, E., Richards R.A., and Munns, R. (Eds.) Genetic Aspects of Plant Mineral Nutrition. Kluwer Academic Publishers, Dordrecht, the Netherlands. pp. 335–339Google Scholar
  142. Singh, M., Chaudhary, K., and Boora, K. S. (2006) RAPD-based SCAR marker SCA 12 linked to recessive gene conferring resistance to anthracnose in sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet. 114, 187–192.PubMedGoogle Scholar
  143. Smith, C. W., and Frederiksen, R. A. (2000) Sorghum: Origin, History, Technology and Production, John Wiley, New York.Google Scholar
  144. Steduto, P., Katerji, N., Puertos-Molina, H., Unlu, M., Mastrorilli, M., and Rana, G. (1997) Water-use efficiency of sweet sorghum under water stress conditions Gas-exchange investigations at leaf and canopy scales. Field Crops Res. 54, 221–234.Google Scholar
  145. Stephens, J. C. (1937) Male sterility in sorghum: Its possible utilization in production of hybrid seed. J. Am. Soc. Agron. 29, 690–6906.Google Scholar
  146. Suzuki, S., Lam, T. B., and Liyama, K. (1997) 5-Hydroxyguaiacyl nuclei as aromatic constituents of native lignin. Phytochem. 46, 695–700.Google Scholar
  147. Swanson, A. F., and Parker J. H. (1931) Inheritance of smut resistance and juiciness of stalk in the sorghum cross Red Amber x Feterita. J. Hered. 22, 55Google Scholar
  148. Tadesse, Y., Sági, L., Swennen, R., and Jacobs, M. (2003) Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tissue Organ Cult. 75, 1–18.Google Scholar
  149. Takagi, S., Nomoto, K., and Takemoto, T. (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr. 7, 469–477.Google Scholar
  150. Taylor, R. W. (1988) Grain Sorghum: A Manual for Production and Marketing. University of Delaware, Cooperative Extension Service, Newark, DE.Google Scholar
  151. Tarpley, L., Lingle, S., Vietor, D., Andrews, D., and Miller, F. (1994) Enzymatic control of nonstructural carbohydrate concentrations in stems and panicles of sorghum. Crop Sci. 34, 446–452.Google Scholar
  152. Tenkouano, A., Miller, F. R., Frederiksen, R. A., and Rosenow, D. T. (1993) Genetics of nonsenescence and charcoal rot resistance in sorghum. Theor. Appl. Gen. 85, 644–648.Google Scholar
  153. Tesso, T., Claflin, L. E., and Tuinstra, M. R. (2004) Estimation of combining ability for resistance to fusarium stalk rot in grain sorghum. Crop Sci. 44, 1195–1199.Google Scholar
  154. Tesso, T. T., Claflin, L. E., and Tuinstra, M. R. (2005) Analysis of stalk rot resistance and genetic diversity among drought tolerant sorghum genotypes. Crop Sci. 45, 645–652.Google Scholar
  155. Tew, T., and Cobill, R. (2006) Evaluation of sweet sorghum as a complementary bioenergy crop to sugarcane in Louisiana. J. Am. Soc. Sugar Cane Technol. (serial online) 26, 57. http://www.assct.org/journal/journal.htmGoogle Scholar
  156. Troeh, F. R., and Thompson, L. M. (2005) Soils and Soil Fertility. Blackwell Publishing. Oxford, UK.Google Scholar
  157. Trull M. C., and Deikman J. (1998) An Arabidopsis mutant missing one acid phosphatase isoform. Planta 206, 544–50.PubMedGoogle Scholar
  158. Tuinstra, M. R., Grote, E. M., Goldsbrough, P. B., and Ejeta, G. (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci. 36, 1337–1344Google Scholar
  159. Undersander, D. J., Lueschen, W. E., Smith, L. H., Kaminski, A. R., Doll, J. D., Kelling, K. A., and Oplinger E. S. (1990) Sorghum for Syrup, In: Alternative Field Crops Manual. University of Wisconsin-Extension, University of Minnesota, Center for the Alternative Plants and Animal Products and the Minnesota Extension Services, Madison, WI; Waseca, MN.Google Scholar
