Composition and Biosynthesis of Lignocellulosic Biomass

  • Wilfred Vermerris


Ferulic Acid Lignocellulosic Biomass Secondary Cell Wall Primary Cell Wall Cellulose Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama, T., Magara, K., Matsumoto, Y., Meshitsuka, G., Ishizu, A., and Lundquist, K. (2000) Proof of the presence of racemic forms of arylglycerol-β-aryl ether structure in lignin: studies on the stereo structure of lignin by ozonation. J. Wood Sci. 46, 414–415.Google Scholar
  2. Amor, Y., Haigler, C.H., Johnson, S., Wainscott, M., and Delmer, D.P.A (1995) Membraneassociated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. U.S.A. 92, 9353–9357.PubMedGoogle Scholar
  3. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.Google Scholar
  4. Arioli, T., Peng, L., Betzner, A.S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Höfte, H., Plazinski, J., Birch, R., Cork, A., Glover, J., Redmond, J., and Williamson, R.E. (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279, 717–720.PubMedGoogle Scholar
  5. Bacic, A., and Stone, B. A. (1980) A (1→ 3)- and (1→ 4)-linked β- cell walls of wheat. Carbohydr. Res. 82, 372–377.Google Scholar
  6. Bao, W., O’Malley, D.M., Whetten, R., and Sederoff, R.R. (1993) A laccase associated with lignification in loblolly pine xylem. Science 260, 672-674.PubMedGoogle Scholar
  7. Barber, C., Rösti, J., Rawat, A., Findlay, K., Roberts, K., and Seifert, G.J. (2006) Distinct properties of the five UDP-D-glucose/UDP- D-galactose 4-epimerase isoforms of Arabidopsis thaliana. J. Biol. Chem. 281, 17276–17285.PubMedGoogle Scholar
  8. Baskin, T.I., Betzner, A.S., Hoggart, R., Cork, A., and Williamson, R.E. (1992) Root morphology mutants in Arabidopsis thaliana. Aust. J. Plant Physiol. 19, 427.Google Scholar
  9. Becnel, J., Natarajan, M., Kipp, A., and Braam, J. (2006) Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and Genevestigator. Plant Mol. Biol. 61, 451–467.PubMedGoogle Scholar
  10. Benfey, P.N., Linstead, P.J., Roberts, K., Schiefelbein, J.W., Hauser, M.T., and Aeschabacher, R.A. (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119, 57–70.PubMedGoogle Scholar
  11. Bernal, A.J., Jensen, K.J., Harholt, J., Serensen, S., Moller, I., Blaukopf, C., Johansen, B., de Lotto, R., Pauly, M., Scheller, V.H., and Willats, W.G.T. (2007) Disruption of ATCSLD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis. Plant J. 52, 791–802.PubMedGoogle Scholar
  12. Bieniawska, Z., Barratt, D.H.P., Garlick, A.P., Thole, V., Kruger, N.J., Martin, C., Zrenner, R., and Smith, A.M. (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J. 49, 810–828.PubMedGoogle Scholar
  13. Boerjan, W., Ralph, J., and Baucher, M. (2003) Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546.PubMedGoogle Scholar
  14. Bonin, C.P., Potter, I., Vanzin, G.F., and Reiter, W.D. (1997) The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-D-mannose-4, 6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose. Proc. Natl. Acad. Sci. U.S.A. 94, 2085–2090.PubMedGoogle Scholar
  15. Bonin, C.P., and Reiter, W.D. (2000) A bifunctional epimerase-reductase acts downstream of the MUR1 gene product and completes the de novo synthesis of GDP-L-Fucose in Arabidopsis. Plant J. 21, 445–454.PubMedGoogle Scholar
  16. Bonin, C. P.; Fresjpir. G.; Hahn, M. G.; Vanzin, G. F., and Reiter, W.-D. (2003) The GMD1 and GMD2 genes of Arabidopsis encode isoforms of GDP-D-Mannose 4, 6-dehydratase with cell type-specific expression patterns. Plant Physiol. 132, 883–892.PubMedGoogle Scholar
  17. Bout, S., and Vermerris, W. (2003) A candidate gene-approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol. Genet. Genomics 269, 205–214.PubMedGoogle Scholar
  18. Brady, S.M., Song, S., Dhugga, K.S., Rafalski, J.A., and Benfey, P.N. (2007) Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol. 143, 172–187.PubMedGoogle Scholar
  19. Brown, D.M., Zeef, A.H., Ellis, J., Goodacre, R., and Turner, S.R. (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17, 2281–2295.PubMedGoogle Scholar
  20. Brown, Jr. R.M. (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J. Polym. Sci. 42, 487–495.Google Scholar
  21. Brown, Jr., R.M., and Montezinos, D. (1976) Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 73, 143–147.PubMedGoogle Scholar
  22. Bunzel, M., and Ralph, J. (2006) NMR characterization of lignins isolated from fruit and vegetable insoluble dietary fiber. J. Agric. Food Chem. 54, 8352–8361.PubMedGoogle Scholar
  23. Bunzel, M., Ralph, J., Lu, F., Hatfield, R.D., and Steinhart, H. (2004) Lignins and ferulateconiferyl alcohol cross-coupling products in cereal grains. J. Agric. Food Chem. 52, 6496–6502.PubMedGoogle Scholar
  24. Burget, E.G., Verma, R., Mølhøj, M., and Reiter, W.-D. (2003) The biosynthesis of LArabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-Dxylose 4-epimerase encoded by the MUR4 gene of Arabidopsis. Plant Cell 15, 523–531.PubMedGoogle Scholar
  25. Burn, J.E., Hocart, C.H., Birch, R.J., Cork, A.C., and Williamson, R.E. (2002) Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol. 129, 797–807.PubMedGoogle Scholar
  26. Burton, R.A., Wilson, S.M., Hrmova, M., Harvey, A.J., Shirley, N.J., Medhurst, A., Stone, B.A., Newbigin, E.J., Bacic, A., and Fincher, G.B. (2006) Cellulose synthase–like CslF genes mediate the synthesis of cell wall (1,3;1,4)-ß-D-glucans. Science 311, 1940–1942.PubMedGoogle Scholar
  27. Campbell, J.A., Davies, G.J., Bulone, V., and Henrissat, B. (1997) Biochem. J. 326, 929–939.Google Scholar
  28. Caparrós-Ruiz, D., Fornalé, S., Civardi, L., Puigdoménech, P., and Rigau, J. (2006) Isolation and characterisation of a family of laccases in maize. Plant Sci. 171, 217–225.Google Scholar
  29. Carnachan, S.M., and Harris, P.J. (2000) Ferulic acid is bound to the primary cell walls of all gymnosperm families. Biochem. System. Ecol. 28, 865–879.Google Scholar
