Advertisement

Selection of Promising Biomass Feedstock Lines Using High-Throughput Spectrometric and Enzymatic Assays

  • Mark F. Davis
  • Ed Wolfrum
  • Tina Jeoh

Keywords

Partial Little Square Lignin Content Corn Stover Sugar Yield Coniferyl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Agblevor, F.A., Evans, R.J., and Johnson, K.D. (1994) Molecular-beam mass-spectrometric analysis of lignocellulosic materials I. Herbaceous biomass. J. Anal. Appl. Pyrolysis 30, 125–144.CrossRefGoogle Scholar
  2. Alves, A., Schwanninger, M., Pereira, H., and Rodrigues, J. (2006) Calibration of NIR to assess lignin composition (H/G ratio) in maritime pine wood using analytical pyrolysis as the reference method. Holzforschung 60, 29–31.CrossRefGoogle Scholar
  3. Aries, R., Gutteridge, C.S., Laurie, W.A., Boon, J.J., and Eijkel, G.B. (1988) A pyrolysis-mass spectrometry investigation of pectin methylation. Anal. Chem. 60, 1498–1502.CrossRefGoogle Scholar
  4. ASTM International. (2004) Standard practice for near infrared qualitative analysis. pp. 1–8. ASTM International, West Conshohocken, PA.Google Scholar
  5. ASTM International. (2005) Standard practices for infrared multivariate quantitative analysis. pp. 1–29. ASTM International, West Conshohocken, PA.Google Scholar
  6. Barr, B.K., Hsieh, Y.L., Ganem, B., and Wilson, D.B. (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35, 586–592.PubMedCrossRefGoogle Scholar
  7. Boon, J.J., Dupont, L.M., and De Leeuw, J.W. (1986) Characterization of a peat bog profile by Curie point pyrolysis-mass spectrometry. Peat Water 215–239.Google Scholar
  8. Boon, J.J., Pouwels, A.D., and Eijkel, G.B. (1987) Pyrolysis high-resolution gas chromatography- mass spectrometry studies on beechwood: capillary high-resolution mass spectrometry of a beech lignin fraction. Biochem. Soc. Trans. 15,170–174.Google Scholar
  9. Brereton, R.G. (2007) Applied Chemometrics for Scientists. Wiley and Sons.Google Scholar
  10. Brown, G.R., Bassoni, D.L., Gill, G.P., Fontana, J.R., Wheeler, N.C., Megraw, R.A., Davis, M.F., Sewell, M.M., Tuskan, G.A., and Neale, D.B. (2003) Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taedaL.) III. QTL verification and candidate gene mapping. Genetics 164, 1537–1546.Google Scholar
  11. Chen, F., and Dixon, F.A. (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnol. 25, 759–761.CrossRefGoogle Scholar
  12. Davis, M.F., Tuskan, G.A., Payne, P., Tschaplinski, T.J., and Meilan, R. (2006) Assessment of Populuswood chemistry following the introduction of a Bt toxin gene. Tree Physiol. 26, 557–564.PubMedGoogle Scholar
  13. Davison, B.H., Drescher, S.R., Tuskan, G.A., Davis, M.F., and Nghiem, N.P. (2006) Variation of S/G Ratio and Lignin Content in a Populus Family Influences the Release of Xylose by Dilute Acid Hydrolysis. Appl. Biochem. Biotechnol. 130, 427–435.CrossRefGoogle Scholar
  14. Del Rio, J.C., Speranza, M., Gutierrez, A., Martinez, M. J., and Martinez, A.T. (2001) Identification of residual lignin markers in eucalypt kraft pulps by Py-GC/MS. J. Anal. Appl. Pyrolysis 58–59, 425–439.CrossRefGoogle Scholar
  15. Draude, K.M., Kurniawan, C.B., and Duff, S.J.B. (2001) Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Bioresource Technol. 79, 113–120.CrossRefGoogle Scholar
  16. Duchesne, I., Hult, E., Molin, U., Daniel, G., Iversen, T., and Lennholm, H. (2001) The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS C-13-NMR. Cellulose 8, 103–111.CrossRefGoogle Scholar
