Advertisement

Cookie-Chain Based Discovery of Relation between Internet Users and Real Persons

  • Csaba Legány
  • Attila Babos
  • Sándor Juhász
Conference paper

It is very important for Internet content providers to keep track of the amount of visitors of their sites. The content of the pages and advertisements can be improved by knowing statistical properties of the visitors.

Keywords

Internet User Hash Table Business Rule Real Person Building Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    AboutCookies.org, a guide to deleting and controlling cookies http://www.aboutcookies.org
  3. 3.
    Cookies: The Perfect User Identification Snack http://www.clickstream- datawarehousing.com/article06.html
  4. 4.
  5. 5.
    Median webaudit http://www.webaudit.hu/
  6. 6.
    Dexter C. Kozen. The Design and Analysis of Algorithms. Springer-Verlag, 1992.Google Scholar
  7. 7.
    John E. Hopcroft and Jeffrey D. Ullman. Set merging algorithms. SIAM Journal on Computing, 2(4): 294-303, 1973.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cormen - Leiserson - Rivest - Stein: Új algoritmusok (Section 21.)Google Scholar
  9. 9.
    Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms. Addison-Wesley, 1983.Google Scholar
  10. 10.
    Robert E. Tarjan. Class notes: Disjoint set union. COS 423, Princeton University, 1999.Google Scholar
  11. 11.
    Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms. Journal of the ACM, 31(2): 245-281, 1984.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Csaba Legány
    • 1
  • Attila Babos
    • 1
  • Sándor Juhász
    • 1
  1. 1.Department of Information Systems and ComputationUPVSpain

Personalised recommendations