  30. Carpita, N. (1996) Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 445–476.PubMedGoogle Scholar
  31. Carpita, N.C., and Gibeaut, D.M. (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1–30.PubMedGoogle Scholar
  32. Carpita, N.C., and McCann M.C. (2000) The cell wall. In: B.B. Buchanan, W. Gruissem and R.L. Jones (Eds.), Biochemistry and Molecular Biology of Plants. J. Wiley and Sons, Somerset, NJ, pp. 52–108.Google Scholar
  33. Carpita, N., Tierney, M., and Campbell, M. (2001) Molecular biology of plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol. Biol. 47, 1–5.PubMedGoogle Scholar
  34. Carpita, N., and Vergara, C. (1998) A recipe for cellulose. Science 279, 672–673.PubMedGoogle Scholar
  35. Carpita, N.C., and Whittern, D. (1986) A highly substituted glucuronoarabinoxylan from developing maize coleoptiles. Carbohydr. Res. 146, 129–140.Google Scholar
  36. Cassab, G.I. (1998) Plant cell wall proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 281–309.PubMedGoogle Scholar
  37. Cavalier, D.M., and Keegstra, K. (2006) Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose. J. Biol. Chem. 281, 34197–34207.PubMedGoogle Scholar
  38. Ching, A., Dhugga, K.S., Appenzeller, L., Meeley, R., Bourett, T.M., Howard, R.J., and Rafalski, A. (2006) Brittle stalk 2 encodes a putative glycosylphosphatidylinositolanchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell walls. Planta 224, 1174–1184.PubMedGoogle Scholar
  39. Chu, Z., Chen, H., Zhang, Y., Zhang, Z., Zheng, N., Yin, B., Yan, H., Zhu, L., Zhao, X., Yuan, M., Zhang, X., and Xie, Q. (2007) Knockout of the AtCESA2 gene affects microtubule orientation and causes abnormal cell expansion in Arabidopsis. Plant Physiol. 143, 213–224.PubMedGoogle Scholar
  40. Cocuron, J.C., Lerouxel, O., Drakakai, G., Alonso, A.P., Liepman, A.H., Keegstra, K., Raikhel, N., and Wilkerson, C.G. (2007) A gene from the cellulose synthase-like C family encodes a ß-1, 4 glucan synthase. Proc. Natl. Acad. Sci. U.S.A. 104, 8550–8555.PubMedGoogle Scholar
  41. Coleman, H.D., Ellis, D.D., Gilbert, M., and Mansfield, S.D. (2006) Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotechnol. J. 4, 87–101.PubMedGoogle Scholar
  42. Cosgrove, D.J. (2001) Enhancement of accessibility of cellulose by expansins, US Patent 6326470.Google Scholar
  43. Cosgrove, D.J., Bedinger, P., and Durachko, D.M. (1997) Group 1 allergens of grass pollen as cell wall-loosening agents. Proc. Natl. Acad. Sci. U.S.A. 94, 6559–6564.PubMedGoogle Scholar
  44. Cosgrove, D.J., and Li, Z.C. (1993) Role of expansin in cell enlargement of oat coleoptiles. Plant Physiol. 103, 1321–1328.PubMedGoogle Scholar
  45. Cosgrove, D.J., Li, L.C., Cho, H.T., Hoffmann-Benning, S., Moore, R.C., and Blecker, D. (2002) The growing world of expansins. Plant Cell Physiol. 43, 1436–14444.PubMedGoogle Scholar
  46. Coutinho, P.M., Deleury, E., Davies, G.J., and Henrissat, B. (2003a) An evolving hierarchical family classification of glycosyltransferases. J. Mol. Biol. 328, 307–317.Google Scholar
  47. Coutinho, P.M. and Henrissat, B. (1999) Carbohydrate-active enzymes: an integrated database approach. In: H.J. Gilbert, G. Davies, B. Henrissat and B. Svensson (Eds.), Recent Advances in Carbohydrate Bioengineering. The Royal Society of Chemistry. Cambridge, UK, pp. 3–12.Google Scholar
  48. Coutinho, P.M., Stam, M., Blanc, E., and Henrissat, B. (2003b) Why are there so many carbohydrate- active enzyme-related genes in plants? Trends Plant Sci. 8, 563–565.Google Scholar
  49. Cutler, S., and Somerville, C. (1997) Cellulose synthesis: cloning in silico. Curr. Biol. 7, R108–R111.PubMedGoogle Scholar
  50. Dahlgren, G. (1989) An updated angiosperm classification. Bot. J Linn. Soc. 100, 197–204.Google Scholar
  51. Darley, C.P., Forrester, A.M., McQueen-Mason, S.J. (2001) The molecular basis of plant cell wall extension. Plant Mol. Biol. 47, 179–195.PubMedGoogle Scholar
  52. Davin, L.B., and Lewis, N.G. (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol. 123, 453–461.PubMedGoogle Scholar
  53. Davin, L.B., and Lewis, N.G. (2005a) Lignin primary structures and dirigent sites. Curr. Opin. Biotechnol. 16, 1–9.Google Scholar
  54. Davin, L.B., and Lewis, N.G. (2005b) Dirigent phenoxy radical coupling: advances and challenges. Curr. Opin. Biotechnol. 16, 1–9.Google Scholar
  55. de Obeso, M., Caparro-Ruiz, D., Vignols, F., Puigdomenech, P., and J. Rigau (2003) Characterisation of maize peroxidases having differential patterns of mRNA accumulation in relation to lignifying tissues. Gene 309, 23–33.PubMedGoogle Scholar
  56. de Silva, J., Jarman, C.D., Arrowsmith, D.A., Stronach, M.S., Chengappa, S., Sidebottom, C., and Reid, J.S.G. (1993) Molecular characterization of xyloglucan-specific endo-(1-4)-ß-Dglucanase (xyloglucan endo-transglycosylase) from nasturtium seeds. Plant J. 3, 701–711.PubMedGoogle Scholar
  57. Delmer, D.P. (1999) Cellulose biosynthesis: Exciting times for a difficult field of study. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 245–276.PubMedGoogle Scholar
  58. Denton, F.R. (1998) Beetle juice. Science 281, 1285.PubMedGoogle Scholar
  59. Desprez, T., Juraniec, M., Crowell, E., Jouy, H., Pochylova, Z., Parcy, F., Höfte, H., Gonneau, M., Vernhettes, S. (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 104, 15572–15577.PubMedGoogle Scholar
  60. Desprez, T., Vernhettes, S., Fagard, M., Refregier, G., Desnos, T., Aletti, E., Py, N., Pelletier, S., and Höfte, H. (2002) Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol. 128, 482–490.PubMedGoogle Scholar
  61. Dhugga, K.S. (2005) Plant Golgi cell wall synthesis: from genes to enzyme activities. Proc. Natl. Acad. Sci. U.S.A. 102, 1815–1816.PubMedGoogle Scholar
  62. Dhugga, K.S., Barreiro, R., Whitten, B., Stecca, K., Hazebroek, J., Randhawa, G.S., Dolan, M., Kinney, A.J., Tomes, D., Nichols, S., and Anderson, P. (2004) Guar seed ß-mannan synthase is a member of the cellulose synthase super gene family. Science 303, 363–366.PubMedGoogle Scholar
