Skip to main content

Current Technologies for Fuel Ethanol Production from Lignocellulosic Plant Biomass

  • Chapter
Genetic Improvement of Bioenergy Crops

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Aden, A.M.R., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., and Wallace, B. (2002). Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL/TP-510-32438, 36–39.

    Google Scholar 

  • Administration, E.I. (2007). Basic Petroleum Statistics. http://www.eia.doe.gov/neic/quickfacts/ quickoil.html.

    Google Scholar 

  • Arai, K., and Ogiwara, Y. (1976). Studies on hydrolysis reaction of model substances of cellulose in presence of polymer catalysts .5. Heterogeneous hydrolysis of fibrous cellulose in presence of polyvinyl alcohol-co-vinylsulfonic acid). Makromol Chem. 177, 367–373.

    Article  CAS  Google Scholar 

  • Arai, K., Ogiwara, Y., and Ise, N. (1975). Studies on hydrolysis reaction of model substances of cellulose in presence of a polymeric catalyst .4. Michaelis-menten type catalytic behavior of polyvinyl alcohol co-vinyl sulfonic acid). Makromol Chem. 176, 2871–2881.

    Article  CAS  Google Scholar 

  • Baker, J.O., Ehrman, C.I., Adney, W.S., Thomas, S.R., and Himmel, M.E. (1998). Hydrolysis of cellulose using ternary mixtures of purified celluloses. Appl. Biochem. Biotechnol. 70–72, 395–403.

    Article  Google Scholar 

  • Baker, J.O., McCarley, J.R., Lovettt, R., Yu, C.H., Adney, W.S., Rignall, T.R., Vinzant, T.B., Decker, S.R., Sakon, J., and Himmel, M.E. (2005). Catalytically enhanced endocellulase Cel5A from acidothermus cellulolyticus. Appl. Biochem. Biotechnol. 121, 129–148.

    Article  PubMed  Google Scholar 

  • Beery, K.E., and Ladisch, M.R. (2001). Adsorption of water from liquid-phase ethanol-water mixtures at room temperature using starch-based adsorbents. Ind. Eng.Chem. Res. 40, 2112–2115.

    Article  CAS  Google Scholar 

  • Beguin, P., and Aubert, J.P. (1994). The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25–58.

    Article  PubMed  CAS  Google Scholar 

  • Boraston, A.B., Bolam, D.N., Gilbert, H.J., and Davies, G.J. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 382, 769–781.

    Article  PubMed  CAS  Google Scholar 

  • Brau, B., and Sahm, H. (1986). Cloning and expression of the structural gene for pyruvate decarboxylase of Zymomonas mobilis in Escherichia coli. Archiv. Microbiol. 144, 296–301.

    Article  CAS  Google Scholar 

  • Breslow, R. (1995). Biomimetic chemistry and artificial enzymes – Catalysis by design. Acc. Chem. Res. 28, 146–153.

    Article  CAS  Google Scholar 

  • Brownell, H.H., Yu, E.K.C., and Saddler, J.N. (1986). Steam-explosion pretreatment of wood – effect of chip size, acid, moisture-content and pressure-drop. Biotechnol. Bioeng. 28, 792–801.

    Article  PubMed  CAS  Google Scholar 

  • Bungay, H.R. (1981). Energy, The Biomass Options. Chapter 7, "Fractionation and Pretreatment". John Wiley & Sons, New York. 347pp.

    Google Scholar 

  • Campbell, C.J., and Laherrere, J.H. (1998). Preventing the next oil crunch – The end of cheap oil. Sci. Am. 278, 77–83.

    Google Scholar 

  • Carpita, N.C. (1996). Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 445–476.

    Article  PubMed  CAS  Google Scholar 

  • Chang, V.S., and Holtzapple, M.T. (2000). Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84–86, 5–37.

    Article  PubMed  Google Scholar 

  • Collins, T., Gerday, C., and Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29, 3–23.

    Article  PubMed  CAS  Google Scholar 

  • Dale, B.E., Leong, C.K., Pham, T.K., Esquivel, V.M., Rios, I., and Latimer, V.M. (1996). Hydrolysis of lignocellulosics at low enzyme levels: Application of the AFEX process. Bioresource Technol. 56, 111–116.