  17. Evans, R.J., and Milne, T.A. (1987) Molecular Characterization of the Pyrolysis of Biomass .1. Fundamentals. Energy & Fuels 1, 123–137.CrossRefGoogle Scholar
  18. Faix, O., Bremer, J., Meier, D., Fortmann, I., Scheijen, M.A., and Boon, J.J. (1992) Characterization of tobacco lignin by analytical pyrolysis and Fourier transform-infrared spectroscopy. J. Anal. Appl. Pyrolysis 22, 239–259.CrossRefGoogle Scholar
  19. Faix, O., Stevanovic-Janezic, T., and Lundquist, K. (1994) The lignin of the diffuse porous angiosperm tree Triplochiton scleroxylon K. Schum with low syringyl content. J. Wood Chem. Technol. 14, 263–278.CrossRefGoogle Scholar
  20. Gidman, E., Goodacre, R., Emmett, B., Smith, A.R., and Gwynn-Jones, D. (2003) Investigating plant-plant interference by metabolic fingerprinting. Phytochem. 63, 705–710.CrossRefGoogle Scholar
  21. Goodacre, R. (1994) Characterization and quantification of microbial systems using pyrolysis mass spectrometry: Introducing neural networks to analytical pyrolysis. Microbiol. Europe 2, 16–22.Google Scholar
  22. Goodacre, R., Timmins, E.M., Burton, R., Kaderbhai, N., Woodward, A.M., Kell, D.B., and Rooney, P.J. (1998) Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology UK 144, 1157–1170.CrossRefGoogle Scholar
  23. Greenwood, P.F., van Heems, J.D., Guthrie, E.A., and Hatcher, P.G. (2002) Laser micropyrolysis GC-MS of lignin. J. Anal. Appl. Pyrolysis 62, 365–373.CrossRefGoogle Scholar
  24. Hartley, R.D. and Haverkamp, J. (1984) Pyrolysis-mass spectrometry of the phenolic constituents of plant cell walls. J. Sci. Food Agric. 35, 14–20.CrossRefGoogle Scholar
  25. Hayashi, N., Sugiyama, J., Okano, T., and Ishihara, M. (1997) Selective degradation of the cellulose I-alpha component in Cladophora cellulose with Trichoderma viride cellulase. Carbohydr. Res. 305, 109–116.CrossRefGoogle Scholar
  26. Irwin, D.C., Cheng, M., Xiang, B.S., Rose, J.K.C., and Wilson, D.B. (2003) Cloning, expression and characterization of a family-74 xyloglucanase from Thermobifida fusca. Eur. J. Biochem. 270, 3083–3091.PubMedCrossRefGoogle Scholar
  27. Izumi, A., Kuroda, K., Ohi, H., and Yamaguchi, A. (1995) Structural analysis of lignin by pyrolysis-gas chromatography (III) Comparative studies of pyrolysis-gas chromatography and nitrobenzene oxidation for the determination method of lignin comosition in hardwood. Kami Pa Gikyoshi 49, 1339–1346.Google Scholar
  28. Jacobs, A., Lundqvist, J., Stalbrand, H., Tjerneld, F., and Dahlman, O. (2002) Characterization of water-soluble hemicelluloses from spruce and aspen employing SEC/MALDI mass spectrometry. Carbohydr. Res. 337, 711–717.PubMedCrossRefGoogle Scholar
  29. Jacobs, A., Palm, M., Zacchi, G., and Dahlman, O. (2003) Isolation and characterization of water-soluble hemicelluloses from flax shive. Carbohydrate Research 338, 1869–1876.PubMedCrossRefGoogle Scholar
  30. Jeoh, T., Ishizawa, C., Davis, M.F., Himmel, M.E., Adney, W.S., and Johnson, D.K. (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng. 98, 112–122.PubMedCrossRefGoogle Scholar
  31. Kelley, S.S., Jellison, J., and Goodell, B. (2002) Use of NIR and pyrolysis-MBMS coupled with multivariate analysis for detecting the chemical changes associated with brown-rot biodegradation of spruce wood. FEMS Microbiol. Lett. 209, 107–111.PubMedCrossRefGoogle Scholar