  63. Diet, A., Link, B., Seifert, G.J., Schellenberg, B., Wagner, U., Pauly, M., Reiter, W.-D., and Ringli, C. (2006) The Arabidopsis root hair cell wall formation mutant lrx1 is suppressed by mutations in the RHM1 gene encoding a UDP-L-rhammnose synthase. Plant Cell 18, 1630–1641.PubMedGoogle Scholar
  64. Ding, S.-Y. and Himmel, M.E. (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food Chem. 54, 597–606.PubMedGoogle Scholar
  65. Doblin, S., Kurek, I., Jacob-Wilk, D. and D. P. Delmer (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol. 43, 1407–1420.PubMedGoogle Scholar
  66. Ebringerová, A., and Heinze, T. (2000) Xylan and xylan derivatives – biopolymers with valuable properties. 1. Naturally occurring xylans structures, isolation procedures and properties. Macromolec. Rapid Comm. 21, 542–556.Google Scholar
  67. Fagard, M., Desnos, T., Desprez, T., Goubet, F., Refregier, G., Mouille, G., McCann, M., Rayon, C., Vernhettes, S., and Hofte, H. (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12, 2409–2424.PubMedGoogle Scholar
  68. Faik, A., Price, N.J., Raikhel, N.V., and Keegstra, K. (2002) An Arabidopsis gene encoding an α-xylosyltransferase involved in xyloglucan biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 99, 7797–7802.PubMedGoogle Scholar
  69. Fanutti, C., Gidley, M.J., and Reid, J.S.G.(1993) Action of a pure xyloglucanendotransglycosylase (formerly called xyloglucan-specificendo-(1,4)-β-D-glucanase) from the cotyledons of germinated nasturtium seeds. Plant J. 3, 691– 700.PubMedGoogle Scholar
  70. Farkas, V., Sulova, Z., Stratilova, E., Hanna, R., and Maclachlan, G. (1992) Cleavage of xyloglucan by nasturtium seeed xyloglucanase and transglycosylation to xyloglucan subunit oligosaccharides. Arch. Biochem. Biophys. 298, 365–370.PubMedGoogle Scholar
  71. Favery, B., Ryan, E., Foreman, J., Linstead, P., Boudonck, K., Steer, M., Shaw, P., and Dolan, L. (2001) KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev. 15, 79–89.PubMedGoogle Scholar
  72. Fernie, A.R., Willmitzer, L., and Trethewey, R.N. (2002) Sucrose to starch: a transition in molecular. Plant Physiol. Trends Plant Sci. 7, 35–41.PubMedGoogle Scholar
  73. Franke, R., Hemm, M.R., Denault, J.W., Ruegger, M.O., Humphreys, J.M., and Chapple, C. (2002a) Changes in the secondary metabolism and deposition of an unusual lignin in the REF8 mutant of Arabidopsis. Plant J. 30, 47–59.Google Scholar
  74. Franke, R., Humphreys, J.M., Hemm, M.R., Denault, J.W., Ruegger, M.O., Cusumano, J.C., and Chapple, C. (2002b) The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J. 30, 33–45.Google Scholar
  75. Freshour, G., Bonin, C.P., Reiter, W.D., Albersheim, P., Darvill, A.G., and Hahn, M.G. (2003) Distribution of fucose-containing xyloglucans in cell walls of the mur1 mutant of Arabidopsis. Plant Physiol. 131, 1602–1612.PubMedGoogle Scholar
  76. Freudenberg, K. (1965) Lignin: its constitution and formation from p-hydroxycinnamyl alcohols. Science 148, 595–600.PubMedGoogle Scholar
  77. Fry, S.C. (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol. 161, 641–675.Google Scholar
  78. Gallagher, S.R., (1992) GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press, San Diego.Google Scholar
  79. Gang, D.R., Costa, M.A., Fujita, M., Dinkova-Kostova, A.T., Wang, H.-B., Burlat, V., Martin, W., Sarkanen, S., Davin, L.B., and Lewis, N.G. (1999) Regiochemical control of mono lignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem. Biol. 6, 143–151.PubMedGoogle Scholar
  80. Girke, T., Lauricha, J., Tran, H., Keegstra, K., and Raikhel, N. (2004) The cell wall navigator database. A systems-based approach to organism-unrestricted mining of protein families involved in cell wall metabolism. Plant Physiol. 136, 3003–3008.PubMedGoogle Scholar
  81. Goffner, D., Campbell, M.M., Campargue, C., Clastre, M., Borderies, G., Boudet, A., and Boudet, A.M. (1994) Purification and characterization of cinnamoyI-CoA: NADP oxidoreductase in Eucalyptus gunnii. Plant Physiol. 106, 625–632.PubMedGoogle Scholar
  82. Goujon, T., Sibout, R., Eudes, A., MacKay, J., and Jouanin, L. (2003a) Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiol. Biochem. 41, 677–687.Google Scholar
  83. Goujon, T., Sibout, R., Pollet, B., Maba, B., Nussaume, L., Bechtold, N., Lu, F., Ralph, J., Mila, I., Barrière, Y., Lapierre, C., and Jouanin, L. (2003b) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol. Biol. 51, 973–989.Google Scholar
  84. Grabber, J.H., Ralph, J., Hatfield, R.D., Quideau, S., Kuster, T., and Pell, A.N. (1996) Dehydrogenation polymer – cell wall complexes as a model for lignified grass walls. J. Agric. Food Chem. 44, 1453–1459.Google Scholar
  85. Guan, S.-Y., Mlynár, J., and Sarkanen, S. (1997) Dehydrogenative polymerization of coniferyl alcohol on macromolecular lignin templates. Phytochem. Anal. 45, 911–918.Google Scholar
  86. Guillaumie, S., San-Clemente, H., Deswarte, C., Martinez, Y., Lapierre, C., Murigneux, A., Barrière, Y., Pichon, M., and Goffner, D. (2007) MAIZEWALL. Database and developmental gene expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiol. 143, 339–363.PubMedGoogle Scholar
  87. Guillet-Claude, C., Birolleau-Touchard, C., Manicacci, D., Rogowsky, P.M., Rigau, J., Murigneux, A., Martinant, J.P., and Barrière, Y. (2004) Nucleotide diversity of the ZmPox3 maize peroxidase gene: relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genet. 5, 1–11.Google Scholar
  88. Ha, M.A., Apperley, D.C., Evans, B.W., Huxham, M., Jardine, W.G., Vietor, R.J., Reis, D., Vian, B., and Jarvis, M.C. (1998) Fine structure in cellulose microfibrils: NMR evidence from onion and quince. Plant J. 16, 183–190.Google Scholar
  89. Halpin, C., Knight, M.E., Foxon, G.A., Campbell, M.M., Boudet, A.M., Boon, J.J., Chabbert, B., Tollier, M.-T., Schuch, W. (1994) Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant J. 6, 339–350.Google Scholar
