Nuclear Magnetic Resonance of Glycosides



Nuclear magnetic resonance (1H, 13C NMR), X-ray diffraction, and mass spectrometry are considered among the most important analytical methods for structural elucidation. Characterization by means of 1H, 13C NMR, mono- and bidimensional spectroscopy is a powerful tool for structural assignment of simple and complex glycosides. Pioneering studies on simple monosaccharides were essential for understanding through the chemical shifts and coupling constants the conformational behavior of sugars.


Nuclear Magnetic Resonance Torsion Angle Dipolar Coupling Anomeric Proton Nuclear Overhauser Effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    (a) R.U. Lemieux and A.R. Morgan, Can. J. Chem., 43, 2199 (1965). (b) G. Kotowycz and R.U. Lemieux, Chem. Rev., 73, 669 (1973). (c) R.U. Lemieux and J.D. Stevens, Can. J. Chem., 43, 2059 (1965).Google Scholar
  2. 2.
    B. Coxon, Tetrahedron, 21, 3481 (1965).CrossRefGoogle Scholar
  3. 3.
    (a) L.D. Hall, Adv. Carbohydr. Chem., 19, 51 (1964). (b) L.D. Hall, J.F. Manville, and N.S. Bhacca, Can. J. Chem., 47, 1 (1969).Google Scholar
  4. 4.
    D. Horton, and J.H. Lauterbach, Carbohydr. Res., 43, 9 (1975).CrossRefGoogle Scholar
  5. 5.
    C. Altona, and C.A.G. Haasnoot, Organic Magnetic Resonance, 13, 417 (1980).CrossRefGoogle Scholar
  6. 6.
    E. Breitmaier, Structure Elucidation by NMR I Organic Chemistry 3th Ed. John Wiley & Sons pp 46 (2002).Google Scholar
  7. 7.
    M. Karplus, Chem. Phys., 11, 30 (1959).Google Scholar
  8. 8.
    C.M. Cerda-García-Rojas, L. G. Zepeda, and P. Joseph-Nathan, Tetrahedron Computer Methodology, 3, 113, (1990).CrossRefGoogle Scholar
  9. 9.
    C.V. Holland, D. Horton, M.J. Miller, and N.S. Bhacca, J. Org. Chem., 32, 3077 (1967).CrossRefGoogle Scholar
  10. 10.
    G. Hajdukovic, M.L. Martin, P. Sinaÿ, and J.R. Pougny, Organic Magnetic Resonance 7, 366 (1975).CrossRefGoogle Scholar
  11. 11.
    D. Horton and W. N. Turner, J. Org. Chem. 30, 3387 (1965).Google Scholar
  12. 12.
    K. Bock and H. Thøgerson, Annual Reports on NMR Spectroscopy Ed by G.A Webb, Academic Press 13, 37 (1982).Google Scholar
  13. 13.
    J. Ø Duus, C.H. Gotffredsen, and K. Bock, Chem. Rev., 100, 4589 (2000).CrossRefGoogle Scholar
  14. 14.
    A. Delazar, M. Byres, S. Gibbons, Y. Kumarasamy, M. Modarresi, L. Nahar, M. Shoeb, and S. D. Sarker, J. Nat. Prod. 67, 1584 (2004).CrossRefGoogle Scholar
  15. 15.
    G. Bohr, C. Gerhäuser, J. Knauft, J. Zapp, and H. Becker, J. Nat. Prod. 68, 1545 (2005).CrossRefGoogle Scholar
  16. 16.
    S.O. Lee, S. Z. Choi, S. U. Choi, K. C. Lee, Y. W. Chin, J. Kim, Y. C. Kim, and K.R. Lee, J. Nat. Prod. 68, 1471 (2005).CrossRefGoogle Scholar
  17. 17.
    J-H Zou, J.S. Yang, and L. Zhou, J. Nat. Prod. 67, 664 (2004).CrossRefGoogle Scholar
  18. 18.
    F. Diaz, H-B Chai, Q. Mi, B-N. Su, J.S. Vigo, J.G. Graham, F. Cabieses, N.R. Farnsworth, G.A. Cordell, J.M. Pezzuto, S.M. Swanson, and A. D. Kinghorn, J. Nat. Prod. 67, 352 (2004).CrossRefGoogle Scholar
  19. 19.
    P. Manitto, D. Monti, and G. Speranza, J. Chem. Soc. Perkin Trans. 1, 1297 (1990).CrossRefGoogle Scholar
  20. 20.
    H. Neubauer, J. Meiler, W. Peti, and C. Griesinger, Helv. Chim. Acta, 84, 243 (2001).CrossRefGoogle Scholar
  21. 21.
    F. Tian, H.M. Al-Hashimi, J.L. Craighead, and J.H. Prestegard, J. Am. Chem. Soc., 123, 485 (2001).CrossRefGoogle Scholar
  22. 22.
    A. De Bruyn, J. Carbohydr. Chem., 10, 159 (1991).CrossRefGoogle Scholar
  23. 23.
    R.U. Lemieux and S. Koto, Tetrahedron, 30, 1933 (1974).CrossRefGoogle Scholar
  24. 24.
    B. Bose, S. Zhao, R. Stenutz, F. Cloran, P.B. Bondo, G. Bondo, B. Hertz, I. Carmichael, and A.S. Serianni, J. Am. Chem. Soc., 120, 11158 (1998).CrossRefGoogle Scholar
  25. 25.