  32. Kelley, S.S., Rowell, R. M., Davis, M., Jurich, C.K., and Ibach, R. (2004) Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry. Biomass & Bioenergy 27, 77–88.CrossRefGoogle Scholar
  33. Kim, T. H., Kim, J.S., Sunwoo, C., and Lee, Y.Y. (2003) Pretreatment of corn stover by aqueous ammonia. Bioresource Technol. 90, 39–47.CrossRefGoogle Scholar
  34. Knappert, D., Grethlein, H., and Converse, A. (1980) Partial Acid-Hydrolysis of Cellulosic Materials as a Pretreatment for Enzymatic-Hydrolysis. Biotechnol. and Bioeng. 22, 1449– 1463.CrossRefGoogle Scholar
  35. Laureano-Perez, L., Teymouri, F., Alizadeh, H., and Dale, B.E. (2005) Understanding factors that limit enzymatic hydrolysis of biomass. Appl. Biochem. Biotechnol. 121, 1081–1099.PubMedCrossRefGoogle Scholar
  36. Lerouxel, O., Choo, T.S., Seveno, M., Usadel, B., Faye, L., Lerouge, P., and Pauly, M. (2002) Rapid structural phenotyping of plant cell wall mutants by enzymatic oligosaccharide fingerprinting. Plant Physiol. 130, 1754–1763.PubMedCrossRefGoogle Scholar
  37. Martens, H., and Martens, M. (2001) Multivariate Analysis of Quality: An Introduction. John Wiley and Sons.Google Scholar
  38. Martin, F., Saiz- Jimenez, C., and Gonzalez-Vila, F.J. (1979) Pyrolysis-gas chromatographymass spectrometry of lignins. Holzforschung 33, 210–212.Google Scholar
  39. McCann, M.C., and Carpita, N.C. (2005) Looking for invisible phenotypes in cell wall mutants of Arabidopsis thaliana. Plant Biosyst. 139, 80–83.Google Scholar
  40. Meuzelaar, H. L. C., Haverkamp, J., and Hileman, F. (1982) Pyrolysis-mass spectrometry of recent and fossil biomaterials. In Techniques and Instrumentation in Analytical Chemistry Vol. 3, Elsevier, Amsterdam, pp. 293.Google Scholar
  41. Meuzelaar, H.L.C., Haverkamp, J., and Hileman, F. (1984) Pyrolysis mass spectrometry of complex organic materials. Science 226, 268–274.PubMedCrossRefGoogle Scholar
  42. Meuzelaar, H.L.C., Kistemaker, P.G., and Posthumus, M A. (1974) Recent advances in pyrolysis mass spectrometry of complex biological materials. Biomed. Mass Spectrom. 1, 312–319.PubMedCrossRefGoogle Scholar
  43. Munck, L., Møller, B., Jacobsen, S., and Søndergaard, I. (2004) Near infrared spectra indicate specific mutant endosperm genes and reveal a new mechanism for substituting starch with (1→3, 1→4)-ß-glucan in barley. J. Cereal Sci. 40, 213–222.CrossRefGoogle Scholar
  44. Munck, L., Pram Nielsen, J., Moller, B., Jacobsen, S., Sondergaard, I., Engelsen, S.B., Norgaard, L., and Bro, R. (2001) Exploring the phenotypic expression of a regulatory proteome- altering gene by spectroscopy and chemometrics. Anal. Chimica Acta 446, 171– 186.CrossRefGoogle Scholar
  45. Naes, T., Isaksson, T., Fearn, T., and Davies, T. (2002) A User-Friendly Guide to Multivariate Calibration and Classification. IM Publications, Chichester, UK, 344pp.Google Scholar
  46. Obst, J.R. (1983) Analytical pyrolysis of hardwood and softwood lignins and its use in lignintype determination of hardwood vessel elements. J. Wood Chem. Technol. 3, 377–397.CrossRefGoogle Scholar
  47. Ohi, H., Yasuta, Y., Izumi, A., and Kuroda, K. (1997) Structural analysis of lignin by pyrolysis- gas chromatography (V) Analysis of lignin in tropical hardwoods. Kami Pa Gikyoshi 51, 1213–1223.Google Scholar
  48. Reale, S., Di Tullio, A., Spreti, N., and De Angelis, F. (2004) Mass spectrometry in the biosynthetic and structural investigation of lignins. Mass Spectrom. Rev. 23, 87–126.PubMedCrossRefGoogle Scholar
