Southern Pines: A Resource for Bioenergy

  • Gary F. Peter


Somatic Embryogenesis Wood Density Zygotic Embryo Wood Property Seed Orchard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albaugh, T. J., Allen, H. L., Dougherty, P. M., Kress, L. W. and King, J. S. (1998) Leaf area and above- and belowground growth responses of loblolly pine to nutrient and water additions. For. Sci. 44, 317–328.Google Scholar
  2. Albaugh, T. J., Allen, H. L. and Fox, T. R. (2006) Individual tree crown and stand development in Pinus taedaunder different fertilization and irrigation regimes. For. Ecol. Manage. 234, 10–23.CrossRefGoogle Scholar
  3. Albaugh, T. J., Allen, H. L. and Fox, T. R. (2007) Historical patterns of forest fertilization in the southeastern United States from 1969 to 2004. Southern J. App. For. 31, 129–137.Google Scholar
  4. Al-Rabab’ah, M. A. and Williams, C. G. (2002) Population dynamics of Pinus taedaL. based on nuclear microsatellites. For. Ecol. Manage. 163, 263–271.CrossRefGoogle Scholar
  5. Amidon, T. E. (2006) The biorefinery in New York: Woody biomass into commercial ethanol. Pulp Pap-Canada 107, 47–50.Google Scholar
  6. Atwood, R. A., White, T. L. and Huber, D. A. (2002) Genetic parameters and gains for growth and wood properties in Florida source loblolly pine in the southeastern United States. Can. J. For. Res. 32, 1025–1038.CrossRefGoogle Scholar
  7. Brown, G. R., Bassoni, D. L., Gill, G. P., Fontana, J. R., Wheeler, N. C., Megraw, R. A., Davis, M. F., Sewell, M. M., Tuskan, G. A. and Neale, D. B. (2003) Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taedaL.). III. QTL verification and candidate gene mapping. Genetics 164, 1537–1546.PubMedGoogle Scholar
  8. Brown, G. R., Gill, G. P., Kuntz, R. J., Langley, C. H. and Neale, D. B. (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc. Natl. Acad. Sci. USA. 101, 15255–15260.PubMedCrossRefGoogle Scholar
  9. Chambost, V., Eamer, B. and Stuart, P. (2007a) Forest biorefinery: Getting on with the job. Pulp Pap-Canada 108, 19–22.Google Scholar
  10. Chambost, V., Eamer, R. and Stuart, P. R. (2007b) Systematic methodology for identifying promising forest biorefinery products. Pulp Pap-Canada 108, 30–35.Google Scholar
  11. Chen, J. W., Tauer, C. G., Bai, G. H., Huang, Y. H., Payton, M. E. and Holley, A. G. (2004) Bidirectional introgression between Pinus taedaand Pinus echinata: Evidence from morphological and molecular data. Can. J. For. Res. 34, 2508–2516.CrossRefGoogle Scholar
  12. Colbert, S. R., Jokela, E. J. and Neary, D. G. (1990) Effects of annual fertilization and sustained weed-control on dry-matter partitioning, leaf-area, and growth efficiency of juvenile loblolly and slash pine. For. Sci. 36, 995–1014.Google Scholar
  13. Connett-Porceduu, M. and Gulledge, J. (2005) Enhanced selection of genetically modified pine embryogenic tissue, MeadWestvaco Corporation, USA Patent 6,964,870.Google Scholar
  14. Cornelius, J. (1994) Heritabilities and additive genetic coefficients of variation in forest trees. Can. J. For. Res. 24, 372–379.CrossRefGoogle Scholar
  15. Dieters, M. J., White, T. L. and Hodge, G. R. (1995) Genetic parameter estimates for volume from full-sib tests of slash pine (Pinus-elliottii). Can. J. For. Res. 25, 1397–1408.Google Scholar
  16. Dvorak, W. S., Jordon, A. P., Hodge, G. P. and Romero, J. L. (2000) Assessing evolutionary relationships of pines in the Oocarpae and Australes subsections using RAPD markers. New Forest. 20, 163–192.CrossRefGoogle Scholar
  17. Dwinell, L. D., Barrowsbroaddus, J. B. and Kuhlman, E. G. (1985) Pitch canker – a disease complex of southern pines. Plant Dis. 69, 270–276.CrossRefGoogle Scholar
