Current Technologies for Fuel Ethanol Production from Lignocellulosic Plant Biomass

  • Yulin Lu
  • Nathan S. Mosier


Corn Stover Ethanol Yield Lignocellulosic Biomass Xylose Reductase Fuel Ethanol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aden, A.M.R., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., and Wallace, B. (2002). Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL/TP-510-32438, 36–39.Google Scholar
  2. Administration, E.I. (2007). Basic Petroleum Statistics. quickoil.html.Google Scholar
  3. Arai, K., and Ogiwara, Y. (1976). Studies on hydrolysis reaction of model substances of cellulose in presence of polymer catalysts .5. Heterogeneous hydrolysis of fibrous cellulose in presence of polyvinyl alcohol-co-vinylsulfonic acid). Makromol Chem. 177, 367–373.CrossRefGoogle Scholar
  4. Arai, K., Ogiwara, Y., and Ise, N. (1975). Studies on hydrolysis reaction of model substances of cellulose in presence of a polymeric catalyst .4. Michaelis-menten type catalytic behavior of polyvinyl alcohol co-vinyl sulfonic acid). Makromol Chem. 176, 2871–2881.CrossRefGoogle Scholar
  5. Baker, J.O., Ehrman, C.I., Adney, W.S., Thomas, S.R., and Himmel, M.E. (1998). Hydrolysis of cellulose using ternary mixtures of purified celluloses. Appl. Biochem. Biotechnol. 70–72, 395–403.CrossRefGoogle Scholar
  6. Baker, J.O., McCarley, J.R., Lovettt, R., Yu, C.H., Adney, W.S., Rignall, T.R., Vinzant, T.B., Decker, S.R., Sakon, J., and Himmel, M.E. (2005). Catalytically enhanced endocellulase Cel5A from acidothermus cellulolyticus. Appl. Biochem. Biotechnol. 121, 129–148.PubMedCrossRefGoogle Scholar
  7. Beery, K.E., and Ladisch, M.R. (2001). Adsorption of water from liquid-phase ethanol-water mixtures at room temperature using starch-based adsorbents. Ind. Eng.Chem. Res. 40, 2112–2115.CrossRefGoogle Scholar
  8. Beguin, P., and Aubert, J.P. (1994). The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25–58.PubMedCrossRefGoogle Scholar
  9. Boraston, A.B., Bolam, D.N., Gilbert, H.J., and Davies, G.J. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 382, 769–781.PubMedCrossRefGoogle Scholar
  10. Brau, B., and Sahm, H. (1986). Cloning and expression of the structural gene for pyruvate decarboxylase of Zymomonas mobilis in Escherichia coli. Archiv. Microbiol. 144, 296–301.CrossRefGoogle Scholar
  11. Breslow, R. (1995). Biomimetic chemistry and artificial enzymes – Catalysis by design. Acc. Chem. Res. 28, 146–153.CrossRefGoogle Scholar
  12. Brownell, H.H., Yu, E.K.C., and Saddler, J.N. (1986). Steam-explosion pretreatment of wood – effect of chip size, acid, moisture-content and pressure-drop. Biotechnol. Bioeng. 28, 792–801.PubMedCrossRefGoogle Scholar
  13. Bungay, H.R. (1981). Energy, The Biomass Options. Chapter 7, "Fractionation and Pretreatment". John Wiley & Sons, New York. 347pp.Google Scholar
  14. Campbell, C.J., and Laherrere, J.H. (1998). Preventing the next oil crunch – The end of cheap oil. Sci. Am. 278, 77–83.Google Scholar
  15. Carpita, N.C. (1996). Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 445–476.PubMedCrossRefGoogle Scholar
  16. Chang, V.S., and Holtzapple, M.T. (2000). Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84–86, 5–37.PubMedCrossRefGoogle Scholar
  17. Collins, T., Gerday, C., and Feller, G. (2005). Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29, 3–23.PubMedCrossRefGoogle Scholar
  18. Dale, B.E., Leong, C.K., Pham, T.K., Esquivel, V.M., Rios, I., and Latimer, V.M. (1996). Hydrolysis of lignocellulosics at low enzyme levels: Application of the AFEX process. Bioresource Technol. 56, 111–116.CrossRefGoogle Scholar