  90. Harkin, J.M., and Obst, J.R. (1973) Lignification in trees: indication of exclusive peroxidase participation. Science 180, 296–298.PubMedGoogle Scholar
  91. Harper, A., and Bar-Peled, M. (2002) Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membranebound UDP-glucuronic acid decarboxylase isoforms. Plant Physiol. 130, 2188–2198.PubMedGoogle Scholar
  92. Hatfield, R. D., Ralph, J., and Grabber, J. H. (1998) Cell wall cross-linking by ferulates and diferulates in grasses. J. Sci. Food Agric. 79, 403–407.Google Scholar
  93. Hatfield, R., and Vermerris, W. (2001) Lignin formation in plants: the dilemma of linkage specificity. Plant Physiol. 126, 1351–1357.PubMedGoogle Scholar
  94. Hazen, S.P., Scott-Craig, J.S., and Walton, J.D. (2002) Cellulose synthase-like genes of rice. Plant Physiol. 128, 336–340.PubMedGoogle Scholar
  95. Herrmann, K.M., and Weaver, L.M. (1999) The shikimate pathway. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 473–503.PubMedGoogle Scholar
  96. Higuchi, T. (1985) Biosynthesis of lignin. In: T. Higuchi (Ed.), Biosynthesis and Biodegradation of Wood Components. Orlando, Academic Press, pp. 141–160.Google Scholar
  97. Himmel, M.E., Ding, S.Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., and Foust, T.D. (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807.PubMedGoogle Scholar
  98. Hoffmann, L., Maury, S., Martz, F., Geoffroy, P., and Legrand, M. (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J. Biol. Chem. 278, 95–103.PubMedGoogle Scholar
  99. Holland, N., Holland, D., Helentjaris, T., Dhugga, K.S., Xoconostle-Cazares, B., Delmer, D.P. (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. J. Plant Physiol. 123, 1313–1323.Google Scholar
  100. Humphreys, J.M., and Chapple, C. (2002) Rewriting the lignin road map. Curr. Opin. Plant Biol. 5, 224–229.PubMedGoogle Scholar
  101. Humphreys, J.M., Hemm, M.R., and Chapple, C. (1999) New routes for lignin biosythesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc. Natl. Acad. Sci. U.S.A. 96, 10045–10050.PubMedGoogle Scholar
  102. Iiyama, K. and Wallis, A. F. A. (1990) Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. Journal of the Science of Food and Agriculture. J. Sci. Food Agric. 51, 145-161Google Scholar
  103. Iiyama, K.; Lam, T. B., and Stone, B. A. (1994) Covalent cross-links in the cell wall. Plant Physiol. 104, 315–320.PubMedGoogle Scholar
  104. Izydorczyk, M.S., and Biliaderis, C.G. (1995) Cereal arabinoxylans: advances in structure and physiochemical properties. Carbohydr. Polym. 28, 33–48.Google Scholar
  105. Jacobs, A., and Dahlman, O. (2001) Characterization of the molar masses of hemicelluloses from wood and pulps employing size exclusion chromatography and matrix-sssisted laser desorption ionization time-of-flight mass spectrometry. Biomacromolecules. 2, 894–905.PubMedGoogle Scholar
  106. Joseleau, J.-P. and Ruel, K. (1997) Study of lignification by noninvasive techniques in growing maize internodes. Plant Physiol. 114, 1123–1133.PubMedGoogle Scholar
  107. Karhunen, P., Rummakko, P., Sipilä, J., and Brunow, G. (1995) The formation of dibenzodioxocin structures by oxidative coupling. A model reaction for lignin biosynthesis. Tetrahedron Lett. 36, 4501–4504.Google Scholar
  108. Kärkönen, A., and Fry, S.C. (2006) Novel characteristics of UDP-glucose dehydrogenase activities in maize: non-involvement of alcohol dehydrogenases in cell wall polysaccharide biosynthesis. Planta 223, 858–870.PubMedGoogle Scholar
  109. Kärkönen, A., Murigneux, A., Martinant, J.P., Pepey, E., Tatout, C., Dudley, B.J., and Fry, S.C. (2005) UDP-glucose dehydrogenases of maize: a role in cell wall pentose biosynthesis. Biochem. 391, 409–415.Google Scholar
  110. Kim, C.M., Park, S.H., Il, J.B., Park, S.H., Piao, H.L., Eun, M.Y., Dolan, L., and Han, C.D. (2007) OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol. 143, 1220–1230.PubMedGoogle Scholar
  111. Kim, H., Ralph, J., Lu, F., Ralph, S.A., Boudet, A.M., MacKay, J.J., Sederoff, R.R., Ito, T., Kawai, S., Ohashi, H., and Higuchi, T. (2003) NMR analysis of lignins in CAD-deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins. Org. Biomol. Chem. 1, 268–281.PubMedGoogle Scholar
  112. Kobayashi, M., Nakagawa, H., Suda, I., Miyagawa, I. and Matoh, T. (2002) Purification and cDNA cloning of UDP- -xylose sythase) from pea seedlings. Plant cell Physiol. 43, 1259–1265.PubMedGoogle Scholar
  113. Koyama, M., Helbert, W., Imai, T., Sugiyama, J., Henrissat, B. (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc. Natl. Acad. Sci. U.S.A. 94, 9091–9095.PubMedGoogle Scholar
  114. Kühnl, T., Koch, U., Heller, W., and Wellmann, E. (1989) Elicitor induced S-adenosyl-Lmethionine: caffeoyl-CoA 3-O-methyltransferase from carrot cell suspension. Plant Sci. 60, 21–25.Google Scholar
  115. Kurek, I., Kawagoe, Y., Jacob-Wilk, D., Doblin, M., Delmer, D. (2002) Dimerization of cotton fiber cellulose synthase catalytic sub-units occurs via oxidation of the zinc-binding domains. Proc. Natl. Acad. Sci. U.S.A. 99, 11109–11114.PubMedGoogle Scholar
  116. Lacombe, E., Hawkins, S., Van Doorsselaere, J., Piquemal, J., Goffner, D., Poeydomenge, O., Boudet, A.-M., and Grima-Pettenati, J. (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J. 11, 429–441.PubMedGoogle Scholar
  117. Landucci, L.L., Deka, G.C., and Roy, D.N. (1992) A 13C NMR study of milled wood lignins from hybrid Salix clones. Holzforsch. 46, 505–511.Google Scholar
  118. Langan, P., Sukumar, N., Nishiyama, Y., and Chanzy, H. (2005) Synchrotron X-ray structures of cellulose Iß and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12, 551–562.Google Scholar
  119. Lee, S., Sharma, Y., Lee, T.K., Chang, M., and Davis, K.R. (2001) Lignification induced by Pseudomonas harboring avirulent genes on Arabidopis. Mol. Cells 12, 25–31.PubMedGoogle Scholar