    K. Bock, A. Brignole., and B.W. Sigurskjold, J. Chem. Soc. Perkin Trans. II, 1711 (1996).Google Scholar
  26. 26.
    A. Imberty, Current Opinion in Structural Biology, 7, 617 (1997).CrossRefGoogle Scholar
  27. 27.
    P.K. Agrawal and A.K. Pathak, Phytochemical Analysis, 7, 113 (1996).CrossRefGoogle Scholar
  28. 28.
    I. Tvaroska, M. Hricovini, and E. Petrakova, Carbohydr. Res., 189, 359 (1989).CrossRefGoogle Scholar
  29. 29.
    (a) Y.S. Bae, J.F.W. Burger, J.P. Steynberg, D. Ferreira, and R.W. Heminway, Phytochemistry Google Scholar
  30. 30.
    (a) G. Batta and A. Liptak, J. Am. Chem. Soc., 106, 248 (1984). (b) G. Masiiot, C. Lavaud, C. Delaude, G.V Binst, S.P.F. Miller, and H.M. Fales, Phytochemistry, 29, 3291 (1990).CrossRefGoogle Scholar
  31. 31.
    J.H. Prestegard, T.A.W. Koerner, P.C. Demou, and R.K. Yu. J. Am. Chem. Soc., 104, 4993 (1982).CrossRefGoogle Scholar
  32. 32.
    (a) N.M. Duc, R. Kasai, K. Ohtani, A. Ito, N.T. Nham, K. Yamasaki, and O. Tanaka, Chem. Pharm. Bull., 42, 634 (1994). (b) T. Nakamura, T. Takedo, and Y. Ogihara, Chem. Pharm. Bull., 42, 1111 (1994). (c) B. Razanamahefa, C. Demetzos, A.-L Skaltsounis, M. Andriantisiferana, and F. Tillequin, Heterocycles, 38, 357 (1994). (d) T. Nakanishi, K. Tanaka, H. Murata, M. Somekawa, and A. Inada, Chem. Pharm. Bull, 41, 183 (1994). (e) S.T. Thulborg, S.B Christensen, C. Cornett, C.E. Olsen, and E. Lemmich, Phytochemistry, 36, 753 (1994).Google Scholar
  33. 33.
    (a) M. Bah and R. Pereda-Miranda, Tetrahedron, 41, 13063 (1996). (b) R. Pereda-Miranda and M. Bah, Current Topics in Medicinal Chemistry, 3, 1 (2003).CrossRefGoogle Scholar
  34. 34.
    B. Coxon, N. Sari, G. Batta, and G. Pozsgay, Carbohydr. Res., 324, 53 (2000).CrossRefGoogle Scholar
  35. 35.
    H. Sato, and Y. Kajihara, J. Carbohydr. Chem., 22, 339 (2003).CrossRefGoogle Scholar
  36. 36.
    F.G.J. Vliegenthart, L. Dorland, and H. van Halbeek, Adv. Carbohydr. Chem. Biochem., 41, 209 (1983).CrossRefGoogle Scholar
  37. 37.
    M. Martin-Lomas and D. Chapman, Chem. Phys, Lipids, 10, 152 (1973).CrossRefGoogle Scholar
  38. 38.
    (a) J. Dabrowski, P. Handfland, and H. Egge, Biochemistry, 19, 5652 (1980). (b) K.E. Falk, K.-A. Karlsson, and B.E. Samuelson, Arch. Biochem. Biophys., 192, 164 (1979).CrossRefGoogle Scholar
  39. 39.
    L.S. Wolfe, R.G. Senior, and N.M.K. Ng Yin Kin, J. Biol. Chem., 249, 1838 (1974).Google Scholar
  40. 40.
    (a) F. Ni, Prog. Nucl. Magn. Reson Spectros., 26, 517 (1994). (b) F. Casset, T. Peters, M. Etzler. E. Korchagina, S. Nifantev, Perez, and A. Imberty, Eur. J. Biochem., 239, 710 (1996).CrossRefGoogle Scholar
  41. 41.
    (a) T. Peters, and B.M. Pinto, Current Opinion in Structural Biology, 6, 710 (1996). (b) T. Weimar, S.L. Harris,.J.B. Pitnar, K. Bock, and B.M. Pinto, Biochemistry, 34, 13672 (1995).CrossRefGoogle Scholar
  42. 42.
    K. Scheffler, B. Ernst, A. Katopodis, J.L. Magnani, W.T. Wang, R. Weisemann, and T. Peters, Angew. Chem. Int. Ed., 34, 1841 (1995).CrossRefGoogle Scholar
  43. 43.
    (a) D.F. Wyss, and J.S. Choi, and G. Wagner, Biochemistry, 34, 1622 (1995). (b) D.F. Wyss, J.S. Choi, J. Li, M.H. Knoppers, K.J. Willis, A.R.N. Arulandaman, A. Smolyar, E.L. Reinherz, and G.Wagner, Science, 269, 1273 (1995). (c) R. Liang, A.H. Androtti, and D. Kahne, J. Am. Chem. Soc., 117, 10395 (1995).CrossRefGoogle Scholar
  44. 44.
    D. Davies, Progress in NMR Spectroscopy, 12, 140 (1978).Google Scholar
  45. 45.
    M.H. Sorenssen, C. Nielsen, and P. Nielsen, J. Org. Chem., 66, 4878 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations