Miscanthus: Genetic Resources and Breeding Potential to Enhance Bioenergy Production

  • Wilfred Vermerris


Genetic Resource Energy Crop Frost Tolerance Basic Chromosome Number Bioenergy Crop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adati, S. and Shiotani, I. (1962) The cytotaxonomy of the genus Miscanthus and its phylogenic status. Bull. Fac. Agric. Mie University 25, 1–24.Google Scholar
  2. Beale, C.V. and Long, S.P. (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Env. 18, 641–650.CrossRefGoogle Scholar
  3. Beale, C.V. and Long, S.P. (1997) Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4 grasses Miscanthus×giganteus and Spartina cynosuroides. Biomass Bioenergy. 12, 419–428.CrossRefGoogle Scholar
  4. Beale, C.V., Morison, J.I.L. and Long, S.P. (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agric. Forest Meteorol. 96, 103–115.CrossRefGoogle Scholar
  5. Beuch, S., Boelcke, B. and Belau, L. (2000) Effect of the organic residues of Miscanthus × giganteus on the soil organic matter level of arable soils. J. Agron. Crop Sci.-Z. Acker Pflanzenb. 184, 111–119.CrossRefGoogle Scholar
  6. Boehmel, C., Lewandowski, I. and Claupein, W. (2008) Comparing annual and perennial energy cropping systems with different management intensities. Agric. Syst. 96, 224–236.CrossRefGoogle Scholar
  7. Chen, S.L. and Renvoize, S.A. (2006) Miscanthus. Flora of China 22, 581–583.Google Scholar
  8. Chiang, Y.C. (1993) The biochemical tolerance of Miscanthus floridulus populations to lead. Master’s thesis, Faculty of Sciences, Department of Botany, National Taiwan University, Taipei.Google Scholar
  9. Chiang, Y.C., Schaal, B.A., Chou, C.H., Huang, S., and Chiang, T.Y. (2003) Contrasting selection modes at the ADH1 locus in outcrossing Miscanthus sinensis vs. inbreeding Miscanthus condensatus (Poaceae). Am. J. Bot. 90, 561–570.CrossRefGoogle Scholar
  10. Chou, C.H., Hwang, S.Y, Chang F.C. (1987) Population study of Miscanthus floridulus (Labill.) Warb. Bot. Bull. Acad. Sin. 28, 247–281.Google Scholar
  11. Chou, C.H., Chiang, Y.C. and Chiang, T.Y. (1999) Within- and between-individual length heterogeneity of the rDNA-IGS in Miscanthus sinensis var. glaber (Poaceae): phylogenetic analyses. Genome 42, 1088–1093.Google Scholar
  12. Chou, C.H., Chiang, T.Y., Chiang, Y.C. (2001) Towards an integrative biology research: a case study on adaptive and evolutionary trends of Miscanthus populations in Taiwan. Weed Biol. Manag. 1, 81–88.CrossRefGoogle Scholar
  13. Christian, D.G., Lamptey, J.N.L., Forde, S.M.D. and Plumb, R.T. (1994) First report of barley yellow dwarf luteovirus on Miscanthus in the United Kingdom. Eur. J. Plant Pathol. 100, 167–170.CrossRefGoogle Scholar
  14. Christian, D.G. and Riche, A.B. (1998) Nitrate leaching losses under Miscanthus grass planted on a silty clay loam. Soil Use Manag. 14, 131–135.CrossRefGoogle Scholar
  15. Christian, D.G., Yates, N.E. and Riche, A.B. (2005) Establishing Miscanthus sinensis from seed using conventional sowing methods. Ind. Crops Prod. 21, 109–111.CrossRefGoogle Scholar
  16. Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., Friedlingstein, P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, T. and Valentini, R. (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533.PubMedCrossRefGoogle Scholar
  17. Clayton, W.D. and Renvoize, S.A. (1986) Genera graminum, grasses of the world. Kew Bull. Add. Ser. 13, 1–389.Google Scholar
