Genetic Improvement of Corn for Lignocellulosic

  • Natalia de Leon
  • James G. Coors


Quantitative Trait Locus Corn Stover Quantitative Trait Locus Mapping Corn Plant European Corn Borer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Montague, L., Slayton, A. and Lukas, J. (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL/TP-510-32438 ( Scholar
  2. Allen, M.S., Coors, J.G. and Roth, G.W. (2003) Corn Silage. In: D.R. Buxton, J.H. Harrison and R.E. Muck (Eds.) Silage Science and Technology. ASA, CSSA, and SSSA, Madison, WI.Google Scholar
  3. Anderson, W.F. (2005) Development of a forage bermudagrass (Cynodonsp.) core collection. Grassland Sci. 51, 305–308.CrossRefGoogle Scholar
  4. Andrews, S.S. (2006) Crop Residue removal for biomass energy production: Effects on soils and recommendations. Soil Quality National Technology Development Team USDANatural Resource Conservation Service Residue_White_Paper.pdfGoogle Scholar
  5. Atchison, J.E. and Hettenhaus, J.R. (2003) Innovative methods for corn stover collecting, handling, storing and transporting. National Renewable Energy, Golden, Colorado.Google Scholar
  6. Barrière, Y., Alber, D., Dolstra, O., Lapierre, C., Motto, M., Ordas, A., Van-Waes, J., Vlasminkel, L., Welcker, C. and Monod, J.P (2005) Past and prospects of forage maize breeding in Europe. I. The grass cell wall as a basis of genetic variation and future improvements in feeding value. Maydica 50, 259–274.Google Scholar
  7. Barrière, Y., Guillet, C., Goffner, D. and Pichon, M. (2003) Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review. Anim. Res. 52, 193–228.Google Scholar
  8. Barrière, Y., Ralph, J., Méchin, V., Guillaumie, S., Grabber, J.H., Argillier, O., Chabbert, B. and Lapierre, C. (2004) Genetic and molecular basis of grass cell-wall degradability. II. Lessons from brown-midribmutants. C.R. Biologies 327, 847–860.Google Scholar
  9. Barrière, Y.A. and Argillier, O. (1993) Brown mid-ribmutants of maize: A review. Agronomie 13, 865–876.CrossRefGoogle Scholar
  10. Baucher, M., Monties, B., Van Montagu, M. and Boerjan, W. (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17, 125–197.CrossRefGoogle Scholar
  11. Blanco-Canqui, H., Lal, R., Post, W.M., Izaurralde, R.C. and Owens, L.B. (2006) Corn stover impacts on near-surface soil properties of no-till corn in Ohio. Soil Sci. Soc. Am. J. 70, p266–278.CrossRefGoogle Scholar
  12. Boerjan, W., Ralph, J. and Baucher, M. (2003) Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546.PubMedCrossRefGoogle Scholar
  13. Bohn, M., Schulz, B., Kreps, R., Klein, D., Melchinger, A.E. (2000) QTL mapping for resistance against the European corn borer (Ostrinia nubilalisH.) in early maturing European dent germplasm. Theor. Appl. Genet. 101, 907–917.CrossRefGoogle Scholar
  14. Bonnet, O.T. (1948). Ear and tassel development in maize. Ann. Mo. Bot. Gard. 35, 269–287.CrossRefGoogle Scholar
  15. Brown, W.L. (1949) Numbers and distribution of chromosome knobs in United States maize. Genetics 34, 524–536.Google Scholar
  16. Brunner, S., Fengler, K., Morgante, M., Tingey, S. and Rafalski, A. (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17, 343–360.PubMedCrossRefGoogle Scholar
  17. Buckler, E.S., Gaut, B.S. and McMullen, M.D. (2006) Molecular and functional diversity of maize. Curr. Opin. Plant Biol. 9, 172–176.PubMedCrossRefGoogle Scholar
  18. Buendgen, M.R., Coors, J.G., Grombacher, A.W. and Russell, W.A. (1990) European corn borer resistance and cell wall composition of three maize populations. Crop Sci. 30, 505– 510.Google Scholar
  19. Cai, H., Yuyama, N., Ogawa, N., Gao, Z., Yamao, K., Yazaki, S. and Terada, Y. (2000) Development of DNA markers closely link to leafy trait in maize (Zea maysL.). Plant and Animal Genome VIII Conference, San Diego, CA. Poster 243.Google Scholar
  20. Cardinal, A.J. and Lee, M. (2005) Genetic relationships between resistance to stalk-tunneling by the European corn borer and cell-wall components in maize population B73×B52. Theor. Appl. Genet. 111, 1–7.PubMedCrossRefGoogle Scholar