  18. FAO, U. N. (2004) Forest products yearbook, 2002. In Forestry Series No 37/FAO Statistics Series No. 179, Food and Agricultural Organization of the United Nations (FAO), Rome Italy, p. 243.Google Scholar
  19. Fox, T. R., Allen, H. L., Albaugh, T. J., Rubilar, R. and Carlson, C. A. (2007a) Tree nutrition and forest fertilization of pine plantations in the southern United States. South. J. Appl For. 31, 5–11.Google Scholar
  20. Fox, T. R., Jokela, E. J. and Allen, H. (2004) The evolution of pine plantation silviculture in the southern United States. In General Technical Report SRS-75, U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, pp. 63–82.Google Scholar
  21. Fox, T. R., Jokela, E. J. and Allen, H. L. (2007b) The development of pine plantation silviculture in the southern United States. J. For. 15, 337–347.Google Scholar
  22. Franklin, E. C. (1969) Mutant forms found by self-pollination in loblolly pine. J. Heredity 60, 315–320.Google Scholar
  23. Franklin, E. C. (1972) Genetic load in loblolly-pine. Am. Nat. 106, 262–268.CrossRefGoogle Scholar
  24. Gifford, E. and Foster, A. (1989) Morphology and Evolution of Vascular Plants, W.H. Freeman and Company, New York.Google Scholar
  25. Gonzalez-Martinez, S. C., Krutovsky, K. V. and Neale, D. B. (2006) Forest-tree population genomics and adaptive evolution. New Phytol. 170, 227–238.PubMedCrossRefGoogle Scholar
  26. Gwaze, D. P., Melick, R., Studyvin, C. and Coggeshall, M. (2005) Genetic control of growth traits in shortleaf pine in Missouri. Southern J. App. For. 29, 200–204.Google Scholar
  27. Hodge, G. R. and Purnell, R. C. (1993) Genetic parameter estimates for wood density, transition age, and radial growth in slash pine. Can. J. For. Res. 23, 1881–1891.CrossRefGoogle Scholar
  28. Hu, W. J., Harding, S. A., Lung, J., Popko, J. L., Ralph, J., Stokke, D. D., Tsai, C. J. and Chiang, V. L. (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotechnol. 17, 808–812.PubMedCrossRefGoogle Scholar
  29. Jokela, E. J., Dougherty, P. M. and Martin, T. A. (2004) Production dynamics of intensively managed loblolly pine stands in the southern United States: A synthesis of seven longterm experiments. For. Eco. Man. 192, 117–130.CrossRefGoogle Scholar
  30. Jokela, E. J. and Martin, T. A. (2000) Effects of ontogeny and soil nutrient supply on production, allocation, and leaf area efficiency in loblolly and slash pine stands. Can. J. For. Res. 30, 1511–1524.CrossRefGoogle Scholar
  31. Kayihan, G. C., Huber, D. A., Morse, A. M., White, T. L. and Davis, J. M. (2005) Genetic dissection of fusiform rust and pitch canker disease traits in loblolly pine. Theor. App. Gen. 110, 948–958.CrossRefGoogle Scholar
  32. Keely, J. and Zedler, P. (1998) Evolution of life histories in Pinus. In: Ecology and Biogeography ofPinus, (D. Richardson, Ed.) Cambridge University Press, Cambridge, England, pp. 219–250.Google Scholar
  33. Kirst, M., Johnson, A. F., Baucom, C., Ulrich, E., Hubbard, K., Staggs, R., Paule, C., Retzel, E., Whetten, R. and Sederoff, R. (2003) Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taedaL.) with Arabidopsis thaliana. Proceed. Natl. Aca. Sci. USA 100, 7383–7388.CrossRefGoogle Scholar
  34. Kotra, R. (2007). Closing the energy circle. In November Scholar
  35. Larson, E. D., Consonni, S., Katofsky, S., Iisa, K., and Frederick, W. J. (2006) Benefit assessment of gasification-based biorefining in the kraft pulp and paper industry, 4 volumes, Department of Energy, Washington D.C., U.S.A.Google Scholar
