Advertisement

Abstract

Carbohydrates covalently attached to proteins and lipids produce three types of glycoconjugates: proteoglycans, glycoproteins, and glycolipids. Although in the first two cases the types of linkages are the same, chemically proteoglycans behave as polysaccharides and glycoproteins having much less carbohydrate content as proteins. The third important class of glycoconjugates, constituted by a carbohydrate residue covalently attached to a lipidic component, has been classified into four types depending on the lipidic nature: glycoglycerol, glycosyl polyisoprenol pyrophosphates, fatty acid esthers, and glycosphingolipids.

Keywords

Carbohydrate Binding Protein Glycoprotein Synthesis Hydroxyl Lysine Glycopeptide Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Robyt, Essentials of Carbohydrate Chemistry, Springer-Verlag, New York, Inc. 1998, 279.Google Scholar
  2. 2.
    A. Morell, R.A. Irvine, I. Sternliev, I.H. Scheinberg, and G. Ashwell, G. J. Biol. Chem. 1968, 243, 155.Google Scholar
  3. 3.
    H.D. Fischer, A. Gonzalez-Noriega, W.S. Sly, and D.J. Morre, J. Biol. Chem. 1980, 255, 9608.Google Scholar
  4. 4.
    P. Stahl, P.H. Schlesinger, E. Sigardson, J. Rodman, Y.C. Lee, Cell 1980, 19, 207.CrossRefGoogle Scholar
  5. 5.
    P.M. Rudd, T. Elliot, P. Cresswell, I.A. Wilson, and R.A. Dwek, Science 2001, 291, 370.CrossRefGoogle Scholar
  6. 6.
    I.N. Reitter, R.E. Means, and R.C. Desrosiers, Nature Med. 1998, 4, 679.CrossRefGoogle Scholar
  7. 7.
    G.F. Springer, Science 1984, 224, 1198.CrossRefGoogle Scholar
  8. 8.
    J. Samuel, A.A. Noujaim, G.D. MacLean, M.R. Sureshand, and B.M. Longenecker, Cancer Res. 1990, 50, 4801.Google Scholar
  9. 9.
    M. Fukada, Biochim. Biophys. Acta, 1985, 780, 119.Google Scholar
  10. 10.
    R. Kornfeld, and S. Kornfeld, Annu. Rev. Biochem. 1985, 54, 631.CrossRefGoogle Scholar
  11. 11.
    Y.C. Lee, FASEB J. 1992, 6, 3193–3200.Google Scholar
  12. 12.
    R. Dwek, Chem. Rev. 1996, 683.Google Scholar
  13. 13.
    H. Lis and N. Sharon, Chem. Rev. 1998, 98, 637.CrossRefGoogle Scholar
  14. 14.
    W. Gaastra and A.-M. Svennerholm, Trends. Microbiol. 1996, 4, 444.CrossRefGoogle Scholar
  15. 15.
    I.J. Goldstein, H.C. Winter, R.D. Poretz, In Glycoproteins, Elsevier 1997, 403–474.Google Scholar
  16. 16.
    W.I. Weis and K. Drickamer, Annu. Rev. Biochem 1996, 65, 441.CrossRefGoogle Scholar
  17. 17.
    R. Ravishankar, N. Ravindran, A. Suguna, A. Surolia and M. Vijayan, Curr. Science, 1997, 72, 855.Google Scholar
  18. 18.
    N. Sharon, Trends Biochem. Sci. 1993, 18, 221.CrossRefGoogle Scholar
  19. 19.
    W.I. Weis, and K. Drickamer, Annu. Rev. Biochem. 1996, 65, 441.CrossRefGoogle Scholar
  20. 20.
    N. Sharon, and H. Lis, Essays Biochem. 1995, 30, 59.Google Scholar
  21. 21.
    J.H. Naismith and R.A. Field, J. Biol. Chem. 1996, 271, 972.CrossRefGoogle Scholar
  22. 22.
    K. Drickamer, J. Biol. Chem. 1988, 263, 9575–9560.Google Scholar
  23. 23.
    F. Fukumori, N. Takeuchi, T. Hagiwara, H. Ohbayashi, T. Endo, N. Kochibe, Y. Nagata, and A. Kobata, J. Biochem. 1990, 107, 190.Google Scholar
  24. 24.