  21. Cardinal, A.J., Lee, M. and Moore, K.J. (2003) Genetic mapping and analysis of quantitative trait loci affecting fiber and lignin content in maize. Theor. Appl. Genet. 106, 866–874.Google Scholar
  22. Carson, M.L. (2006) Response of a maize synthetic to selection for components of partial resistance to Exserohilum turcicum. Plant Dis. 90, 910–914.CrossRefGoogle Scholar
  23. Casler, M.D. (2005) Ecotypic variation among switchgrass populations from the northern USA. Crop Sci. 45, 388–398.Google Scholar
  24. Casler, M.D. and Jung, H.G. (2006) Relationships of fibre, lignin, and phenolics to in vitro fibre digestibility in three perennial grasses. Anim. Feed Sci. Tech. 125, 151–161.CrossRefGoogle Scholar
  25. Chandler, V.L. and Brendel, V. (2002) The maize genome sequencing project. Plant Physiol. 130, 1594–1597.Google Scholar
  26. Cheng, P.C., Greyson, R.I. and Walden, D.B. (1983). Organ initiation and the development of unisexual flowers in the tassel and ear of Zea mays. Am. J. Bot. 70, 450–462.CrossRefGoogle Scholar
  27. Cherney, J.H., Cherney, D.J.R., Akin, D.E. and Axtell, J.D. (1991) Potential of brown-midrib, low lignin mutants for improving forage quality, Adv. Agron. 46, 157–198.CrossRefGoogle Scholar
  28. Clark, P.L., Molina-Ochoa, J., Martinelli, S., Skoda, S.R., Isenhour, D.J., Lee, D.J., Krumm, J.T. and Foster, J.E. (2007) Population variation of the fall armyworm, Spodoptera frugiperda, in the western hemisphere. J. Insect Sci. (on-line: /7.05/i1536-2442-2007-05.pdfGoogle Scholar
  29. Colasanti, J. (2001) Some observations on the grassy tillers (gt1) mutant. Maize Genet. News Lett. 75, 2–3.Google Scholar
  30. Coors, J.G. (1996) Findings of the Wisconsin corn silage consortium. Proceedings of the 58th Cornell Nutrition Conference for Feed Manufacturers, 22–24 October 1997. Rochester, NY. Cornell University Press, Ithaca, NY. pp. 20–28.Google Scholar
  31. Coors, J.G., Albrecht, K.A., and Bures, E.J. (1997) Ear-fill effects on yield and quality of silage corn. Crop Sci. 37, 243–247.Google Scholar
  32. Coors, J.G. and Lauer, J.G. (2000) Silage Corns. In: A.R. Hallauer (Ed.) Specialty Corns, 2nd edition. CRC Press, Boca Raton, FL, pp. 347–392.Google Scholar
  33. Crous, P.W., Groenewald, J.Z., Groenewald, M., Caldwell, P., Braun, U. and Harrington, T.C. (2006) Species of Cercosporaassociated with grey leaf spot of maize. Stud. Mycol. 55, 189–197.PubMedCrossRefGoogle Scholar
  34. Cuomo, G.J., Redfern, D.D. and Blouin, D.D. (1998) Plant density effects on tropical corn forage mass, morphology and nutritive value, Agron. J. 90, 93–96.Google Scholar
  35. Cutler, H.C. and Cutler, M.C. (1948) Studies on the structure of the maize plant. Ann. Mo. Bot. Gard. 35, 301–316.CrossRefGoogle Scholar
  36. Darby, H.M. and Lauer. J.G. (2002) Planting date and hybrid influence on corn forage yield and quality. Agron. J. 94, 281–289.Google Scholar
  37. de Leon, N. and Coors, J.G. (2002) Twenty-four cycle of mass selection for prolificacy in the Golden Glow maize population. Crop Sci. 42, 325–333.Google Scholar
  38. Dijak, M., Modarres, A.M., Hamilton, R.I., Dwyer, L.M., Stewart, D.W., Mather, D.E. and Smith, D.L. (1999) Leafy reduced-stature maize hybrids for short-season environments. Crop Sci. 39, 1106–1110.Google Scholar
  39. Doebley, J. and Iltis, H.H. (1980). Taxonomy of Zea (Gramineae) I. Sub-generic classification with key to taxa. Am. J. Bot. 67, 982–993.CrossRefGoogle Scholar
  40. Doebley, J., Stec, A. and Hubbard, L. (1997) The evolution of apical dominance in maize. Nature 386, 485–488.PubMedCrossRefGoogle Scholar
  41. Doebley, J., Stec, A. and Gustus, C. (1995) teosinte branched1and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141, 333–346.PubMedGoogle Scholar
  42. Dumasa, C. and Mogensen, H.L. (1993) Gametes and fertilization: maize as a model system for experimental embryogenesis in flowering plants. Plant Cell 5, 1337–1348.CrossRefGoogle Scholar