  18. Clifton-Brown, J.C. and Jones, M.B. (1997) The thermal response of leaf extension rate in genotypes of the C4-grass Miscanthus: an important factor in determining the potential productivity of different genotypes. J. Exp. Bot. 48, 1573–1581.Google Scholar
  19. Clifton-Brown, J.C. and Lewandowski, I. (2000a) European Miscanthus Improvement (FAIR3 CT- 96-1392), Final Report, Chapter 9. Mapping the Most Suitable Climatic Zones for Different Miscanthus Genotypes in Europe. University of Hohenheim.Google Scholar
  20. Clifton-Brown, J.C. and Lewandowski, I. (2000b) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol. 148, 287–294.CrossRefGoogle Scholar
  21. Clifton-Brown, J.C., Neilson, B.M., Lewandowski, I. and Jones, M.B. (2000) The modelled productivity of Miscanthus x giganteus (GREEF et DEU) in Ireland. Ind. Crops Prod. 12, 97–109.CrossRefGoogle Scholar
  22. Clifton-Brown, J.C., Lewandowski, I., Bangerth, F. and Jones, M.B. (2002) Comparative responses to water stress in stay-green, rapid- and slow senescing genotypes of the biomass crop, Miscanthus. New Phytol. 154, 335–345.CrossRefGoogle Scholar
  23. Clifton-Brown, J.C., Stampfl, P. and Jones, M.B. (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Global Change Biol. 10, 509–518.CrossRefGoogle Scholar
  24. Clifton-Brown, J.C., Breuer, J. and Jones, M.B. (2007) Carbon mitigation by the energy crop, Miscanthus. Global Change Biol. 13, 2296–2307.CrossRefGoogle Scholar
  25. DEFRA (2001) Planting and Growing Miscanthus – Best Practice Guidelines. DEFRA.Google Scholar
  26. Farage, P., Blowers, D., Long, S. and Baker, N. (2006) Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chillingtolerant C-4 species, Cyperus longus L. and Miscanthus x giganteus. Plant Cell Env. 29, 720–728.CrossRefGoogle Scholar
  27. Farrell, A.D., Clifton-Brown, J.C., Lewandowski, I. and Jones, M.B. (2006) Genotypic variation in cold tolerance influences yield of Miscanthus. Ann. Appl. Biol. 149, 337–345.CrossRefGoogle Scholar
  28. Foereid, B., de Neergaard, A. and Hogh-Jensen, H. (2004) Turnover of organic matter in a Miscanthus field: effect of time in Miscanthus cultivation and inorganic nitrogen supply. Soil Biol. Biochem. 36, 1075–1085.CrossRefGoogle Scholar
  29. Gill, B., MacLeod, N., Clayton, D., Cowburn, R., Roberts, J. and Hartley, N. (2005) Biomass Task Force. Report to (UK) Government. energy/biomass-taskforce/pdf/btf-finalreport.pdf.Google Scholar
  30. Greef, J.M. and Deuter, M. (1993) Syntaxonomy of Miscanthus x giganteus GREEF et DEU. Angew. Bot. 67, 87–90.Google Scholar
  31. Greef, J.M., Deuter, M., Jung, C. and Schondelmaier, J. (1997) Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genetic Res. Crop Evol. 44, 185–195.CrossRefGoogle Scholar
  32. Greuter, W., McNeill, J., Barrie, F.R., Burdet, H.M., Demoulin, V., Figueiras, S., Nicolson, D.H., Silva, P.C., Skog, J.E., Trehane, P., Turland, J. and Hawksworth, D.L. (2000) International Code of Botanical Nomenclature (Saint Louis Code). Koeltz Scientific Books, Königstein.Google Scholar
  33. Halbert, S.E. (2002) Pest alert; Asian Miscanthus aphid Melanaphis sorini. Triology 41, DPI/ FDACS.Google Scholar
  34. Hammon, R., Reid, S., Matthews, L. and Eyre, D. (2006) Melanaphis sorini. DEFRA plant pest notice 44. Scholar
  35. Hansen, E.M., Christensen, B.T., Jensen, L.S. and Kristensen, K. (2004) Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by C-13 abundance. Biomass Bioenergy 26, 97–105.CrossRefGoogle Scholar
  36. Hodkinson, T.R., Renvoize, S.A. and Chase, M.W. (1997) Systematics in Miscanthus. Aspect. Appl. Biol. 49, 189–198.Google Scholar