  120. Leplé, J.-C., Dauwe, R., Morreel, K., Storme, V., Lapierre, C., Pollet, B., Naumann, A., Kang, K.-Y., Kim, H., Ruel, K., Lefebvre, A., Joseleau, J.-P., Grima-Pettenati, J., De Rycke, R., Andersson-Gunneras, S., Erban, A., Fehrie, I., Petit-Conil, M., Kopka, J., Polle, A., Messens, E., Sundberg, B., Mansfield, S.D., Ralph, J., Pilate, G., and Boerjan, W. (2007). Down regulation of cinnamoyl-coenzyme A reductase in poplar: Multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19, 3669–3691.PubMedGoogle Scholar
  121. Li, L., Cheng, X.F., Leshkevich, J., Umezawa, T., Harding, S.A., and Chiang, V.L. (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13, 1567–1585.PubMedGoogle Scholar
  122. Li, Y., Kajita, S., Kawai, S., Katayama, Y., and Morohoshi, N. (2003a) Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. J. Plant Res. 116, 175–182.Google Scholar
  123. Li, Y., Qian, Q., Zhou, Y., Yan, M., Sun, L., Zhang, M., Fu, Z., Wang, Y., Han, B., Pang, X., Chen, M., and Li, J. (2003b) BRITTLE CULM1, which encodes a Cobra-like protein, affects the mechanical properties of rice plants. Plant Cell 15, 2020–2031.Google Scholar
  124. Liepman, A.H., Nairn, C.J., Willats, W.G.T., Sorensen, I., Roberts, A.W., and Keegstra, K. (2007) Functional genomic analysis supports conservation of function among cellulose synthase-likeA gene family members and suggests diverse roles of mannans in plants. Plant Physiol. 143, 1881–1893.PubMedGoogle Scholar
  125. Liepman, A.H., Wilkerson, C.G., and Keegstra, K. (2005) Expression of cellulose synthaselike (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci U.S.A. 102, 2221–2226.PubMedGoogle Scholar
  126. Lim, E.K., Li, Y., Parr, A., Jackson, R., Ashford, D.A., and Bowles, D.J. (2001) Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J. Biol. Chem. 276, 4344–4349.PubMedGoogle Scholar
  127. Lu, F., and Ralph, J. (1999) Detection and determination of p-coumaroylated units in lignin. J. Agric. Food Chem. 47, 1988–1992.PubMedGoogle Scholar
  128. Lynch, D., Lidgett, A., McInnes, R., Huxley, H., Jones, E., Mahoney, N., and Spangenberg, G. (2002) Isolation and characterisation of three cinnamyl alcohol dehydrogenase homologue cDNAs from perennial ryegrass (Lolium perenne L.), J. Plant Physiol. 159.Google Scholar
  129. MacKay, J.J., Liu, W., Whetten, R., Sederoff, R.R., and O’Malley, D.M. (1995) Genetic analysis of cinnamyl alcohol dehydrogenase in loblolly pine: single gene inheritance, molecular characterization and evolution. Mol. Gen. Genet. 247, 537–545.PubMedGoogle Scholar
  130. MacKay, J.J., O’Malley, D.M., Presnell, T., Booker, F., Campbell, M.M., Whetten, R.W., and Sederoff, R.R. (1997) Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proc. Natl. Acad. Sci. U.S.A. 94, 8255–8260.PubMedGoogle Scholar
  131. Madson, M., Dunand, C., Li, X., Verma, R., Vanzin, G.F., Caplan, J., Shoue, D.A., Carpita, N.C., and Reiter, W.D. (2003) The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15, 1662–1670.PubMedGoogle Scholar
  132. Maeda, Y.; Awano, T.; Takabe, K., and Fujita, M. (2000) Immunolocalization of glucomannans in the cell wall of differentiating tracheids in Chamaecyparis obtusa. Protoplasma B213, 148–156.Google Scholar
  133. Marita, J., Vermerris, W., Ralph, J., and Hatfield, R.D. (2003) Variations in the cell wall composition of maize brown midrib mutants. J. Agric. Food Chem. 5, 1313–1321.Google Scholar
  134. McDougall, G.J., Stewart, D., and Morrison, I.M. (1996) Tyrosine residues enhance crosslinking of synthetic proteins into lignin dehydrogenation products. Phytochem. Anal. 41, 43–47.Google Scholar
  135. Mølhøj, M., Verma, R., and Reiter, W.D. (2003) The biosynthesis of the branched-chain sugar D-apiose in plants: functional cloning and characterization of a UDP-D -apiose/UDP-Dxylose synthase from Arabidopsis. Plant J. 35, 693–703.PubMedGoogle Scholar
  136. Mølhøj, M., Verma, R., and Reiter, W.-D. (2004) The biosynthesis of D-galacturonate in plants. Functional cloning and characterization of a membrane-anchored UDP-Dglucuronate 4-epimerase from Arabidopsis. Plant Physiol. 135, 1221–1230.PubMedGoogle Scholar
  137. Morreel, K., Ralph, J., Kim, H., Lu, F., Goeminne, G., Ralph, S., Messens, E., and Boerjan, W. (2004a) Profiling of oligolignols reveals monolignol coupling conditions in lignifying popular xylem. Plant Physiol. 136, 3537–3549.Google Scholar
  138. Morreel, K., Ralph, J., Lu, F., Goeminne, G., Busson, R., Herdewijn, P., Goeman, J.L., Van der Eycken, J., Boerjan, W., and Messens, E. (2004b) Phenolic profiling of caffeic acid O-methyltransferase-deficient poplar reveals novel benzodioxane oligolignols. Plant Physiol. 136, 4023–4036.Google Scholar
  139. Mueller, S.C., and Brown, Jr., R.M. (1980) Evidence for an intramembrane component associated with a cellulose microfibril synthesizing complex in higher plants. J. Cell Biol. 84, 315–326.PubMedGoogle Scholar
  140. Myton, K.E., and Fry, S.C. (1994) Intraprotoplasmic feruoylation of arabinoxylans in Festuca arundinacea cell cultures. Planta 193, 326–330.Google Scholar
  141. Nair, R.B., Bastress, K.L., Ruegger, M.O., Denault, J.W., and Chapple, C. (2004) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16, 544–554.PubMedGoogle Scholar
  142. Nishitani, K., and Tominaga, R. (1992) Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J. Biol. Chem. 267, 21058–21064.PubMedGoogle Scholar
  143. Nishiyama, Y., Langan, P., and Chanzy, H. (2002) Crystal structure and hydrogen-bonding system in cellulose Iß from synchrotron x-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082.PubMedGoogle Scholar
  144. Nishiyama, Y., Sugiyama, J., Chanzy, H., and Langan, P. (2002) Crystal structure and hydrogen bonding system in cellulose Iβ, from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082.PubMedGoogle Scholar
  145. Nishiyama, Y., Langan, P., and Chanzy, H. (2003) Crystal structure and hydrogen-bonding system in cellulose Iα from synchrotron X-rayand neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306.PubMedGoogle Scholar