  43. Dupuis, I. and Dumas, C. (1989) In vitro pollination as a model for studying fertilizatoin in maize (Zea maysL.). Sex. Plant Reprod. 2, 265–269.CrossRefGoogle Scholar
  44. Dwyer, L.M., Stewart, D.W. and Glenn, F. (1998) Silage yields of leafy and nor-mal hybrids. 53rd Proceedings of Annual Corn and Sorghum Research Conference, Chicago, IL. American Seed Trade Association, Washington, DC, pp. 193–216Google Scholar
  45. Falkner, L.K., Coors, J.G., Ostrander, B.M., Kaeppler, S.M. and Hatfield, R.D. (2000) Lax leafmaize: Modified cell wall composition and nutritional value. J. Food Agric. Sci. 80, 255-262.CrossRefGoogle Scholar
  46. Fontaine, A.S., Briand, M. and Barrière Y. (2003) Genetic variation and QTL mapping of para-coumaric and ferulic acid contents in maize stover at silage harvest. Maydica 48, 75–84.Google Scholar
  47. Food and Agriculture Organization of the United Nations (FAOSTAT) (2007), August 2007.Google Scholar
  48. Frey, T., Coors, J.G., Shaver, R.D., Lauer, J.G., Eilert, D.T. and Flannery, P.J. (2004) Selection for silage quality in the Wisconsin quality synthetic population and related maize populations. Crop Sci. 44, 1200–1208.Google Scholar
  49. Gale, W.J. and Cambardella, C.A. (2000) Carbon dynamics of surface residue and root derived carbon to soil organic matter under no-till. Soil Sci. Soc. Am. J. 64, 190–195.Google Scholar
  50. Gaut, B.S. and Doebley J.F. (1997) DNA sequence evidence for the segmental al-lotetraploid origin of maize. Proc. Natl. Acad. Sci. U.S.A. 94, 6809–6814.PubMedCrossRefGoogle Scholar
  51. Gaut, B.S., d’Ennequin, M.L.T., Peek, A.S. and Sawkins. M.C. (2000) Corn as a model for the evolution of plant nuclear genomes. Proc. Natl. Acad. Sci. U.S.A. 97, 7008–7015.PubMedCrossRefGoogle Scholar
  52. Grabber, J.H. (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci. 45, 820–831.CrossRefGoogle Scholar
  53. Grabber, J.H., Ralph, J., Lapierre, C. and Barrière, Y. (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. C.R. Biologies 327, 455–465.Google Scholar
  54. Graham, R.L., Nelson, R., Sheehan, J., Perlack, R.D. and Wright, L.L. (2007) Current and potential U.S. corn stover supplies. Agron. J. 99, 1–11.CrossRefGoogle Scholar
  55. Graybill, J.S., Cox, W.J. and Otis, D.J. (1991) Yield and quality of forage maize as influenced by hybrid, planting date and plant density. Agron. J. 83, 559–564.Google Scholar
  56. Guillaumie, S., Pichon, M., Martinant, J.P., Bosio, M., Goffner, D. and Barrière, Y. (2007a). Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4young near-isogenic maize plants. Planta 226, 235–250.CrossRefGoogle Scholar
  57. Guillaumie, S., San-Clemente, H., Deswarte, C., Martinez, Y., Lapierre, C., Murigneux, A., Barrière, Y., Pichon, M. and Goffner, D. (2007b) MAIZEWALL. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiol. 143, 339–363.CrossRefGoogle Scholar
  58. Gupta, S.C. (1985) Predicting corn planting dates for moldboard and no-till till-age systems in the Corn Belt. Agron. J. 77, 446–455.Google Scholar
  59. Halpin, C., Holt, K., Chojecki, J., Oliver, D., Chabbert, B., Monties, B., Edwards, K., Barakate, A. and Foxon G.A. (1998) Brown-midrib maize (bm1) – a mutation affecting the cinnamyl alcohol dehydrogenasegene. Plant J. 14, 545–553.PubMedCrossRefGoogle Scholar
  60. Hames, B.R., Thomas, S.R., Sluiter, A.D., Roth, C.J. and Templeton, D.W. (2003) Rapid biomass analysis: new tools for compositional analysis of corn stover feedstocks and process intermediates from ethanol production. Appl. Biochem. Biotechnol. 105–108, 5–16.PubMedCrossRefGoogle Scholar
  61. Hatfield, R. and Vermerris, W. (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol. 126, 1351–1357.PubMedCrossRefGoogle Scholar
  62. Hirel, B., Martin, A., Terce-Laforgue, T., Gonzalez-Moro, M.B. and Estavillo, J.M. (2005) Physiology of maize I: A comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiol. Plant. 124, 167–177.CrossRefGoogle Scholar