  19. Dien, B.S., Cotta, M.A., and Jeffries, T.W. (2003). Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63, 258–266.PubMedCrossRefGoogle Scholar
  20. Din, N., Damude, H.G., Gilkes, N.R., Miller, R.C., Warren, R.A.J., and Kilburn, D.G. (1994). C-1-C-X revisited – Intramolecular synergism in a cellulase. Proc. Natl. Acad. Sci. USA 91, 11383–11387.PubMedCrossRefGoogle Scholar
  21. Divne, C., Stahlberg, J., Teeri, T.T., and Jones, T.A. (1998). High-resolution crystal structures reveal how a cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol. 275, 309–325.PubMedCrossRefGoogle Scholar
  22. Fair, J.R. (2001). Distillation. Kirk-Othmer Encyc. Chem. Technol. 8, 739–785.Google Scholar
  23. Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O’Hare, M., and Kammen, D.M. (2006). Ethanol can contribute to energy and environmental goals. Science 311, 506–508.PubMedCrossRefGoogle Scholar
  24. Fujita, Y., Ito, J., Ueda, M., Fukuda, H., and Kondo, A. (2004). Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl. Environ. Microbiol. 70, 1207–1212.PubMedCrossRefGoogle Scholar
  25. Fujita, Y., Takahashi, S., Ueda, M., Tanaka, A., Okada, H., Morikawa, Y., Kawaguchi, T., Arai, M., Fukuda, H., and Kondo, A. (2002). Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl. Environ. Microbiol. 68, 5136–5141.PubMedCrossRefGoogle Scholar
  26. Goldstein, I.S., and Easter, J.M. (1992). An improved process for converting cellulose to ethanol. TAPPI J. 75, 135–140.Google Scholar
  27. Grant, L. (2005). When will the oil run out? Science 309, 52–54.PubMedCrossRefGoogle Scholar
  28. Hahn-Hägerdal, B., Jeppsson, H., Skoog, K., and Prior, B.A. (1994). Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb. Technol. 16, 933–943.CrossRefGoogle Scholar
  29. Hahn-Hägerdal, W.C., Gardonyi, M., van Zyl, W.H., Cordero Otero, R.R., and Jonsson, L.J. (2001). Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem. Eng. Biotechnol. 73, 53–84.PubMedGoogle Scholar
  30. Henrissat, B., Driguez, H., Viet, C., and Schulein, M. (1985). Synergism of cellulases from Trichoderma-Reesei in the degradation of cellulose. Bio-Technol. 3, 722–726.Google Scholar
  31. Himmel, M.E., Adney, W.S., Baker, J.O., Elander, R., McMillan, J.D., Nieves, R.A., Sheehan, J.J., Thomas, S.R., Vinzant, T.B., and Zhang, M. (1997). Advanced bioethanol production technologies: a perspective. ACS Sym. Ser. 666, 2–45.Google Scholar
  32. Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., and Foust, T.D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315, 804–807.PubMedCrossRefGoogle Scholar
  33. Himmel, M.E., Ruth, M.F., and Wyman, C.E. (1999). Cellulase for commodity products from cellulosic biomass. Curr. Opin. Biotech. 10, 358–364.PubMedCrossRefGoogle Scholar
  34. Ho, N.W.Y., Chen, Z.D., and Brainard, A.P. (1998). Genetically engineered Sacccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64, 1852–1859.PubMedGoogle Scholar
  35. Hu, W.J., Harding, S.A., Lung, J., Popko, J.L., Ralph, J., Stokke, D.D., Tsai, C.J., and Chiang, V.L. (1999). Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnol. 17, 808–812.CrossRefGoogle Scholar
  36. Ingram, L.O., Aldrich, H.C., Borges, A.C.C., Causey, T.B., Martinez, A., Morales, F., Saleh, A., Underwood, S.A., Yomano, L.P., York, S.W., Zaldivar, J., and Zhou, S.D. (1999). Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Prog. 15, 855–866.PubMedCrossRefGoogle Scholar