  146. Nelson, T., Tausta, S.L., Gandotra, N., and Liu, T. (2006) Laser microdissection of plant tissue: What you se is what you get. Ann. Rev. Plant Biol. 57, 181–201.Google Scholar
  147. Nobles, D.R., and Brown, Jr., M.R. (2004) The pivotal role of cyanobacteria in the evolution of cellulose synthases and cellulose synthase-like proteins. Cellulose 11, 437–448.Google Scholar
  148. Oka, T., Nemoto, T., and Jigami, Y. (2007) Functional analysis of Aradibopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion. J. Biol. Chem. 282, 5389–5403.PubMedGoogle Scholar
  149. Okazawa, K., Sato, Y., Nakagawa, T., Asada, K., Kato, I., Tomita, E., and Nishitani, K. (1993) Molecular cloning and cDNA sequencing of endoxyloglucan transferase, a novel class of glycosltransferase that mediates molecular grafting between matrix polysaccharides in plant cell walls. J. Biol. Chem. 268, 25364–25368.PubMedGoogle Scholar
  150. Osakabe, K., Tsao, C.C., Li, L., Popko, J.L., Umezawa, T., Carraway, D.T., Smeltzer, R.H., Joshi, C.P., and Chiang, V.L. (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc. Natl. Acad. Sci. U.S.A. 96, 8955–8960.PubMedGoogle Scholar
  151. Pattathil, S., Harper, A.D., and Bar-Peled, M. (2005) Biosynthesis of UDP-xylose: characterization of membrane-bound ATUXS2. Planta 221, 538–548.PubMedGoogle Scholar
  152. Pear, J.R., Kawagoe, Y., Schreckengost, W.E., Delmer, D.P., and Stalker, D.M. (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit oif cellulose synthase. Proc. Natl. Acad. Sci. U.S.A. 93, 12637–12642.PubMedGoogle Scholar
  153. Peña, M.J., Zhong, R., Zhou, G.-K., Richardson, E.A., O’Neill, M.A., Darvill, A.G., York, W.S., and Ye, Z.-H. (2007) Arabidopsis irregular xylem8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19, 549–563.PubMedGoogle Scholar
  154. Perrin, R.M. (2001) Cellulose: how many cellulose synthases to make a plant? Curr. Biol. 11, R213–R216.PubMedGoogle Scholar
  155. Perrin, R.M., DeRocher, A.E., Bar-Peled, M., Zeng, W., Norambuena, L., Orellana, A., Raikhel, N.V., and Keegstra, K. (1999) Xyloglucan fucosytransferase, an enzyme involved in plant cell wall biosynthesis. Science 284, 1976–1979.PubMedGoogle Scholar
  156. Persson, S., Paredez, A., Carroll, A., Palsdottir, H., Doblin, M., Poindexter, P., Khitrov, N., Auer, M., and Somerville, C.R. (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 104, 15599–15571.Google Scholar
  157. Philippe, S., Saulnier, L., and Guillon, F. (2006) Arabinoxylan and (1 → 3), (1 → 4)-ß-Dglucan deposition in cell walls during wheat endosperm development. Planta 224, 449–461.PubMedGoogle Scholar
  158. Pillonel, C., Mulder, M.M., Boon, J.J., Forster, B., and Binder, A. (1991) Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Moench. Planta 185, 538–544.Google Scholar
  159. Raes, J., Rohde, A., Christensen, J.H., Van de Peer, Y., and Boerjan, W. (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Pysiol. 133, 1051–1071.Google Scholar
  160. Ralph, J. (1996) An unusual lignin from Kenaf. J. Nat. Prod. 59, 341–342.Google Scholar
  161. Ralph, J., Bunzel, M., Marita, J.M., Hatfield, R.D., Lu, F., Kim, H., Schatz, P.F., Grabber, J.H., and Steinhart, H. (2004a) Peroxidase-dependent cross-linking reactions of phydroxycinnamates in plant cell walls. Phytochemistry Rev. 3, 79–96.Google Scholar
  162. Ralph, J., Hatfield, R.D., Piquemal, J., Yahiaoui, N., Pean, M., Lapierre, C., and Boudet, A.M. (1998) NMR characterization of altered lignins extracted from tobacco plants downregulated for lignification enzymes cinnamyl alcohol dehydrogenase and cinnamyl-CoA reductase. Proc. Natl. Acad. Sci. U.S.A. 95, 12803–12808.PubMedGoogle Scholar
  163. Ralph, J., Kim, H., Lu, F., Grabber, J.H., Leplé, J.-C., Berrio-Sierra, J., Mir Derikvand, M., Jouanin, L., Boerjan, W., and Lapierre, C. (2008) Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency). Plant J. 53, 368–379.PubMedGoogle Scholar
  164. Ralph, J., Lapierre, C., Marita, J.M., Kim, H., Lu, F., Hatfield, R.D., Ralph, S., Chapple, C., Franke, R., Hemm, M.R., Van Doorsselaere, J., Sederoff, R.R., O’Malley, D.M., Scott, J.T., Mackay, J.J., Yahiaoui, N., Boudet, A.M., Pean, M., Pilate, G., Jouanin, L., and Boerjan, W. (2001) Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. Phytochem. Anal. 57, 993–1003.Google Scholar
  165. Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H., and Boerjan, W. (2004b) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochemistry 3, 29–60.Google Scholar
  166. Ralph, J., Peng, J., Lu, F., Hatfield, R.D., and Helm, R.F. (1999) Are lignins optically active? 47, 2991–2996.Google Scholar
  167. Ralph, J., Quideau, S., Grabber, J.H., and Hatfield, R.D. (1994) Identification and synthesis of new ferulic acid dehydromers present in grass cell walls. J. Chem. Soc.. Perkin Trans. 1,23, 3485–3498.Google Scholar
  168. Ranocha, P., Chabannes, M., Chamayou, S., Danoun, S., Jauneau, A., Boudet, A.M., and Goffner, D. (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol. 129, 145–155.PubMedGoogle Scholar
  169. Reiter, W.-D., Chapple, C., and Sommerville, C.R. (1997) Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J. 12, 335–345.PubMedGoogle Scholar
  170. Reiter, W.-D., Chapple, C.C.S., and Somerville, C.R. (1993) Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science 261, 1032–1035.PubMedGoogle Scholar
  171. Reiter, W.-D. and Vanzin, G.F. (2001) Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol. Biol. 47, 95–113.PubMedGoogle Scholar
  172. Richmond, T. (2000) Higher plant cellulose synthases. Genome Biol. 1,reviews 3001.1– 3001.6.Google Scholar
  173. Richmond, T.A., and Somerville, C.R. (2000) The cellulose synthase superfamily. J. Plant Physiol. 124, 495–498.Google Scholar