  63. Horton, P. (2000) Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J. Exp. Bot. 51, 475–485.PubMedCrossRefGoogle Scholar
  64. Hoskinson, R.L., Karlen, D.L., Birrell, S.J., Radtke, C.W. and Wilhelm, W.W. (2007) Engineering, nutrient removal, and feedstock conversion evaluations of four corn stover harvest scenarios. Biomass Bioenergy 31, 126–136.CrossRefGoogle Scholar
  65. Hu, W.J., Harding, S.A., Lung, J., Popko, J.L., Ralph, J., Stokke, D.D., Tsai, C.J. and Chian, V.L. (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotech 17, 808–812.CrossRefGoogle Scholar
  66. Iltis, H.H. (2006) Origin of polystichy in maize. In: J.E. Staller, R.H. Tykot and B.F. Benz (Eds.), Histories of Maize: Multidisciplinary Approaches to the Prehistory, Linguistics, Biogeography, Domestication and Evolution of Maize. Elsevier, Burlington, MA, pp. 21–51.Google Scholar
  67. Iltis, H.H. and Doebley, J. (1980) Taxonomy of Zea (Gramineae) II. Sub-specific categories in the Zea mayscomplex and a generic synopsis. Am. J. Bot. 67, 994–1004.CrossRefGoogle Scholar
  68. Jacobsen, K.R., Fisher, D.G., Maretzki, A., Moore, P.H. (1992) Developmental changes in the anatomy of the sugarcane stem in relation to phloem unloading and sucrose storage. Bot Acta 105, 70–80.Google Scholar
  69. Jarvis, J.L., Clark, R.L. and Guthrie, W.D. (1982) Effect of second generation European corn borer on resistance of maize to Diplodia maydis. Phytopathology 72, 1149–1152.Google Scholar
  70. Joseph, G., Lauer, J.G., Carter, P.R., Wood, T.M., Diezel, G., Wiersma, D.W., Rand, R.E. and Mlynarek M.J. (1999) Corn hybrid response to planting date in the northern Corn Belt. Agron. J. 91, 834–839.Google Scholar
  71. Jung, H.G. and Deetz, D.A. (1993) Cell wall lignification and degradability. In: H.G. Jung, D.R. Buxton, R.D. Hatfield and J. Ralph (Eds.), Forage Cell Wall Structure and Digestibility. ASA – CSSA – SSSA Madison, Wisconsin. pp. 315–346.Google Scholar
  72. Jung, H.G. and Lamb, J.F.S. (2003) Identification of lucerne stem cell wall traits related to in vitro neutral detergent fibre digestibility. Anim. Feed Sci. Technol. 110, 17–29.CrossRefGoogle Scholar
  73. Jung, H.G. and Casler, M.D. (2006a) Maize stem tissues: Cell wall concentration and composition during development. Crop Sci 46, 1793–1800.CrossRefGoogle Scholar
  74. Jung, H.G. and Casler, M.D. (2006b) Maize stem tissues: Impact of development on cell wall degradability. Crop Sci 46, 1801–1809.CrossRefGoogle Scholar
  75. Justen, B.A. (2004) Digestion kinetics and vitreousness in breeding Maize (Zea maysL.) for silage yield and nutritional quality. M.S. Thesis. University of Wisconsin-Madison. Madison, WI.Google Scholar
  76. Kato, A., Lamb, J.C. and Birchler, J.A. 2004. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc. Natl. Acad. Sci. U.S.A. 101, 13554–13559.PubMedCrossRefGoogle Scholar
  77. Kiesselbach, T.A. (1999) The Structure and Reproduction of Corn. 50th Anniversary Edition. Cold Spring Harbor, NY.Google Scholar
  78. Kim, S. and Dale, B. (2005) Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass Bioenergy 29, 426–439.CrossRefGoogle Scholar
  79. Kirkpatrick, K.M., Lamkey, K.R., Scott, M.P., Moore, K.J., Haney, L.J., Coors, J.G., Lorenz, A.J. (2006) Identification and characterization of maize varieties with beneficial traits for biobased industries. International Plant Breeding Symposium, Mexico City, Mexico. p. 127 Scholar
  80. Klenke, J.R., Russell, W.A. and Guthrie W.D. (1986) Grain yield reduction caused by second generation European corn borer in BS9 corn synthetic. Crop Sci. 26, 859–863.Google Scholar
  81. Krakowsky, M.D., Lee, M. and Coors, J.G. (2005) Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea maysL.) I: stalk tissue. Theor. Appl. Genet. 111, 337–346.PubMedCrossRefGoogle Scholar