    L.A. Lasky, Annu. Rev. Biochem. 1995, 64, 113.CrossRefGoogle Scholar
  25. 25.
    S. Hemmerich, H. Leffler, and S.D. Rosen J. Biol. Chem. 1995, 270, 12035.CrossRefGoogle Scholar
  26. 26.
    H. Kunz, Angew. Chem. Int. Ed. Engl. 1987, 26, 294.CrossRefGoogle Scholar
  27. 27.
    H. Garg and R.W. Jeanloz, Adv. Carbohydr. Chem. Biochem. 1985, 43, 135.CrossRefGoogle Scholar
  28. 28.
    H. Kunz, Pure & Appl. Chem. 1993, 65, 1223.Google Scholar
  29. 29.
    H. Kunz and C. Unverzagt, Angew. Chem. Int. Ed. Engl. 1984, 23, 436.CrossRefGoogle Scholar
  30. 30.
    J. März and H. Kunz, Synlett 1992, 589.Google Scholar
  31. 31.
    C.H. Wong, M. Schuster, P. Wang, and P. Sears, J. Am. Chem. Soc. 1993, 115, 5893.CrossRefGoogle Scholar
  32. 32.
    M. Mizuno, K. Haneda, R. Iguchi, I. Muramoto, T. Kawakami, S. Aimoto, K. Yamamoto, and T. Inazu, J. Am. Chem. Soc. 1999, 121, 284.CrossRefGoogle Scholar
  33. 33.
    P. Sears and C.-H. Wong, Science 2001, 291, 2344.CrossRefGoogle Scholar
  34. 34.
    P.P. Deshpande, H.M. Kim, A. Zatorski. T.K. Park, G. Raguphathi, P.O. Livingston, D. Live and S.J. Danishefsky, J. Am. Chem. Soc. 1998, 120, 1600.CrossRefGoogle Scholar
  35. 35.
    C.R. Bertozzi, D.G. Cook, W.R. Kobertz, F. Gonzalez-Scarano, M.D. Bednarski, J. Am. Chem. Soc., 1992, 114, 10639.CrossRefGoogle Scholar
  36. 36.
    L.M. Obei, C.M. Linardic, L.A. Karolak, and Y.A. Hannun, Science 1993, 259, 1769.CrossRefGoogle Scholar
  37. 37.
    J. Xue, N. Shao, and Z. Guo, J. Org. Chem. 2003, 68, 4020–4029.Google Scholar
  38. 38.
    U. Kempin, L. Henning, D. Knoll, P. Welzel, D. Müller, and J. Markus, van Heijenoort, Tetrahedron, 1997, 53, 17669.CrossRefGoogle Scholar
  39. 39.
    S. Loya, V. Reshef, E. Mizrachi, C., Silbertein, Y. Rachamim, S. Carmeli and A. Hizi, J. Nat. Prod. 1998, 61, 891.CrossRefGoogle Scholar
  40. 40.
    A. Persidis, Nature Biotechnology 1997, 15, 479.CrossRefGoogle Scholar
  41. 41.
    T. Buskas, Y. Li and G.-J. Boons, Chem. Eur. J. 2004, 10, 3517.CrossRefGoogle Scholar
  42. 42.
    J.Ø Duus, P.M. St. Hilaire M. Meldal, and K. Bock, Pure. Appl. Chem. 1999, 71, 755.Google Scholar
  43. 43.
    (a) B. G. Davis, Chem. Rev. 2002, 102, 579. (b) C.R. Bertozzi and L.L. Kiessling, Science 2001, 23, 2357.CrossRefGoogle Scholar
  44. 44.
    Y.C. Lee, C.P. Stowell, and M.J. Krantz, Biochemistry 1976, 15, 3956.CrossRefGoogle Scholar
  45. 45.
    G.R. Gray, Arch. Biochem. Biophys. 1974, 163, 426.CrossRefGoogle Scholar
  46. 46.
    C.R. McBroom, C.H. Samanen, and I.J. Goldstein, Methods Enzymol. 1972, 28, 212.CrossRefGoogle Scholar
  47. 47.
    D.H. Buss and I.J. Goldstein, J. Chem. Soc. C 1968, 1457.Google Scholar
  48. 48.