  174. Robertson, D., Smith, C. and Bolwell, G. P. (1996) Inducible UDP-glucose dehydrogenase from French bean (Phaseolus vulgaris L.) locates to vascular tissue and has alcohol dehydrogenase activity. Biochem. J. 313, 311–317.PubMedGoogle Scholar
  175. Robinson, S., Warburton, K., Seymour, M., Clench, M., Thomas-Oates, J. (2007) Localization of water-soluble carbohydrates in wheat stems using imaging matrix-assisted laser desorption ionization mass spectrometry. New Phytol. 173, 438–444.PubMedGoogle Scholar
  176. Roesler, J., Krekel, F., Amrhein, N., and Schmid, J. (1997) Maize phenylalanine ammonialyase has tyrosine ammonia-lyase activity. Plant Physiol. 113, 175–179.Google Scholar
  177. Rose, J.K., Braam, J., Fry, S.C., and Nishitani, K. (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant Cell Physiol. 43, 1421–1435.PubMedGoogle Scholar
  178. Roudier, F., Fernandez, A.G., Fujita, M., Himmelspach, R., Borner, G.H.H., Schindelman, G., Song, S., Baskin, T.I., Dupree, P., and Wasteneys, G.O. (2005) COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositolanchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17, 1749–1763.PubMedGoogle Scholar
  179. Roudier, F., Schindelman, G., DeSalle, R., and Benfey, P.N. (2002) The COBRA family of putative GPI-anchored proteins in Arabidopsis. A new fellowship in expansion. Plant Physiol. 130, 538–548.Google Scholar
  180. Ruan, Y.-L., Llewellyn, D.J., and Furbank, R.T. (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15, 952–964.PubMedGoogle Scholar
  181. Salnikov, V.V., Grimson, M.J., Delmer, D.P., and Haigler, C.H. (2001) Sucrose synthase localizes to cellulose synthesis sites in tracheary elements. Phytochem. 57, 823–833.Google Scholar
  182. Sarria, R., Wagner, T.A., O’Neill, M.A., Faik, A., Wilkerson, C.G., Keegstra, K., and Raikhel, N.V. (2001) Characterization of a family of Arabidopsis genes related to xyloglucan fucosyltransferase1. Plant Physiol. 127, 1595–1606.PubMedGoogle Scholar
  183. Saxena, I.M., and Brown, Jr., R.M. (1995) Identification of a second cellulose synthase gene (acsAII) in Acetobacter xylinum. J. Bacteriol. 177, 1419.PubMedGoogle Scholar
  184. Saxena, I.M., Brown, Jr. M.R., Fevre, M., Geremia, R.O., and Henrissat, B. (1995) Multidomain architecture of β-glycosyl transferases: Implications for mechanism of action. J. Bacteriol. 177, 1419–1424.PubMedGoogle Scholar
  185. Saxena, I.M., Lin, F.C. and Brown, Jr., R.M. (1990) Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant. Mol. Biol. 15, 673–683.Google Scholar
  186. Saxena, I.M., and Brown, Jr., R. M. (2005) Cellulose biosynthesis: Current views and evolving concepts. Ann. Bot. 96, 9–21.PubMedGoogle Scholar
  187. Scheible, W.-R., Eshed, R., Richmond, T., Delmer, D., and Somerville, C. (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis ixr1 mutants. Proc. Natl. Acad. Sci. U.S.A. 98, 10079–10084.PubMedGoogle Scholar
  188. Scheller, H.V., Jensen, J.K., Sorensen, S.O., Harholt, J., and Geshi, N. (2007) Biosynthesis of pectin. Physiol. Plant. 129, 283–295.Google Scholar
  189. Schiefelbein, J.W., and Somerville, C.R. (1990) Genetic control of root hair development in Arabidopis thaliana. Plant Cell 2, 699–710.Google Scholar
  190. Schoch, G., Goepfert, S., Morant, M., Hehn, A., Meyer, D., Ullmann, P., and Werck- Reichhart, D. (2001) CYP98A3 from Arabidopsis thaliana is a 3’-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J. Biol. Chem. 276, 36566–36574.PubMedGoogle Scholar
  191. Schubert, R., Sperisen, C., Müller-Starck, G., La Scala, S., Ernst, D., Sandermann, Jr., H., and Häger, K.-P. (1998) The cinnamyl alcohol dehydrogenase gene structure in Picea abies (L.) Karst.: genomic sequences, Southern hybridization, genetic analysis and phylogenetic relationships. Trees 12, 453–463.Google Scholar
  192. Seifert, G.J. (2004) Nucleotide sugar interconversions and cell wall biosyntthesis: how to bring the inside to the outside. Curr. Opin. Plant Biol. 7, 277–284.PubMedGoogle Scholar
  193. Seifert, G.J., Barber, C., Wells, B., Dolan, L., and Roberts, K. (2002) Galactose biosynthesis in Arabidopsis: genetic evidence for substrate channeling from UDP-D-galactose into cell wall polymers. Curr. Biol. 12, 1840–1845.PubMedGoogle Scholar
  194. Sewalt, V.J.H., Ni, W., Blount, J.W., Jung, H.G., Masoud, S.A., Howes, P.A., Lamb, C., and Dixon, R.A. (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4- hydroxylase. Plant Physiol. 115, 41–50.PubMedGoogle Scholar
  195. Sibout, R., Eudes, A., Pollet, B., Goujon, T., Mila, I., Granier, F., Seguin, A., Lapierre, C., and Joouanin, L. (2003) Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants. Plant Physiol. 132, 848–860.Google Scholar
  196. Sindhu, A., Langewisch, T., Olek, A., Multani, D.S., McCann, M.C., Vermerris, W., Carpita, N.C., and Johal, G. (2007) Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiol. 145, 1444–1459.PubMedGoogle Scholar
  197. Smith R.C., and Fry S.C. (1991) Endotransglycosylation of xyloglucans in plantcellsuspension cultures. Biochem. J. 279, 529–535.PubMedGoogle Scholar
  198. Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Parezdez, A., Persson, S., Raab, T., Vorwerk, S., and Youngs, H. (2004) Towards a systems approach to understanding plant cell walls. Science 306, 2206–2211.PubMedGoogle Scholar
  199. Somerville, C. R. (2006) Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22, 53–78.PubMedGoogle Scholar
  200. Sterjiades, R., Dean, J.F.D., Gamble, G., Himmelsbach, D.S., and Eriksson, K.-E.L. (1993) Extracellular laccase and peroxidases from sycamore maple (Acer pseudoplatanus) cell suspension cultures. Reactions with monolignols and lignin model compounds. Planta 190, 75–87.Google Scholar
  201. Šturcová, A., His, I., Apperley, D.C., Sugiyama, J., Jarvis, M.C. (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5, 1333–1339.PubMedGoogle Scholar
  202. Suzuki, K., Kitamura, S., Kato, Y., and Itoh, T., (2000) Highly substituted glucuronoarabinoxylans (hsGAXs) and low-branched xylans show a distinct localization pattern in the tissues of Zea may L. Plant Cell Physiol. 41, 948–959.PubMedGoogle Scholar