  82. Krakowsky, M.D., Lee, M. and Coors, J.G. (2006) Quantitative trait loci for cell-wall components in recombinant inbred lines of maize (Zea maysL.) II: leaf sheath tissue. Theor. Appl. Genet. 112, 717–726.PubMedCrossRefGoogle Scholar
  83. Kucharik, C.J. (2006) A multidecadal trend of earlier corn planting in the central USA. Agron. J. 98, 1544–1550.CrossRefGoogle Scholar
  84. Lauer, J.G. (2001) Earlier planting dates for corn: Real progress or an effect of global warming. Wisconsin Crop Manager 8, 83–85.Google Scholar
  85. Lauer, J.G., Coors, J.G. and Flannery, P.J. (2001) Forage yield and quality of corn cultivars developed in different eras. Crop Sci. 41, 1449–1455.Google Scholar
  86. Laureano-Perez, L., Teymouri, F., Alizadeh, H. and Dale, B.E. (2005) Under-standing factors that limit enzymatic hydrolysis of biomass. Appl. Biochem. Biotechnol. 124, 1081–1099.CrossRefGoogle Scholar
  87. Laurie, D.A. and Bennett, M.D. 1985. Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation. Heredity 55, 307–313.CrossRefGoogle Scholar
  88. Lawrence C.J. and Walbot V. (2007) Translational genomics for bioenergy production from fuelstock grasses: Maize as the model species. Plant Cell 19, 2091–2094PubMedCrossRefGoogle Scholar
  89. Lawrence, C.J., Schaeffer, M.L., Seigfried, T.E., Campbell, D.A. and Harper, L.C. (2007) MaizeGDB’s new data types, resources and activities. Nucleic Acids Res. 35, D895–D900.PubMedCrossRefGoogle Scholar
  90. Le Roux, L.G. and Kellogg, E.A. (1999) Floral development and the formation of unisexual spikelets in the Andropogoneae (Poaceae). Am. J. Bot. 86, 354–366.PubMedCrossRefGoogle Scholar
  91. Lee, J.H., Arumuganathan, K., Kaeppler, S.M., Park, S.W., Kim, K.Y., Chung, Y.S., Kim, D.H. and Fukui, K. (2002). Variability of chromosomal DNA contents in maize (Zea mays L.) inbred and hybrid lines. Planta 215, 666–671.PubMedCrossRefGoogle Scholar
  92. Li, D., Blakey, C.A., Dewald, C. and Dellaporta, S.L. (1997) Evidence for a common sex determination mechanism for pistil abortion in maize and in its wild relative Tripsacum. Proc. Natl. Acad. Sci. U.S.A. 94, 4217–4222.PubMedCrossRefGoogle Scholar
  93. Liu, K., Goodman, M., Muse, S., Smith, J.S., Buckler, E. and Doebley, J. (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165, 2117–2128.PubMedGoogle Scholar
  94. Lorenz, A. and Coors, J.G. (2006) Characterization and analysis of maize traits beneficial to the lignocellulosic ethanol industry. The ASA-CSSA-SSSA International Annual Meetings, Indianapolis, IN Scholar
  95. Lorenz, A., Gustafson, T., de Leon, N. and Coors, J. (2007) Breeding maize for total biomass production: Examination of harvest index and the relationship between stover yield and grain yield. The ASA-CSSA-SSSA International Annual Meetings. New Orleans, LA Scholar
  96. Lübberstedt, T., Melchinger, A.E., Schon, C.C., Utz, H.F. and Klein, D. (1997a) QTL mapping in testcrosses of European flint lines of maize: I. Comparison of different testers for forage yield traits. Crop Sci. 37, 921–931.Google Scholar
  97. Lübberstedt, T., Melchinger, A.E., Klein, D., Degenhardt, H. and Paul, C. (1997b) QTL mapping in testcrosses of European flint lines of maize: II. Comparison of different testers for forage quality traits. Crop Sci. 37, 1913–1922.Google Scholar
  98. Lübberstedt, T., Melchinger, A.E., Fähr, S., Klein, D., Dally, A. and Westhoff, P. (1998) QTL mapping in testcrosses of European flint lines of maize: III. Comparison across populations for forage quality traits. Crop Sci. 38, 1278–1289.Google Scholar
  99. Lundvall, J.P., Buxton, D.R., Hallauer, A.R. and George, J.R. (1994) Forage quality variation among maize inbreds: in vitro digestibility and cell-wall components. Crop Sci 34, 1672–1678.Google Scholar
  100. Luna V.S., Figueroa, M.J., Baltazar, M.B., Gomez, L.R., Townsend, R. and Schoper, J.B. (2001) Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Sci. 41, 1551–1557Google Scholar