  37. Hodkinson, T.R., Chase, M.W. and Renvoize, S.A. (2001) Genetic resources of Miscanthus. Aspect. Appl. Biol. 65, 239–248.Google Scholar
  38. Hodkinson, T.R. and Renvoize, S. (2001) Nomenclature of Miscanthus ×giganteus (Poaceae). Kew Bull. 56, 759–760.CrossRefGoogle Scholar
  39. Hodkinson, T.R., Chase, M.W., Lledo, M.D., Salamin, N. and Renvoize, S.A. (2002a) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J. Plant Res. 115, 381–392.CrossRefGoogle Scholar
  40. Hodkinson, T.R., Chase, M.W. and Renvoize, S.A. (2002b) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann. Bot. 89, 627–636.CrossRefGoogle Scholar
  41. Hodkinson, T.R., Chase, M.W., Takahashi, C., Leitch, I.J., Bennett, M.D. and Renvoize, S.A. (2002c) The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am. J. Bot. 89, 279–286.CrossRefGoogle Scholar
  42. Hsu, C.C. (1978) Gramineae (Poaceae). In: H.L. Li, T.S. Liu, T.C. Huang, T. Koyama, and C.E. DeVol (Eds.) Flora of Taiwan, 1st edition, Vol. V. pp. 372–783, Epoch Publishing Co., Ltd., Taipei, Taiwan.Google Scholar
  43. Huggett, D.A.J., Leather, S.R., and Walters, K.F.A. (1999) Suitability of the biomass crop Miscanthus sinensis as a host for the aphids Rhopalosiphum padi and Rhopalosiphum maydis, and its susceptibility to the plant luteovirus Barley Yellow Dwarf Virus. Agric. Forest Entomol. 1, 143–149.CrossRefGoogle Scholar
  44. Ibaragi, Y. (2003) The taxonomy of Diandranthus (Poaceae). Act Phytotax. Geobot. 54, 1364–7565.Google Scholar
  45. Ibaragi, Y. and Oshashi, H. (2004) A taxonomic study of Miscanthus section Kariyasua (Gramineae). J. Japan. Bot. 79, 4–22.Google Scholar
  46. IPNI (2007) The Plant Names Project. International Plant Names Index. Scholar
  47. Iwata, H., Kamijo, T. and Tsumura, Y. (2005) Genetic structure of Miscanthus sinensis ssp. condensatus (Poaceae) on Miyake Island: implications for revegetation of volcanically devastated sites. Ecol. Res. 20, 233–238.CrossRefGoogle Scholar
  48. James, G. (2004) Sugarcane. Blackwell, Oxford.Google Scholar
  49. Jones, M.B. and Walsh, M. (2001) Miscanthus – for Energy and Fibre. James and James (Science Publishers), London. 206pp.Google Scholar
  50. Jørgensen, U. (1997) Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass Bioenergy 12, 155–169.CrossRefGoogle Scholar
  51. Kimura, M.J. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Mol. Evol. 16, 111–120.CrossRefGoogle Scholar
  52. Lafferty, J. and Lelley, T. (1994) Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breed. 113, 246–249.CrossRefGoogle Scholar
  53. Lee, Y.N. (1964a) Taxonomic studies on the genus Miscanthus: relationships among the section, subsection and species, part 1. J. Japan. Bot 39, 196–205.Google Scholar
  54. Lee, Y.N. (1964b) Taxonomic studies on the genus Miscanthus: relationships among the section, subsection and species, part 2. J. Japan. Bot 39, 257–265.Google Scholar
  55. Lee, Y.N. (1964c) Taxonomic studies on the genus Miscanthus: relationships among the section, subsection and species, part 3. J. Japan. Bot. 39, 289–298.Google Scholar
  56. Lewandowski, I. and Kicherer, A. (1997) Combustion quality of biomass: practical relevance and experiments to modify the biomass quality of Miscanthus x giganteus. Eur. J. Agro. 6, 163–177.CrossRefGoogle Scholar
  57. Lewandowski, I., Clifton-Brown, J.C., Scurlock, J.M.O. and Huisman, W. (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19, 209–277.Google Scholar