    Article  CAS  Google Scholar 

  • Dien, B.S., Cotta, M.A., and Jeffries, T.W. (2003). Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63, 258–266.

    Article  PubMed  CAS  Google Scholar 

  • Din, N., Damude, H.G., Gilkes, N.R., Miller, R.C., Warren, R.A.J., and Kilburn, D.G. (1994). C-1-C-X revisited – Intramolecular synergism in a cellulase. Proc. Natl. Acad. Sci. USA 91, 11383–11387.

    Article  PubMed  CAS  Google Scholar 

  • Divne, C., Stahlberg, J., Teeri, T.T., and Jones, T.A. (1998). High-resolution crystal structures reveal how a cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 275, 309–325.

    Article  PubMed  CAS  Google Scholar 

  • Fair, J.R. (2001). Distillation. Kirk-Othmer Encyc. Chem. Technol. 8, 739–785.

    Google Scholar 

  • Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O’Hare, M., and Kammen, D.M. (2006). Ethanol can contribute to energy and environmental goals. Science 311, 506–508.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, Y., Ito, J., Ueda, M., Fukuda, H., and Kondo, A. (2004). Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl. Environ. Microbiol. 70, 1207–1212.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, Y., Takahashi, S., Ueda, M., Tanaka, A., Okada, H., Morikawa, Y., Kawaguchi, T., Arai, M., Fukuda, H., and Kondo, A. (2002). Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl. Environ. Microbiol. 68, 5136–5141.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, I.S., and Easter, J.M. (1992). An improved process for converting cellulose to ethanol. TAPPI J. 75, 135–140.

    CAS  Google Scholar 

  • Grant, L. (2005). When will the oil run out? Science 309, 52–54.

    Article  PubMed  CAS  Google Scholar 

  • Hahn-Hägerdal, B., Jeppsson, H., Skoog, K., and Prior, B.A. (1994). Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb. Technol. 16, 933–943.

    Article  Google Scholar 

  • Hahn-Hägerdal, W.C., Gardonyi, M., van Zyl, W.H., Cordero Otero, R.R., and Jonsson, L.J. (2001). Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem. Eng. Biotechnol. 73, 53–84.

    PubMed  Google Scholar 

  • Henrissat, B., Driguez, H., Viet, C., and Schulein, M. (1985). Synergism of cellulases from Trichoderma-Reesei in the degradation of cellulose. Bio-Technol. 3, 722–726.

    CAS  Google Scholar 

  • Himmel, M.E., Adney, W.S., Baker, J.O., Elander, R., McMillan, J.D., Nieves, R.A., Sheehan, J.J., Thomas, S.R., Vinzant, T.B., and Zhang, M. (1997). Advanced bioethanol production technologies: a perspective. ACS Sym. Ser. 666, 2–45.

    CAS  Google Scholar 

  • Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., and Foust, T.D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315, 804–807.

    Article  PubMed  CAS  Google Scholar 

  • Himmel, M.E., Ruth, M.F., and Wyman, C.E. (1999). Cellulase for commodity products from cellulosic biomass. Curr. Opin. Biotech. 10, 358–364.

    Article  PubMed  CAS  Google Scholar 

  • Ho, N.W.Y., Chen, Z.D., and Brainard, A.P. (1998). Genetically engineered Sacccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64, 1852–1859.

    PubMed  CAS  Google Scholar 

  • Hu, W.J., Harding, S.A., Lung, J., Popko, J.L., Ralph, J., Stokke, D.D., Tsai, C.J., and Chiang, V.L. (1999). Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnol. 17, 808–812.

    Article  CAS  Google Scholar 

  • Ingram, L.O., Aldrich, H.C., Borges, A.C.C., Causey, T.B., Martinez, A., Morales, F., Saleh, A., Underwood, S.A., Yomano, L.P., York, S.W., Zaldivar, J., and Zhou, S.D. (1999). Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Prog. 15, 855–866.

    Article  PubMed  CAS  Google Scholar 

  • Ingram, L.O., Gomez, P.F., Lai, X., Moniruzzaman, M., Wood, B.E., Yomano, L.P., and York, S.W. (1998). Metabolic engineering of bacteria for ethanol production. Biotechnol. Bioeng. 58, 204–214.