  37. Ingram, L.O., Gomez, P.F., Lai, X., Moniruzzaman, M., Wood, B.E., Yomano, L.P., and York, S.W. (1998). Metabolic engineering of bacteria for ethanol production. Biotechnol. Bioeng. 58, 204–214.PubMedCrossRefGoogle Scholar
  38. Iogen Corporation (2005) Iogen Technology Makes it Possible. _ethanol/what_is_ethanol/process.html.Google Scholar
  39. Jin, Y.S., Alper, H., Yang, Y.T., and Stephanopoulos, G. (2005). Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 71, 8249–8256.PubMedCrossRefGoogle Scholar
  40. Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., and Gorwa-Grauslund, M.F. (2007). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73, 1039–1046.PubMedCrossRefGoogle Scholar
  41. Kiefer, H.C., Klotz, I.M., Scarpa, I.S., and Congdon, W.I. (1972). Catalytic accelerations of 1012-fold by an enzyme-like synthetic polymer. Proc. Natl. Acad. Sci. USA 69, 2155–2159.PubMedCrossRefGoogle Scholar
  42. Kirby, A.J. (1994). Enzyme mimics. Angew. Chem. 33, 551–553.CrossRefGoogle Scholar
  43. Kresge, C.T., Dhingra, S.S. (2004). Molecular Sieves. Kirk-Othmer Encyclopedia of Chemical Technology 16, 811–853.Google Scholar
  44. Krishnan, M.S., Ho, N.W.Y., and Tsao, G.T. (1999). Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33). Appl. Biochem. Biotech. 77–9, 373–388.CrossRefGoogle Scholar
  45. Kwiatkowski, J.R., Mcaloon, A.J., Taylor, F., and Johnston, D.B. (2006). Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Indust. Crops Prod. 23, 288–296.CrossRefGoogle Scholar
  46. Ladisch, M.R., and Dyck, K. (1979). Dehydration of ethanol – New approach gives positive energy-balance. Science 205, 898–900.PubMedCrossRefGoogle Scholar
  47. Lawford, H.G. (1988). A new approach to improving the performance of zymomonas in continuous ethanol fermentations. Appl. Biochem. Biotech. 17, 203–219.CrossRefGoogle Scholar
  48. Lerouxel, O., Cavalier, D.M., Liepman, A.H., and Keegstra, K. (2006). Biosynthesis of plant cell wall polysaccharides – a complex process. Curr. Opin. Plant Biol. 9, 621–630.PubMedCrossRefGoogle Scholar
  49. Linder, M., and Teeri, T.T. (1997). The roles and function of cellulose-binding domains. J. Biotechnol. 57, 15–28.CrossRefGoogle Scholar
  50. Lloyd, T.A., and Wyman, C.E. (2005). Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Biores. Technol. 96, 1967–1977.CrossRefGoogle Scholar
  51. Lu, Y.L., and Mosier, N.S. (2007). Biomimetic catalysis for hemicellulose hydrolysis in corn stover. Biotechnol. Progr. 23, 116–123.CrossRefGoogle Scholar
  52. Lynd, L.R., Cushman, J.H., Nichols, R.J., and Wyman, C.E. (1991). Fuel ethanol from cellulosic biomass. Science 251, 1318–1323.PubMedCrossRefGoogle Scholar
  53. Lynd, L.R., Elander, R.T., and Wyman, C.E. (1996). Likely features and costs of mature biomass ethanol technology. Appl. Biochem. Biotech. 57-8, 741–761.CrossRefGoogle Scholar
  54. Lynd, L.R., van Zyl, W.H., McBride, J.E., and Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16, 577–583.PubMedCrossRefGoogle Scholar
  55. Lynd, L.R., Wyman, C.E., and Gerngross, T.U. (1999). Biocommodity engineering. Biotechnol. Progr. 15, 777–793.CrossRefGoogle Scholar
  56. Madson, P.W. (2003). Ethanol distillation: the fundamentals. The Alcohol Textbook 4th Edition. Nottingham University Press, University of Nottingham, England. 446pp.Google Scholar
  57. Marita, J.M., Vermerris, W., Ralph, J., and Hatfield, R.D. (2003). Variations in the cell wall composition of maize brown midrib mutants. J. Agric. Food Chem. 51, 1313–1321.PubMedCrossRefGoogle Scholar