  160. Unger, P. W., and Baumhardt, R. L. (1999) Factors related to dryland grain sorghum yield increases: 1939–1997. Agron J. 91, 870–875.Google Scholar
  161. Venuto, B. C. (2006). Producing biomass from sorghum x sudangrass hybrids, American Forage and Grassland Conference, 10–14 March 2006, San Antonio, Texas.Google Scholar
  162. Vermerris, W., Saballos, A., Ejeta, G., Mosier, N. S., Ladisch, M. R., and Carpita, N. C. (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci. 47: S142–S153Google Scholar
  163. Wallace, D. H., and Yan, W. (1998) Plant breeding and whole-system crop physiology: improving adaption, maturity and yield. CAB International, Wallingford, UK.Google Scholar
  164. Wang, M. L., Dean, R., Erpelding, J., and Pederson, G. (2006) Molecular genetic evaluation of sorghum germplasm differing in response to fungal diseases: Rust (Puccinia purpurea) and anthracnose (Collectotrichum graminicola). Euphytica. 148, 319–330.Google Scholar
  165. Waniska, R. D., Venkatesha, R. T., Chandrashekar, A., Krishnaveni, S., Bejosano, F. P., Jeoung, J., Jayaraj, J., Muthukrishnan, S., and Liang, G. H. (2001) Antifungal proteins and other mechanisms in the control of sorghum stalk rot and grain mold. J. Agric. Food. Chem. 49, 4732–4742.PubMedGoogle Scholar
  166. Woo, S.-S., Jiang, J., Gill, B. S., Paterson, A. H., and Wing, R. A. (1994) Construction and characterization of bacterial artificial chromosome library of Sorghum bicolor. Nucl. Acids Res. 22, 4922–4931.PubMedGoogle Scholar
  167. Wood, A. J., and Goldsbrough, P. B. (1997) Characterization and expression of dehydrins in water-stressed Sorghum bicolor. Physiol. Plant. 99, 144–152.Google Scholar
  168. Woodfin C. A., Rosenow D. T., and Clark L. E. (1988) Association between the stay green trait and lodging resistance in sorghum. In: Agronomy Abstracts, ASA, Madison, Wisconsin.Google Scholar
  169. Xu, W., Subudhi, P. K., Crasta, O. R., Rosenow, D. T., and Mullet, J. E. (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43, 461–469.PubMedGoogle Scholar
  170. Wu, X., Zhao, R., Bean S. R., Seib, P. A., McLaren, J. S., Madl, R. L., Tuinstra, M., Lenz, M. C., and Wang, D. (2007) Factors impacting ethanol production from grain sorghum in the dry-grind process. Cereal Chem. 84, 130–136Google Scholar
  171. Yang, B., and Wyman, C. E. (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng. 86, 88–98.PubMedGoogle Scholar
  172. Zhang, J. Y., Broeckling, C. D., Blancaflor, E. B., Sledge, M. K., Sumner L. W., and Wang, Z. Y. (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domaincontaining transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 42, 689–707PubMedGoogle Scholar
  173. Zhao, Z.-Y., Cai, T., Tagliani, L., Miller, M., Wang, N., Pang, H., Rudert, M., Schroeder, S., Hondred, D., Seltzer, J., and Pierce, D. (2000) Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44, 789–798.PubMedGoogle Scholar
  174. Zhu, H., Muthukrishnan, S., Krishnaveni, S., Wilde, G., Jeoung, J. M., and Liang, G. H. (1998) Biolistic transformation of sorghum using a rice chitinase gene. J. Genet. Breed. 52, 243–252.Google Scholar
  175. Zongo, J.-D., Gouyon, P. H., and Sandmeier, M. (1993) Genetic variability among sorghum accessions from the Sahelian agroecological region of Burkina Faso. Biodivers. Conserv. 2, 627–636.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ana Saballos
    • 1
  1. 1.Department of AgronomyPurdue UniversityWest LafayetteUSA

Personalised recommendations