  36. LeBude, A. V., Goldfarb, B., Blazich, F. A., Frampton, J. and Wise, F. C. (2005) Mist level influences vapor pressure deficit and gas exchange during rooting of juvenile stem cuttings of loblolly pine. Hortscience. 40, 1448–1456.Google Scholar
  37. LeBude, A. V., Goldfarb, B., Blazich, F. A., Wise, F. C. and Frampton, J. (2004) Mist, substrate water potential and cutting water potential influence rooting of stem cuttings of loblolly pine. Tree Phys. 24, 823–831.Google Scholar
  38. Ledig, F. (1998) Genetic variation in Pinus. In D. Richardson (Ed.) Ecology and Biogeography ofPinus, Cambridge University Press, Cambridge, England, pp. 251–280.Google Scholar
  39. Lev-Yadun, S. and Sederoff, R. (2000) Pines as model gymnosperms to study evolution, wood formation, and perennial growth. J. Plant Growth Reg. 19, 290–305.CrossRefGoogle Scholar
  40. Li, B. L., McKeand, S. and Weir, R. (1999) Tree improvement and sustainable forestry impacts of two cycles of loblolly pine breeding in the U.S.A. For. Gen. 8, 213–224.Google Scholar
  41. Li, H., Ghosh, S., Amerson, H. and Li, B. L. (2006) Major gene detection for fusiform rust resistance using Bayesian complex segregation analysis in loblolly pine. Theo. App. Gen. 113, 921–929.CrossRefGoogle Scholar
  42. Li, X. B., Huber, D. A., Powell, G. L., White, T. L. and Peter, G. F. (2007) Breeding for improved growth and juvenile corewood stiffness in slash pine. Can. J. For. Res. 37, 1886– 1893.CrossRefGoogle Scholar
  43. Long, J. N., Dean, T. J. and Roberts, S. D. (2004) Linkages between silviculture and ecology: examination of several important conceptual models. For. Ecol. Manage. 200, 249–261.CrossRefGoogle Scholar
  44. Lorenz, W. W., Sun, F., Liang, C., Kolychev, D., Wang, H. M., Zhao, X., Cordonnier-Pratt, M. M., Pratt, L. H. and Dean, J. F. D. (2006) Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries. Tree Phys. 26, 1–16.Google Scholar
  45. Martin, T. A., Johnsen, K. H. and White, T. L. (2001) Ideotype development in southern pines: Rationale and strategies for overcoming scale-related obstacles. For. Sci. 47, 21– 28.Google Scholar
  46. Martin, T. A. and Jokela, E. J. (2004) Developmental patterns and nutrition impact radiation use efficiency components in southern pine stands. Ecol. App. 14, 1839–1854.CrossRefGoogle Scholar
  47. Matheson, A. C., White, T. L. and Powell, G. R. (1995) Effects of inbreeding on growth, stem form and rust resistance in Pinus elliottii. Silvae Genet. 44, 37–46.Google Scholar
  48. McConnell, J. L. (1980) The southern forest – past, present and future. In Proceedings of the Servicewide Workshop on Gene Resource Management, USDA Forest Service, Sacramento, CA, pp. 17–26.Google Scholar
  49. McKeand, S., Mullin, T., Byram, T. and White, T. (2003) Deployment of genetically improved loblolly and slash pines in the South. J. For. 101, 32–37.Google Scholar
  50. McKeand, S. E. and Bridgwater, F. E. (1998) A strategy for the third breeding cycle of loblolly pine in the Southeastern U.S. Silvae Genet. 47, 223–234.Google Scholar
  51. McKeand, S. E., Jokela, E. J., Huber, D. A., Byram, T. D., Allen, H. L., Li, B. L. and Mullin, T. J. (2006) Performance of improved genotypes of loblolly pine across different soils, climates, and silvicultural inputs. For. Ecol. Manag. 227, 178–184.CrossRefGoogle Scholar
  52. Mergen, F. (1958) Natural polyploidy in slash pine. For. Sci. 4, 283–295.Google Scholar
  53. Namkoong, G. (1997) A gene conservation plan for loblolly pine. Can. J. For. Res. 27, 433– 437.Google Scholar
  54. Neale, D. B. (2007) Genomics to tree breeding and forest health. Curr. Opin. Gen. Dev. 17, 1– 6.CrossRefGoogle Scholar