  203. Syrjanen, K., and Brunow, G. (2000) Regioselectivity in lignin biosynthesis: the influence of dimerization and crosscoupling. J. Chem. Soc. Perkin. Trans. I 1, 183–187.Google Scholar
  204. Tanaka, K., Murata, K., Yamazaki, M., Onosato, K., Miyao, A., and Hirochika, H. 2003. Three distinct rice cellulose synthase catalytic sub-unit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 133: 73–83.PubMedGoogle Scholar
  205. Taylor, N. G., Scheible, W. R., Cutler, S., Somerville, C. R., and S. R. Turner, (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11, 769–779.PubMedGoogle Scholar
  206. Taylor, N.G., Howells, R.M., Huttly, A.K., Vickers, K., and Turner, S.R. (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl. Acad. Sci. U.S.A. 100, 1450–1455.PubMedGoogle Scholar
  207. Taylor, N.G., Laurie, S., and Turner, S.R. (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12, 2529–2539.PubMedGoogle Scholar
  208. Terashima, N., Atalla, R.H., Ralph, S.A., Landucci, L.L., Lapierre, C., and Monties, B. (1996) New preparations of lignin polymer models under conditions that approximate cell well lignification: I. Synthesis of novel lignin polymer models and their structural characterization by 13C NMR. Holzforsch. 49, 521–527.Google Scholar
  209. Terashima, N., Fukushima, K., He, L.-F., and Takabe, K. (1993) Comprehensive model of the lignified plant cell wall. In: H.G. Jung, D.R. Buxton, R.D. Hatfield, and J. Ralph (Eds.), Forage cell wall structure and digestibility. Madison, WI, ASA-CSSA-SSSA, pp. 247–270.Google Scholar
  210. Timell, T.E. (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci. Technol. 1, 45–70.Google Scholar
  211. Tobias, C.M., and Chow, E.K. (2005) Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. Planta 220, 678–688.PubMedGoogle Scholar
  212. Toole, G.A., Wilson, R.H., Parker, M.L., Wellner, N.K., Wheeler, T.R., Shewry, P.R., and Mills, E.N.C. (2007) The effect of environment on endosperm cell-wall development in Triticum aestivum during grain filling: an infrared spectroscopic imaging study. Planta 225, 1393–1403.PubMedGoogle Scholar
  213. Usadel, B., Kuschinsky, A.M., Rosso, M.G., Eckermann, N., and Pauly, M. (2004) RHM2 Is involved in mucilage pectin synthesis and is required for the development of the seed coat in Arabidopsis. Plant Physiol. 134, 286–295.PubMedGoogle Scholar
  214. Vanzin, G.F., Madson, M., Carpita, N.C., Raikhel, N.V., Keegstra, K., and Reiter, W.D. (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc. Natl. Acad. Sci. U.S.A. 99, 3340–3345.PubMedGoogle Scholar
  215. Vermerris, W., and Nicholson, R. (2006) Phenolic Compound Biochemistry. Springer, Dordrecht, The Netherlands, 276 pp.Google Scholar
  216. Vermerris, W., Thompson, K.J., and McIntyre, L.M. (2002) The maize Brown midrib1 locus affects cell wall composition and plant development in a dose-dependent manner. Heredity 88, 450–457.PubMedGoogle Scholar
  217. Vietor, R.J., Newman, R.H., Ha, M.A., Apperley, D.C., and Jarvis, M.C. (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J. 30, 721–731.PubMedGoogle Scholar
  218. Vignols, F., Rigau, J., Torres, M.A., Capellades, M., and Puigdomenech, P. (1995) The brown-midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid Omethyl transferase. Plant Cell 7, 407–416.PubMedGoogle Scholar
  219. Wang, X., Cnops, G., Vanderhaeghen, R., De Block, S., Van Montagu, M., and Van Lijsebettens, M. (2001) AtCSLD3, a cellulose synthase-like gene important for root hair growth in Arabidopsis. Plant Physiol. 126, 575–586.PubMedGoogle Scholar
  220. Wegenmayer, H., Ebel, J., and Grisebach, H., (1976) Enzymic synthesis of lignin precursors: purification and properties of a cinnamoyl-CoA: NADPH reductase from cell suspension cultures of soybean (Glycine max L.), Eur. J. Biochem. 65, 529–536.Google Scholar
  221. Wolucka, B.A., Persiau, G., Van Doorsselaere, J., Davey, M.W., Demol, H., Vandekerckhove, J., Van Montagu, M., Zabeau, M., and Boerjan, W. (2001) Partial purification and identification of GDP-mannose 3, 5-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway. Proc. Natl. Acad. Sci. U.S.A. 98, 14843–14848.PubMedGoogle Scholar
  222. Wu, Y., Sharp, R.E., Durachko, D.M., and Cosgrove, D.J. (1996) Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiol. 111, 765–772.PubMedGoogle Scholar
  223. Ye, Z.-H., Kneusel, R.E., Matern, U., and Varner, J.E. (1994) An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell 6, 1427–1439.PubMedGoogle Scholar
  224. Yennawar, N.H., Li, L.C., Dudzinski, D.M., Tabuchi, A., and Cosgrove, D.J. (2006) Crystal structure and activities of EXPB1 (Zea m 1), a ß-expansin and group-1 pollen allergen from maize. Proc. Natl. Acad. Sci. U.S.A. 103, 14664–14671.PubMedGoogle Scholar
  225. Yong, W., Link, B., O’Malley, R., Tewari, J., Hunter, C.T., Lu, C.A., Li, X., Bleecker, A.B., Koch, K.E., McCann, M.C., McCarty, D.R., Staiger, C., Thomas, S.R., Vermerris, W., and Carpita, N.C. (2005) Genomics of plant cell wall biogenesis. Planta 221, 747–751.PubMedGoogle Scholar
  226. Zablackis, E., Huang, J., Muller, B., Darvill, A.G., and Albersheim, P. (1995) Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol. 107, 1129–1138.PubMedGoogle Scholar
  227. Zhong, R., Peña, M.J., Zhou, G.-K., Nairn, C.J., Wood-Jones, A., Richardson, E.A., Morrison, III W.H., Darvill, A.G., York, W.S., and Ye, Z.-H. (2005) Arabidopsis fragile fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17, 3390–3408.PubMedGoogle Scholar
  228. Zugenmaier, P. (2001) Conformation and packing of various crystalline cellulose fibers. Prog. Polym. Sci. 26, 1341–1417.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Wilfred Vermerris
    • 1
  1. 1.Genetics Institute and Agronomy departmentUniversity of FloridaGainesvilleUSA

Personalised recommendations