    Article  PubMed  CAS  Google Scholar 

  • Iogen Corporation (2005) Iogen Technology Makes it Possible. http://www.iogen.ca/cellulose _ethanol/what_is_ethanol/process.html.

    Google Scholar 

  • Jin, Y.S., Alper, H., Yang, Y.T., and Stephanopoulos, G. (2005). Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 71, 8249–8256.

    Article  PubMed  CAS  Google Scholar 

  • Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., and Gorwa-Grauslund, M.F. (2007). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73, 1039–1046.

    Article  PubMed  CAS  Google Scholar 

  • Kiefer, H.C., Klotz, I.M., Scarpa, I.S., and Congdon, W.I. (1972). Catalytic accelerations of 1012-fold by an enzyme-like synthetic polymer. Proc. Natl. Acad. Sci. USA 69, 2155–2159.

    Article  PubMed  CAS  Google Scholar 

  • Kirby, A.J. (1994). Enzyme mimics. Angew. Chem. 33, 551–553.

    Article  Google Scholar 

  • Kresge, C.T., Dhingra, S.S. (2004). Molecular Sieves. Kirk-Othmer Encyclopedia of Chemical Technology 16, 811–853.

    Google Scholar 

  • Krishnan, M.S., Ho, N.W.Y., and Tsao, G.T. (1999). Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33). Appl. Biochem. Biotech. 77–9, 373–388.

    Article  Google Scholar 

  • Kwiatkowski, J.R., Mcaloon, A.J., Taylor, F., and Johnston, D.B. (2006). Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Indust. Crops Prod. 23, 288–296.

    Article  CAS  Google Scholar 

  • Ladisch, M.R., and Dyck, K. (1979). Dehydration of ethanol – New approach gives positive energy-balance. Science 205, 898–900.

    Article  PubMed  CAS  Google Scholar 

  • Lawford, H.G. (1988). A new approach to improving the performance of zymomonas in continuous ethanol fermentations. Appl. Biochem. Biotech. 17, 203–219.

    Article  CAS  Google Scholar 

  • Lerouxel, O., Cavalier, D.M., Liepman, A.H., and Keegstra, K. (2006). Biosynthesis of plant cell wall polysaccharides – a complex process. Curr. Opin. Plant Biol. 9, 621–630.

    Article  PubMed  CAS  Google Scholar 

  • Linder, M., and Teeri, T.T. (1997). The roles and function of cellulose-binding domains. J. Biotechnol. 57, 15–28.

    Article  CAS  Google Scholar 

  • Lloyd, T.A., and Wyman, C.E. (2005). Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Biores. Technol. 96, 1967–1977.

    Article  CAS  Google Scholar 

  • Lu, Y.L., and Mosier, N.S. (2007). Biomimetic catalysis for hemicellulose hydrolysis in corn stover. Biotechnol. Progr. 23, 116–123.

    Article  CAS  Google Scholar 

  • Lynd, L.R., Cushman, J.H., Nichols, R.J., and Wyman, C.E. (1991). Fuel ethanol from cellulosic biomass. Science 251, 1318–1323.

    Article  PubMed  CAS  Google Scholar 

  • Lynd, L.R., Elander, R.T., and Wyman, C.E. (1996). Likely features and costs of mature biomass ethanol technology. Appl. Biochem. Biotech. 57-8, 741–761.

    Article  Google Scholar 

  • Lynd, L.R., van Zyl, W.H., McBride, J.E., and Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16, 577–583.

    Article  PubMed  CAS  Google Scholar 

  • Lynd, L.R., Wyman, C.E., and Gerngross, T.U. (1999). Biocommodity engineering. Biotechnol. Progr. 15, 777–793.

    Article  CAS  Google Scholar 

  • Madson, P.W. (2003). Ethanol distillation: the fundamentals. The Alcohol Textbook 4th Edition. Nottingham University Press, University of Nottingham, England. 446pp.