  101. Marita, J.M., Vermerris, W., Ralph, J. and Hatfield, R.D. (2003) Variations in the cell wall composition of maize brown midribmutants. J. Agric. Food Chem. 51, 1313–1321.PubMedCrossRefGoogle Scholar
  102. Mathews, S., Tsai, R.C. and Kellogg, E.A. (2000) Phylogenetic structure in the grass family (Poaceae): Evidence from the nuclear gene phytochrome B. Am. J. Bot. 87, 96–107.PubMedCrossRefGoogle Scholar
  103. McClintock, B., Kato, Y. and Blumenshein, A. (1981) Chromosome constitution of races of maize. Colegio de Postgraduados, Chapingo, Mexico.Google Scholar
  104. McLaughlin, S., Bouton, J., Bransby, D., Conger, B., Ocumpaugh, W., Parrish, D., Taliaferro, C., Vogel, K. and Wullschleger, S. (1999) Developing Switchgrass as a Bioenergy Crop. In: J. Janick (Ed.), Perspectives on New Crops and New Uses. ASHS Press, Alexandria, VA. pp. 282–299.Google Scholar
  105. Méchin, V., Argillier, O., Hebert, Y., Guingo, E., Moreau, L., Charcosset, A. and Barrière, Y. (2001) Genetic analysis and QTL mapping of cell wall digestibility and lignification in silage maize. Crop Sci. 41, 690–697.Google Scholar
  106. Melchinger, A.E., Kreps, R., Spath, R., Klein, D. and Schulz, B. (1998a) Evaluation of earlymaturing European maize inbreds for resistance to the European corn borer. Euphytica 99, 115–125.CrossRefGoogle Scholar
  107. Melchinger, A.E., Utz, H.F. and Schon, C.C. (1998b) QTL mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149, 383–403.Google Scholar
  108. Messing, J. and Dooner, H.K. (2006) Organization and variability of the maize genome. Curr. Opin. Plant Biol. 9, 157–163.PubMedCrossRefGoogle Scholar
  109. Messing, J., Bharti, A.K., Karlowski, W.M., Gundlach, H., Kim, H.R., Yu, Y., Wei, F., Fuks, G., Soderlund, C.A., Mayer, K.F.X. and Wing, R.A. (2004) Sequence composition and genome organization of maize. Proc. Natl. Sci. Acad. U.S.A. 101, 14349–14359.CrossRefGoogle Scholar
  110. Missaoui, A.M., Fasoula, V.A. and Bouton, J.H. (2005) The effect of low plant density on response to selection for biomass production in switchgrass. Euphytica 142, 1–12.CrossRefGoogle Scholar
  111. Montross, M.D., Prewitt, R., Shearer, S.A., Stombaugh, T.S., McNeil, S.G. and Sokhansanj, S. (2002) Economics of collection and transportation of corn stover. ASAE Paper 036081 presented at the Annual International Meeting of the American Society of Agricultural Engineers, Las Vegas, NV. 27–31 July 2003. ASAE, St. Joseph, MI.Google Scholar
  112. Morgante, M. (2006) Plant genome organisation and diversity: the year of the junk! Curr. Opin. Biotechnol. 17, 168–173.Google Scholar
  113. Mosier, A.R., Halvorson, A.D., Peterson, G.A., Robertson, G.P. and Sherrod, L. (2005a) Measurement of net global warming potential in three agroecosystems. Nutrient Cycl. in Agroecosyst. 72, 67–76.CrossRefGoogle Scholar
  114. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M. and Ladisch, M. (2005b) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol. 96, 673–686.CrossRefGoogle Scholar
  115. Munkvold, G. (1997) Controlling gray leaf spot in field corn. Integ. Crop Manag. 478, 87–89.Google Scholar
  116. NASS (2007) United States Department of Agriculture. Crop Production 2007 Summary. 2007.pdf.Google Scholar
  117. NRI (2003) National Resource Inventory – Soil Erosion land/nri03/SoilErosion-mrb.pdf.Google Scholar
  118. Osborne, D.P. and Beerling, D.J. (2006) Nature’s green revolution: The remarkable evolutionary rise of C4 plants. Philos. Trans. R. Soc. London B. Biol. Sci. 361, 173–194.PubMedCrossRefGoogle Scholar
  119. Paterson, A.H., Freeling, M. and Sasaki, T. (2007) Gains of knowledge: Genomics of model cereals. Genome Res. 15, 1643–1650.CrossRefGoogle Scholar
  120. Pedersen, J.F. (1996) Annual forages: New approaches for C-4 forages. In: J. Janick (Ed.), Progress in New Crops. ASHS Press, Alexandria, VA, pp. 246–251.Google Scholar
  121. Pedersen, J.F., Vogel, K.P. and Funnell, D.L. (2005) Impact of reduced lignin on plant fitness. Crop Sci. 45, 812–819.CrossRefGoogle Scholar