  58. Lewandowski, I., Clifton-Brown, J.C., Andersson, B., Basch, G., Christian, D.G., Jørgensen, U., Jones, M.B., Riche, A.B., Schwarz, K.-U., Tayebi, K. and Teixeira, F. (2003) Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron. J. 95, 1274–1280.Google Scholar
  59. Lewandowski, I. and Schmidt, U. (2006) Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric. Ecosyst. Env. 112, 335–346.CrossRefGoogle Scholar
  60. Linde-Laursen, I.B. (1993) Cytogenetic analysis of Miscanthus ’Giganteus’, an interspecific hybrid. Hereditas 119, 297–300.CrossRefGoogle Scholar
  61. Long, S.P. (1983) C4 photosynthesis at low temperature. Plant Cell Env. 6, 345–363.Google Scholar
  62. Matumura, M., Hasegawa, T. and Saijoh, Y. (1985) Ecological aspects of Miscanthus sinensis var. condensatus, M. x sacchariflorus, and their 3x-, 4x-hybrids. 1. Process of vegetative spread. Research Bulletin of the Faculty of Agriculture, Gifu University 50, 423–433.Google Scholar
  63. Monteith, J.L. (1977) Climate and the efficiency of crop production in Britain. Phil. Trans Royal Soc. B 281, 277–294.CrossRefGoogle Scholar
  64. Monteith, J.L. (1978) Reassessment of the maximum growth rates for C3 and C4 crops. Experim. Agric. 14, 1–5.CrossRefGoogle Scholar
  65. Naidu, S.L., Moose, S.P., AL-Shoaibi, A.K., Raines, C.A. and Long, S.P. (2003) Cold tolerance of C4 photosynthesis in Miscanthus ×giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol. 132, 1688–1697.PubMedCrossRefGoogle Scholar
  66. Naidu, S.L. and Long, S.P. (2004) Potential mechanisms of low-temperature tolerance of C-4 photosynthesis in : an in vivo analysis. Planta 220, 145–155.PubMedCrossRefGoogle Scholar
  67. O’Neill, N.R. and Farr, D.F. (1996) Miscanthus blight, a new foliar disease of ornamental grasses and sugarcane incited by Leptosphaeria sp., and its anamorphic state Stagonospora sp. Plant Dis. 80, 980–987.Google Scholar
  68. Pude, R., Franken, H., Diepenbrock, W. and Greef, J.M. (1997) Ursachen der Auswinterung von einjährigen Miscanthus-Beständen. Pflanzenbauwissenchaften 1, 171–176.Google Scholar
  69. Scally, L., Hodkinson, T. and Jones, M.B. (2001) Origins and Taxonomy of Miscanthus. In: M.B. Jones and M. Walsh (Eds.) Miscanthus – for Energy and Fibre, pp. 1–9. James and James (Science Publishers), London.Google Scholar
  70. Stampfl, P., Clifton-Brown, J.C. and Jones, M.B. (2007) European-wide GIS-based modelling system for quantifying the feedstock from Miscanthus and the potential contribution to renewable energy targets. Global Change Biol. 13, 2283–2295.CrossRefGoogle Scholar
  71. Thinggaard, K. (1997) Study of the role of Fusarium in the field establishment problem of Miscanthus. Acta Agric. Scand. 47, 238–241.Google Scholar
  72. Vidal, J. (2007) Biofuel demand to push up food prices. The Guardian (UK Newspaper), ...#8805.Google Scholar
  73. von Wuehlisch, G., Deuter, M. and Muhs, H.-J. (1994) Identifizierung verschiedener Miscanthus sorten mittels isoenzymen. J. Agron. Crop Science. 172, 247–254.CrossRefGoogle Scholar
  74. Vos, P.R., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Kuiper, M. and Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 23, 4407–4414.PubMedCrossRefGoogle Scholar
  75. Ziegenhagen, B., Junge, R. and Muhs, H.-J. (1995) Effects of frost temperatures on early growth of Miscanthus "Giganteus". In: P. Chartier, A.A.C.M. Beenackers, and G. Grassi, (Eds.) Biomass for Energy, Environment, Agriculture and Industry, pp. 565–574. Elsevier, Oxford.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Wilfred Vermerris
    • 1
  1. 1.University of FloridaGainesvilleUSA

Personalised recommendations