    Google Scholar 

  • Marita, J.M., Vermerris, W., Ralph, J., and Hatfield, R.D. (2003). Variations in the cell wall composition of maize brown midrib mutants. J. Agric. Food Chem. 51, 1313–1321.

    Article  PubMed  CAS  Google Scholar 

  • McMillan, J.D. (1994). Pretreatment of lignocellulosic biomass. ACS Symp. Ser. 566, 292–324.

    Article  CAS  Google Scholar 

  • Mok, W.S.L., and Antal, M.J. (1992). Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind. Eng. Chem. Res. 31, 1157–1161.

    Article  CAS  Google Scholar 

  • Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., and Ladisch, M.R. (2005a). Optimization of pH controlled liquid hot water pretreatment of corn stover. Biores. Technol. 96, 1986–1993.

    Article  CAS  Google Scholar 

  • Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., and Ladisch, M. (2005b). Features of promising technologies for pretreatment of lignocellulosic biomass. Biores. Technol. 96, 673–686.

    Article  CAS  Google Scholar 

  • Mosier, N.S., Hendrickson, R., Brewer, M., Ho, N., Sedlak, M., Dreshel, R., Welch, G., Dien, B.S., Aden, A., and Ladisch, M.R. (2005c). Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl. Biochem. Biotechnol. 125, 77–97.

    Article  CAS  Google Scholar 

  • Motherwell, W.B., Bingham, M.J., and Six, Y. (2001). Recent progress in the design and synthesis of artificial enzymes. Tetrahedron 57, 4663–4686.

    Article  CAS  Google Scholar 

  • Oleary, S. (1984). Aromatic sulfonates and the hydrolysis of 2-(Para- Nitrophenoxy)Tetrahydropyran. Canad. J. Chem. 62, 1320–1324.

    Article  CAS  Google Scholar 

  • Palmqvist, E., and Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Biores. Technol. 74, 17–24.

    Article  CAS  Google Scholar 

  • Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., and Amorim, D.S. (2005). Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591.

    Article  PubMed  CAS  Google Scholar 

  • Reese, E.T., Siu, R.G.H., and Levinson, H.S. (1950). The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59, 485–497.

    PubMed  CAS  Google Scholar 

  • Saeman, J.F. (1945). Kinetics of wood saccharification – Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Industr. Eng. Chem. 37, 43–52.

    Article  CAS  Google Scholar 

  • Shallom, D., and Shoham, Y. (2003). Microbial hemicellulases. Curr. Opin. Microbiol. 6, 219–228.

    Article  PubMed  CAS  Google Scholar 

  • Sheehan, J., and Himmel, M. (1999). Enzymes, energy, and the environment: A strategic perspective on the U.S. Department of Energy’s research and development activities for bioethanol. Biotechnol Progr. 15, 817–827.

    Article  CAS  Google Scholar 

  • Shimada, M., and Takahashi, M. (1991). Wood and cellulosic chemistry. In: Biodegradation of Cellulosic Materials. (D.N.-S. Hon and N. Shiraishi, Eds.) Marcel. Dekker, New York. P. 621.

    Google Scholar 

  • Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S., and Youngs, H. (2004). Toward a systems approach to understanding plant-cell walls. Science 306, 2206–2211.

    Article  PubMed  CAS  Google Scholar 

  • Sticklen, M. (2006). Plant genetic engineering to improve biomass characteristics for biofuels. Curr. Opin. Biotechnol. 17, 315–319.

    Article  PubMed  CAS  Google Scholar 

  • Swain, R.L.B. (2003). Development and operation of the molecular sieve: an industry standard. The Alcohol Textbook 4th Edition. Nottingham University Press, University of Nottingham, England. 446pp.

    Google Scholar 

  • Teeri, T.T. (1997). Crystalline cellulose degradation: New insight into the function of cellobiohydrolases. Trends Biotechnol. 15, 160–167.

    Article  Google Scholar 

  • Teeri, T.T., Koivula, A., Linder, M., Wohlfahrt, G., Divne, C., and Jones, T.A. (1998). Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem. Soc. Trans. 26, 173–178.

    CAS  Google Scholar 

  • Teymouri, F., Laureano-Perez, L., Alizadeh, H., and Dale, B.E. (2005). Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresource Technol. 96, 2014–2018.