  58. McMillan, J.D. (1994). Pretreatment of lignocellulosic biomass. ACS Symp. Ser. 566, 292–324.CrossRefGoogle Scholar
  59. Mok, W.S.L., and Antal, M.J. (1992). Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind. Eng. Chem. Res. 31, 1157–1161.CrossRefGoogle Scholar
  60. Mosier, N., Hendrickson, R., Ho, N., Sedlak, M., and Ladisch, M.R. (2005a). Optimization of pH controlled liquid hot water pretreatment of corn stover. Biores. Technol. 96, 1986–1993.CrossRefGoogle Scholar
  61. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., and Ladisch, M. (2005b). Features of promising technologies for pretreatment of lignocellulosic biomass. Biores. Technol. 96, 673–686.CrossRefGoogle Scholar
  62. Mosier, N.S., Hendrickson, R., Brewer, M., Ho, N., Sedlak, M., Dreshel, R., Welch, G., Dien, B.S., Aden, A., and Ladisch, M.R. (2005c). Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl. Biochem. Biotechnol. 125, 77–97.CrossRefGoogle Scholar
  63. Motherwell, W.B., Bingham, M.J., and Six, Y. (2001). Recent progress in the design and synthesis of artificial enzymes. Tetrahedron 57, 4663–4686.CrossRefGoogle Scholar
  64. Oleary, S. (1984). Aromatic sulfonates and the hydrolysis of 2-(Para- Nitrophenoxy)Tetrahydropyran. Canad. J. Chem. 62, 1320–1324.CrossRefGoogle Scholar
  65. Palmqvist, E., and Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Biores. Technol. 74, 17–24.CrossRefGoogle Scholar
  66. Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., and Amorim, D.S. (2005). Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591.PubMedCrossRefGoogle Scholar
  67. Reese, E.T., Siu, R.G.H., and Levinson, H.S. (1950). The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59, 485–497.PubMedGoogle Scholar
  68. Saeman, J.F. (1945). Kinetics of wood saccharification – Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Industr. Eng. Chem. 37, 43–52.CrossRefGoogle Scholar
  69. Shallom, D., and Shoham, Y. (2003). Microbial hemicellulases. Curr. Opin. Microbiol. 6, 219–228.PubMedCrossRefGoogle Scholar
  70. Sheehan, J., and Himmel, M. (1999). Enzymes, energy, and the environment: A strategic perspective on the U.S. Department of Energy’s research and development activities for bioethanol. Biotechnol Progr. 15, 817–827.CrossRefGoogle Scholar
  71. Shimada, M., and Takahashi, M. (1991). Wood and cellulosic chemistry. In: Biodegradation of Cellulosic Materials. (D.N.-S. Hon and N. Shiraishi, Eds.) Marcel. Dekker, New York. P. 621.Google Scholar
  72. Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S., and Youngs, H. (2004). Toward a systems approach to understanding plant-cell walls. Science 306, 2206–2211.PubMedCrossRefGoogle Scholar
  73. Sticklen, M. (2006). Plant genetic engineering to improve biomass characteristics for biofuels. Curr. Opin. Biotechnol. 17, 315–319.PubMedCrossRefGoogle Scholar
  74. Swain, R.L.B. (2003). Development and operation of the molecular sieve: an industry standard. The Alcohol Textbook 4th Edition. Nottingham University Press, University of Nottingham, England. 446pp.Google Scholar
  75. Teeri, T.T. (1997). Crystalline cellulose degradation: New insight into the function of cellobiohydrolases. Trends Biotechnol. 15, 160–167.CrossRefGoogle Scholar
  76. Teeri, T.T., Koivula, A., Linder, M., Wohlfahrt, G., Divne, C., and Jones, T.A. (1998). Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem. Soc. Trans. 26, 173–178.Google Scholar
  77. Teymouri, F., Laureano-Perez, L., Alizadeh, H., and Dale, B.E. (2005). Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresource Technol. 96, 2014–2018.CrossRefGoogle Scholar