  55. Nehra, N. S., Becwar, M. R., Rottmann, W. H., Pearson, L., Chowdhury, K., Chang, S. J., Wilde, H. D., Kodrzycki, R. J., Zhang, C. S., Gause, K. C., Parks, D. W. and Hinchee, M. A. (2005) Forest biotechnology: Innovative methods, emerging opportunities. Vitro Cell. Dev. Biol.-Plant 41, 701–717.CrossRefGoogle Scholar
  56. Perez, A. M. M., White, T. L., Huber, D. A. and Martin, T. A. (2007) Graft survival and promotion of female and male strobili by topgrafting in a third-cycle slash pine (Pinus elliottii var. elliottii) breeding program. Can. J. For. Res. 37, 1244–1252.CrossRefGoogle Scholar
  57. Peter, G. (2007) Developments in Biological Fibre Treatment, Pira International, Surrey, UK, p. 89.Google Scholar
  58. Peter, G., White, D., de la Torre, R., Singh, R. and Newman, D. (2007) The value of forest biotechnology: A cost modeling study with loblolly pine and kraft linerboard in the Southeastern USA. Internat. J. Biotech. 9, 415–435.CrossRefGoogle Scholar
  59. Peterson, D. (2007) Scholar
  60. Prestemon, J. P. and Abt, R. C. (2002) The Southern timber market to 2040. J. For. 100, 16– 22.Google Scholar
  61. Price, R., Liston, A. and Strauss, S. (1998) Phylogeny and systematics of Pinus. In: D. Richardson (Ed.) Ecology and Biogeography of Pinus, Cambridge University Press, Cambridge, UK, pp. 49–68.Google Scholar
  62. Ramsey, C. L. and Jose, S. (2004) Growth, survival and physiological effects of hexazinone and sulfometuron methyl applied overtop of longleaf pine seedlings. South. J. Appl. For. 28, 48–54.Google Scholar
  63. Remington, D. L. and O’Malley, D. M. (2000) Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics 155, 337–348.PubMedGoogle Scholar
  64. Rockwood, D. L. and Dippon, D. R. (1989) Biological and economic potentials of Eucalyptusgrandis and slash pine as biomass energy crops. Biomass 20, 155–165.CrossRefGoogle Scholar
  65. Roth, B. E., Jokela, E. J., Martin, T. A., Huber, D. A. and White, T. L. (2007) Genotype x environment interactions in selected loblolly and slash pine plantations in the Southeastern United States. For. Ecol. Manag. 238, 175–188.CrossRefGoogle Scholar
  66. Schmidt, R. A. (2003) Fusiform rust of southern pines: A major success for forest disease management. Phytopathology. 93, 1048–1051.CrossRefPubMedGoogle Scholar
  67. Schmidt, R. A., Miller, T., Holley, R. C., Belanger, R. P. and Allen, J. E. (1988) Relation of site factors to fusiform rust incidence in young slash and loblolly-pine plantations in the coastal-plain of Florida and Georgia. Plant Dis. 72, 710–714.CrossRefGoogle Scholar
  68. Schmidtling, R., Hipkins, V. and Carroll, E. (2000) Pleistocene refugia for longleaf and loblolly pine. J. Sust. For. 10, 349–354.Google Scholar
  69. Schmidtling, R. C., Carroll, E. and LaFarge, T. (1999) Allozyme diversity of selected and natural loblolly pine populations. Silvae Genet. 48, 35–45.Google Scholar
  70. Schmidtling, R. C., Robison, T. L., McKeand, S. E., Rousseau, R. J., Allen, H. L. and Goldfarb, B. (2004) The role of genetics and tree improvement in southern forest productivity. In: Gen. Tech. Rep. SRS–75,U.S. Department of Agriculture, Forest Service, Southern Research Station, Asheville, NC, pp. 97–108.Google Scholar
  71. Sewell, M. M., Bassoni, D. L., Megraw, R. A., Wheeler, N. C. and Neale, D. B. (2000) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taedaL.). I. Physical wood properties. Theor. Appl. Genet. 101, 1273–1281.CrossRefGoogle Scholar
  72. Sewell, M. M., Davis, M. F., Tuskan, G. A., Wheeler, N. C., Elam, C. C., Bassoni, D. L. and Neale, D. B. (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taedaL.). II. Chemical wood properties. Theor. Appl. Genet. 104, 214–222.PubMedCrossRefGoogle Scholar