    Article  CAS  Google Scholar 

  • Torget, R.W., Kim, J.S., and Lee, Y.Y. (2000). Fundamental aspects of dilute acid hydrolysis/ fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Ind. Eng. Chem. Res. 39, 2817–2825.

    Article  CAS  Google Scholar 

  • Um, B.H., Karim, M.N., and Henk, L.L. (2003). Effect of sulfuric and phosphoric acid pretreatments on enzymatic hydrolysis of corn stover. Appl. Biochem. Biotechnol. 105, 115–125.

    Article  PubMed  Google Scholar 

  • U. S. DOE (2005). Pretreatment. http://www1.eere.energy.gov/biomass/pretreatment.html.

    Google Scholar 

  • Walfridsson, M., Anderlund, M., Bao, X., and Hahn-Hägerdal, B. (1997). Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl. Microbiol. Biotechnol. 48, 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L.S., Zhang, Y.Z., Gao, P.J., Shi, D.X., Liu, H.W., and Gao, H.J. (2006). Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol. Bioeng. 93, 443–456.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M. (2005). The debate on energy and greenhouse gas emissions impacts of fuel ethanol. Energy Systems Division Seminar, Argonne National Laboratory, University of Chicago. www.transportation.anl.gov/pdfs/TA/347.pdf.

    Google Scholar 

  • Wankat, P.C. (1988). Equilibrium staged separations: separations in chemical engineering. Elsevier. New York, 707pp.

    Google Scholar 

  • Weil, J., Sarikaya, A., Rau, S.L., Goetz, J., Ladisch, C.M., Brewer, M., Hendrickson, R., and Ladisch, M.R. (1997). Pretreatment of yellow poplar sawdust by pressure cooking in water. Appl. Biochem. Biotech. 68, 21–40.

    Article  CAS  Google Scholar 

  • Weil, J., Westgate, P., Kohlmann, K., and Ladisch, M.R. (1994). Cellulose pretreatments of lignocellulosic substrates. Enzyme Microb. Technol. 16, 1002–1004.

    Article  PubMed  CAS  Google Scholar 

  • Weil, J.R., Sarikaya, A., Rau, S.L., Goetz, J., Ladisch, C.M., Brewer, M., Hendrickson, R., and Ladisch, M.R. (1998). Pretreatment of corn fiber by pressure cooking in water. Appl. Biochem. Biotechnol. 73, 1–17.

    Article  CAS  Google Scholar 

  • Wingren, A., Galbe, M., and Zacchi, G. (2003). Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnol Progr. 19, 1109–1117.

    Article  CAS  Google Scholar 

  • Withers, S.G. (2001). Mechanisms of glycosyl transferases and hydrolases. Carbohydr. Polym. 44, 325–337.

    Article  CAS  Google Scholar 

  • Wyman, C.E. (1999). Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annu. Rev. Energy Env. 24, 189–226.

    Article  Google Scholar 

  • Wyman, C.E. (2003). Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnol Progr. 19, 254–262.

    Article  CAS  Google Scholar 

  • Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., and Lee, Y.Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technol. 96, 1959–1966.

    Article  CAS  Google Scholar 

  • Yang, B., and Wyman, C.E. (2004). Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng. 86, 88–95.

    Article  PubMed  CAS  Google Scholar 

  • Yong, W.D., Link, B., O’Malley, R., Tewari, J., Hunter, C.T., Lu, C.A., Li, X.M., Bleecker, A.B., Koch, K.E., McCann, M.C., McCarty, D.R., Patterson, S.E., Reiter, W.D., Staiger, C., Thomas, S.R., Vermerris, W., and Carpita, N.C. (2005). Genomics of plant cell wall biogenesis. Planta 221, 747–751.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, M., Eddy, C., Deanda, K., Finkestein, M., and Picataggio, S. (1995). Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267, 240–243.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lu, Y., Mosier, N.S. (2008). Current Technologies for Fuel Ethanol Production from Lignocellulosic Plant Biomass. In: Vermerris, W. (eds) Genetic Improvement of Bioenergy Crops. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70805-8_6

Download citation

Publish with us

Policies and ethics