  49. Rodrigues, J., Graca, J., and Pereira, H. (2001) Influence of tree eccentric growth on syringyl/ guaiacyl ratio in Eucalyptus globulus wood lignin assessed by analytical pyrolysis. J. Anal. Appl. Pyrolysis 58–59, 481–489.CrossRefGoogle Scholar
  50. Sewell, M., Davis, M., Tuskan, G., Wheeler, N., Elam, C., Bassoni, D., and Neale, D. (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.) II. Chemical wood properties. Theor. Appl. Genetics 104, 214–222.CrossRefGoogle Scholar
  51. Simmleit, N., and Schulten, H.-R. (1989) Characterization of plant materials by pyrolysis-field ionization mass spectrometry Part II. Thermal degradation products of spruce needles. Chemosphere 18, 1855–1869.Google Scholar
  52. Smedsgaard, J., and Frisvad, J.C. (1996) Using direct electrospray mass spectrometry in taxonomy and secondary metabolite profiling of crude fungal extracts. J. Microbiol. Methods 25, 5–17.CrossRefGoogle Scholar
  53. Sonoda, T., Ona, T., Yokoi, H., Ishida, Y., Ohtani, H., and Tsuge, S. (2001) Quantitative analysis of detailed lignin monomer composition by pyrolysis-gas chromatography combined with preliminary acetylation of the samples. Anal. Chem. 73, 5429–5435.PubMedCrossRefGoogle Scholar
  54. Terron, M.C., Fidalgo, M.L., Galletti, G.C., and Gonzalez, A.E. (1995) Comparative study of the lignin composition of seven Chilean woods using Py-GC-MS. Biotechnology in the pulp and paper industry: Recent advances in applied and fundamental research. pp. 381– 384. The International Conference on Biotechnology in the Pulp and Paper Industry, Vienna, Austria.Google Scholar
  55. Tuskan, G., West, D., Bradshaw, H.D., Neale, D., Sewell, M., Wheeler, N., Megraw, B., Jech, K., Wiselogel, A., Evans, R., Elam, C., Davis, M., and Dinus, R. J. (1999) Two highthroughput techniques for determining wood properties as part of a molecular genetics analysis of hybrid poplar and loblolly pine. Appl. Biochem. Biotechnol. 77–79, 55–65.CrossRefGoogle Scholar
  56. Vinzant, T.B., Ehrman, C.I., Adney, W.S., Thomas, S.R., and Himmel, M.E. (1997) Simultaneous saccharification and fermentation of pretreated hardwoods – Effect of native lignin content. Appl. Biochem. Biotechnol. 62, 99–104.CrossRefGoogle Scholar
  57. Williams, P., and Norris, K. (2001) Near-Infrared Technology in the Agricultural and Food Industries. American Association of Cereal Chemists.Google Scholar
  58. Wood, K.V. (2006) Mass spectrometry. In: W. Vermerris and R.L. Nicholson (Eds.), Phenolic Compound Biochemistry, Springer, Dordrecht, pp. 197–210Google Scholar
  59. Xie, L., Ying, Y., and Ying, T. (2007) Quantification of chlorophyll content and classification of nontransgenic and transgenic tomato leaves using visible near-infrared diffuse reflectance spectroscopy. J. Agric. Food Chem 55, 4645–4650PubMedCrossRefGoogle Scholar
  60. Yamada, T., Yeh, T.F., Chang, H.M., Li, L.G., Kadla, J.F., and Chiang, V.L. (2006) Rapid analysis of transgenic trees using transmittance near-infrared spectroscopy (NIR). Holzforschung 60, 24–28.CrossRefGoogle Scholar
  61. Yang, B., and Wyman, C.E. (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng. 86, 88–95.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mark F. Davis
    • 1
  • Ed Wolfrum
    • 1
  • Tina Jeoh
    • 2
  1. 1.National Bioenergy CenterNational Renewable Energy LaboratoryGolden
  2. 2.GeoSynFuelsLLCGolden

Personalised recommendations