  73. Sewell, M. M., Sherman, B. K. and Neale, D. B. (1999) A consensus map for loblolly pine (Pinus taedaL.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151, 321–330.PubMedGoogle Scholar
  74. Siry, J. P., Greene, W. D., Harris, T. G., Izlar, R. L., Hamsley, A. K., Eason, K., Tye, T., Baldwin, S. S. and Hyldahl, C. (2006) Wood supply chain efficiency and fiber cost – What can we do better? For. Prod. J. 56, 4–10.Google Scholar
  75. Smith, W., Miles, P., Vissage, J. and Pugh, S. (2004). Forest Resources of the United States, 2002. Gen. Tech. Rept. NC-241, USDA Forest Service, North Central Research Station, St. Paul, MN, p. 137.Google Scholar
  76. Stuart, P. (2006) The forest biorefinery: Survival strategy for Canada’s pulp and paper sector? Pulp Pap-Canada 107, 13–16.Google Scholar
  77. Sykes, R., Li, B. L., Isik, F., Kadla, J. and Chang, H. M. (2006) Genetic variation and genotype by environment interactions of juvenile wood chemical properties in Pinus taeda L. Ann. For. Sci. 63, 897–904.CrossRefGoogle Scholar
  78. Syring, J., Willyard, A., Cronn, R. and Liston, A. (2005) Evolutionary relationships among Pinus (Pinaceae) subsections inferred from multiple low-copy nuclear loci. Am. J. Bot. 92, 2086–2100.CrossRefGoogle Scholar
  79. Tang, W., Sederoff, R. and Whetten, R. (2001) Regeneration of transgenic loblolly pine (Pinus taedaL.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213, 981–989.PubMedGoogle Scholar
  80. Towers, M., Browne, T., Kerekes, R., Paris, J. and Tran, H. (2007) Biorefinery opportunities for the Canadian pulp and paper industry. Pulp Pap-Canada 108, 26–29.Google Scholar
  81. Tufts, R., Landford, B., Greene, W. and Burrows, J. (1985) Auburn harvesting analyzer – a spreadsheet template to analyze balance, production rates, and costs. The Compl. 3, 14–15.Google Scholar
  82. Van Heiningen, A. (2006) Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Pap-Canada 107, 38–43.Google Scholar
  83. Vergara, R., White, T. L., Huber, D. A. and Schmidt, R. A. (2007) Realized genetic gains of rust resistant selections of slash pine (Pinus elliottiivar. elliottii) planted in high rust hazard sites. Silvae Genet. 56, 231–242.Google Scholar
  84. Vergara, R., White, T. L., Huber, D. A., Shiver, B. D. and Rockwood, D. L. (2004) Estimated realized gains for first-generation slash pine (Pinus elliottiivar. elliottii) tree improvement in the southeastern United States. Can. J. For. Res. 34, 2587–2600.CrossRefGoogle Scholar
  85. Wakeley, P. C. (1954) Planting the Southern Pines, U.S. Department of Agriculture Forest Service, Washington DC, p. 233.Google Scholar
  86. Wear, D. and Greis, J. (2002) Southern forest resource assessment. In U.S. For. Serv. Gen. Tech. Rep. Asheville, NC, p. 635.Google Scholar
  87. White, T., Adams, W. T. and Neale, D. B. (2007) Forest Genetics, CABI Publishing, Cambridge, MA, USA, p. 682.Google Scholar
  88. White, T. L., Hodge, G. R. and Powell, G. L. (1993) An advanced-generation tree improvement plan for slash pine in the Southeastern United-States. Silvae Genet. 42, 359–371.Google Scholar
  89. Williams, C. G. and Megraw, R. A. (1994) Juvenile mature relationships for wood density in Pinus taeda. Can. J. For. Res. 24, 714–722.CrossRefGoogle Scholar
  90. Williams, C. G. and Savolainen, O. (1996) Inbreeding depression in conifers: Implications for breeding strategy. For. Sci. 42, 102–117.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gary F. Peter
    • 1
  1. 1.University of FloridaSchool of Forest Resources and ConservationGainesvilleUSA

Personalised recommendations