  122. Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J. and Erbach, D.C. (2005) Biomass as feedstock for a bioenergy and bioproduct industry: The technical feasibility of a billion-ton annual supply, U.S. DOE and USDA, April 2005.Google Scholar
  123. Ralph, J., Guillaumie, S., Grabber, J.H., Lapierre, C. and Barrière, Y. (2004) Genetic and molecular basis of grass cell-wall degradability. III. Towards a forage ideotype. C.R. Biologies 327, 467–479.PubMedCrossRefGoogle Scholar
  124. Randall, G. and Vetsch, J. (2003) Assessing soil N availability using the Illinois nitrogen soil test for corn after soybeans 2002/Assessing%20Soil%20N%20Availability.pdfGoogle Scholar
  125. Reifschneider, F.J.B. and Arny, D.C. (1983) Yield loss of maize caused by Kabatiella zeae. Phytopathology 73, 607–609.CrossRefGoogle Scholar
  126. Renvoize, S.A. and Clayton, W.D. (1992) Classification and evolution of grasses. In: G.P. Chapman (Ed.), Grass Evolution and Domestication. Cambridge University Press, Cambridge, UK, pp. 3–37.Google Scholar
  127. Richards, R.A. (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot. 51, 447–458.PubMedCrossRefGoogle Scholar
  128. Ritchie, S.W., Hanway, J.J. and Benson, G.O. (1996) How a corn plant develops. Special Report No. 48. Iowa State University, Cooperative Extension Service, Ames, IA.Google Scholar
  129. Sakamoto, T. and Matsuoka, M (2004) Generating high-yielding varieties by genetic manipulation of plant architecture. Curr. Opin. Biotechnol. 15, 144–147.CrossRefGoogle Scholar
  130. Sakamoto, T., Morinaka, Y., Ohnishi, T., Sunohara, H., Fujioka, S., Ueguchi-Tanaka, M., Mizutani, M., Sakata, K., Takatsuto, S., Yoshida, S., Tanaka, H., Kitano, H. and Matsuoka, M. (2005) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat. Biotechnol. 24, 105–109.PubMedCrossRefGoogle Scholar
  131. Service, R.F. (2007) Cellulosic ethanol: Biofuel researchers prepare to reap a new harvest. Science 315, 1488–1491.PubMedCrossRefGoogle Scholar
  132. Shaver, D.L. (1967) Perennial maize. J. Heredity 58, 270–273.Google Scholar
  133. Shaver, D.L. (1983) Genetics and breeding of maize with extra leaves above the ear. 38th Proceedings of Annual Corn and Sorghum Research Conference. Chicago, IL. American Seed Trade Association, Washington, DC, pp. 161–180.Google Scholar
  134. Shaw, R.H. (1988) Climate requirement. In: G.H. Sprague and J.W. Dudley (Eds.), Corn and Corn Improvement. American Society of Agronomy, Madison, WI, pp. 609–638.Google Scholar
  135. Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M. and Nelson, N. (2004) Energy and environmental aspects of using corn stover for fuel ethanol. J. Ind. Ecol. 7, 117–146.CrossRefGoogle Scholar
  136. Shinners, K.J., Adsit, G.S., Binversie, B.N., Digman, M.F., Muck, R.E. and Weimer, P.J. (2007b) Single-pass split-stream harvest of corn grain and stover. Transactions of the ASABE 50, 255–363.Google Scholar
  137. Shinners, K.J., Binversie, B.N., Muck, R.E. and Weimer, P.J. (2007a) Comparison of wet and dry corn stover harvest and storage. Biomass Bioenergy 31, 211–221.CrossRefGoogle Scholar
  138. Smith, D.R. and White, D.G. (1988) Diseases of corn. In: G.F. Sprague and J.W. Dudley (Eds.), Corn and Corn Improvement, 3rd Edition. American Society Agron, Madson, WI. pp. 687–766.Google Scholar
  139. Springer, N.M. and Stupar, R.M. (2007) Allelic variation and heterosis in maize: How do two halves make more than a whole? Genet. Res. 17, 264–275.CrossRefGoogle Scholar
  140. Stebbins, G.L. (1957) Self-fertilization and population variability in higher plants. Am. Natural. 91, 337–354.CrossRefGoogle Scholar
  141. Sundberg, M.D. and Orr, A.R. (1996) Early inflorescence development in Zea maysL. and race Chapalotte (Poaceae). Am. J. Bot. 83, 1255–1265.CrossRefGoogle Scholar
  142. Swigonova, Z., Lai, J., Ma, J., Ramakrishna, W., Llaca, V., Bennetzen, J.L. and Messing, J. (2004) Close split of sorghum and maize genome progenitor. Genome Res. 14, 1916–1923.PubMedCrossRefGoogle Scholar