  78. Torget, R.W., Kim, J.S., and Lee, Y.Y. (2000). Fundamental aspects of dilute acid hydrolysis/ fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Ind. Eng. Chem. Res. 39, 2817–2825.CrossRefGoogle Scholar
  79. Um, B.H., Karim, M.N., and Henk, L.L. (2003). Effect of sulfuric and phosphoric acid pretreatments on enzymatic hydrolysis of corn stover. Appl. Biochem. Biotechnol. 105, 115–125.PubMedCrossRefGoogle Scholar
  80. U. S. DOE (2005). Pretreatment. Scholar
  81. Walfridsson, M., Anderlund, M., Bao, X., and Hahn-Hägerdal, B. (1997). Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl. Microbiol. Biotechnol. 48, 218–224.PubMedCrossRefGoogle Scholar
  82. Wang, L.S., Zhang, Y.Z., Gao, P.J., Shi, D.X., Liu, H.W., and Gao, H.J. (2006). Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol. Bioeng. 93, 443–456.PubMedCrossRefGoogle Scholar
  83. Wang, M. (2005). The debate on energy and greenhouse gas emissions impacts of fuel ethanol. Energy Systems Division Seminar, Argonne National Laboratory, University of Chicago. Scholar
  84. Wankat, P.C. (1988). Equilibrium staged separations: separations in chemical engineering. Elsevier. New York, 707pp.Google Scholar
  85. Weil, J., Sarikaya, A., Rau, S.L., Goetz, J., Ladisch, C.M., Brewer, M., Hendrickson, R., and Ladisch, M.R. (1997). Pretreatment of yellow poplar sawdust by pressure cooking in water. Appl. Biochem. Biotech. 68, 21–40.CrossRefGoogle Scholar
  86. Weil, J., Westgate, P., Kohlmann, K., and Ladisch, M.R. (1994). Cellulose pretreatments of lignocellulosic substrates. Enzyme Microb. Technol. 16, 1002–1004.PubMedCrossRefGoogle Scholar
  87. Weil, J.R., Sarikaya, A., Rau, S.L., Goetz, J., Ladisch, C.M., Brewer, M., Hendrickson, R., and Ladisch, M.R. (1998). Pretreatment of corn fiber by pressure cooking in water. Appl. Biochem. Biotechnol. 73, 1–17.CrossRefGoogle Scholar
  88. Wingren, A., Galbe, M., and Zacchi, G. (2003). Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnol Progr. 19, 1109–1117.CrossRefGoogle Scholar
  89. Withers, S.G. (2001). Mechanisms of glycosyl transferases and hydrolases. Carbohydr. Polym. 44, 325–337.CrossRefGoogle Scholar
  90. Wyman, C.E. (1999). Biomass ethanol: Technical progress, opportunities, and commercial challenges. Annu. Rev. Energy Env. 24, 189–226.CrossRefGoogle Scholar
  91. Wyman, C.E. (2003). Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power. Biotechnol Progr. 19, 254–262.CrossRefGoogle Scholar
  92. Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., and Lee, Y.Y. (2005). Coordinated development of leading biomass pretreatment technologies. Bioresource Technol. 96, 1959–1966.CrossRefGoogle Scholar
  93. Yang, B., and Wyman, C.E. (2004). Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng. 86, 88–95.PubMedCrossRefGoogle Scholar
  94. Yong, W.D., Link, B., O’Malley, R., Tewari, J., Hunter, C.T., Lu, C.A., Li, X.M., Bleecker, A.B., Koch, K.E., McCann, M.C., McCarty, D.R., Patterson, S.E., Reiter, W.D., Staiger, C., Thomas, S.R., Vermerris, W., and Carpita, N.C. (2005). Genomics of plant cell wall biogenesis. Planta 221, 747–751.PubMedCrossRefGoogle Scholar
  95. Zhang, M., Eddy, C., Deanda, K., Finkestein, M., and Picataggio, S. (1995). Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267, 240–243.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yulin Lu
    • 1
  • Nathan S. Mosier
    • 1
  1. 1.Agricultural and Biological Engineering Department, Laboratory of Renewable Resources EngineeringPurdue UniversityWest Lafayette

Personalised recommendations