  143. Torney, F., Moeller, L., Scarpa, A. and Wang, K. (2007) Genetic engineering approaches to improve bioethanol production form maize. Curr. Opin. Biotech. 18, 193–199.PubMedCrossRefGoogle Scholar
  144. Tracy, W.F. and Everett, H.L. (1982) Variable penetrance and expressivity of grassy tillers, gt. MNL 56, 77–78.Google Scholar
  145. Troyer, A.F. (2001) Temperate corn: Background, behavior, and breeding. In: A.R. Hallauer (Ed.). Specialty Corns, 2nd Edition. CRC Press, Boca Raton, FL, pp. 393–466.Google Scholar
  146. Veit, B., Schmidt, R.J., Hake, S. and Yanofsky, M.F. (1993) Maize floral development: New genes and old mutants. Plant Cell 5, 1205–1215.PubMedCrossRefGoogle Scholar
  147. Vermerris W. and Boon J.J. (2001) Tissue-specific patterns of lignification are disturbed in the brown midrib2mutant of maize (Zea maysL.). J. Agric. Food Chem. 49, 721–728.PubMedCrossRefGoogle Scholar
  148. Vermerris, W., Thompson, K.J. and McIntyre, L.M. (2002) The maize Brown midrib1locus affects cell wall composition and plant development in a dose-dependent manner. Heredity 88, 450–457.PubMedCrossRefGoogle Scholar
  149. Vogel, K.P. and Jung, H.G. (2001) Genetic modification of herbaceous plants for feed and fuel. Crit. Rev. Plant Sci. 20, 15–49.CrossRefGoogle Scholar
  150. von Blottnitz, H. and Curran, M.A. (2007) A review of assessments conducted on bioethanol as a transportation fuel from a net energy, greenhouse gas, and environ-mental life cycle perspective Cleaner Prod. 15, 607–619.CrossRefGoogle Scholar
  151. Ward, J.M.J., Stromberg, E.L., Nowell, D.C. and Nutter, F.W. Jr. (1999). Gray leaf spot: a disease of global importance in maize production. Plant Dis. 83, 884–895.CrossRefGoogle Scholar
  152. Weimer P.J., Dien, B.S., Springer, T.L. and Vogel, K.P. (2005). In vitrogas production as a surrogate measure of the fermentability of cellulosic biomass to ethanol. Appl. Microbiol. Biotechnol. 67, 52–58.PubMedCrossRefGoogle Scholar
  153. Wessler, S.R. (2006) Genomic studies and molecular genetics: Part 2. Maize genomics, the maize community welcomes the maize genome sequencing project. Curr. Opin. Plant Biol. 9, 147–148.CrossRefGoogle Scholar
  154. Whetten, R.W., Mackay, J.J. and Seferoff, R.R. (1998) Recent advances in understanding lignin biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 585–609.PubMedCrossRefGoogle Scholar
  155. White, D.G. (1999) Compendium of Corn Diseases, 3rd edition. American Phytopathological Society, St. Paul, MN.Google Scholar
  156. Wilhelm, W.W., Johnson, J.M.F., Hatfield, J.L., Voorhees, W.B. and Linden, D.R. (2004) Crop and soil productivity response to corn residue removal: A literature review. Agron. J. 96, 1–17.Google Scholar
  157. Wilkes, H.G. (1985) Teosinte: The closest relative of maize revisited. Maydica 30, 209–223.Google Scholar
  158. Wolf, D.P., Coors, J.G., Albrecht, K.A., Undersander, D.J. and Carter, P.R. (1993) Forage quality of maize genotypes selected for extreme fiber concentrations. Crop Sci. 33, 1353–1359.Google Scholar
  159. Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R. and Lee, Y.Y. (2005) Coordinated development of leading biomass pretreatment technologies. Bioresource Technol. 96, 1959–1966.CrossRefGoogle Scholar
  160. Zeng, M., Mosier, N.S., Huang, C.-P., Sherman, D.M. and Ladisch, M.R. (2006) Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnol. Bioeng. 97, 265–278.CrossRefGoogle Scholar
  161. Zhao, W., Canaran, P., Jurkuta, R., Fulton, T., Glaubitz, J., Buckler, E., Doebley, J., Gaut, B., Goodman, M., Holland, J., Kresovich, S., McMullen, M., Stein, L. and Ware, D. (2006) Panzea: a database and resource for molecular and functional diversity in the maize genome. Nucleic Acids Res. 34, D752–D757PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Natalia de Leon
    • 1
  • James G. Coors
    • 1
  1. 1.Department of AgronomyUniversity of WisconsinMadison

Personalised recommendations