    C. Quétard, S. Bourgerie, N. Normand-Sdiqui, R. Mayer, G. Strecker, P. Midoux, A.C. Roche, and M. Monsigny, Bioconjugate Chem. 1998, 9, 268.CrossRefGoogle Scholar
  49. 49.
    R.U. Lemieux, D.R. Bindle, and D. A. Baker, J. Am. Chem. Soc. 1975, 97, 4076.CrossRefGoogle Scholar
  50. 50.
    W.O. Baek and M.A. Vijayalaksmi, Biochim. Biophys. Acta 1997, 1336, 394.Google Scholar
  51. 51.
    K.-Y. Jiang, O. Pitiot, M. Anissimova, H. Adenier, and M.A. Vijayalakshmi, Biochim, Biophys. Acta. 1999, 1433, 198.Google Scholar
  52. 52.
    V.P. Kamath, P. Diedrich, and O. Hindsgaul, Glycoconjugate J. 1996, 13, 315.CrossRefGoogle Scholar
  53. 53.
    G.A. Lemieux and C.R. Bertozzi, TIBTECH 1998, 16, 506.Google Scholar
  54. 54.
    S.E. Cervigni, P. Dumy, and M. Mutter, Angew. Chem. Int. Ed. Engl. 1996, 35, 1230.CrossRefGoogle Scholar
  55. 55.
    Y. Zhao, S.B.H. Kent, and B.T. Chait, Proc. Natl. Acad. Sci. USA, 1997, 94, 1629.CrossRefGoogle Scholar
  56. 56.
    P. Durieux, J. Fernandez-Carneado, and G. Tuchscherer, Tetrahedron Lett. 2001, 42, 2297.CrossRefGoogle Scholar
  57. 57.
    N.J. Davis and S.L., Flitsch, Tetrahedron Lett. 1991, 32, 6793.CrossRefGoogle Scholar
  58. 58.
    L.A. Marcaurelle and C.R. Bertozzi, J. Am. Chem. Soc. 2001, 123, 1587.CrossRefGoogle Scholar
  59. 59.
    W.M. Macindoe, A.H. van Oijen, and G.-J. Boons, Chem. Commun. 1998, 847.Google Scholar
  60. 60.
    I. Shin, H.-J. Jung, and M.R. Lee, Tetrahedron Lett. 2001, 42, 1325.CrossRefGoogle Scholar
  61. 61.
    B.J. Davis, R.C. Lloyd, and J.B. Jones, J. Org. Chem. 1998, 63, 9614.CrossRefGoogle Scholar
  62. 62.
    B.G. Davis, M.A.T. Maughan, M.P. Green, and A. Ullman, Tetrahedron: Asymmetry 2000, 11, 245.CrossRefGoogle Scholar
  63. 63.
    B.G. Davis, R.C. Lloyd, and J.B. Jones, Bioorg. Med. Chem. 2000, 8, 1527.CrossRefGoogle Scholar
  64. 64.
    J.C. Paulson, R.L. Hill, T. Tanabe, and G. Ashwell, J. Biol. Chem. 1997, 252, 8624.Google Scholar
  65. 65.
    S. Tsuboi, Y. Isogai, N. Hada, J.K. King, O. Hindsgaul, and M. Fukuda, J. Biol. Chem. 1996, 271, 27213.CrossRefGoogle Scholar
  66. 66.
    C. Unversagt, Tetrahedron Lett. 1997, 32, 5627.CrossRefGoogle Scholar
  67. 67.
    R.A. Geremia, E.A. Petroni, L. Ielpi, and B. Herissat, Biochem. J. 1996, 318, 133.Google Scholar
  68. 68.
    B. Friedman, S.C. Hubbard, and J.R. Rasmussen, Glycoconjugate, J. 1993, 10, 257.CrossRefGoogle Scholar
  69. 69.
    K. Witte, P. Sears, R. Martin, and C.-H. Wong, J. Am. Chem. Soc. 1997, 119, 2114.CrossRefGoogle Scholar
  70. 70.
    G.G. Kochendoerfer and S.B.H. Kent, Curr. Opin. Chem. Biol. 1999, 3, 665.CrossRefGoogle Scholar
  71. 71.
    C.-H. Wong, J. Org. Chem. 70, 4221 (2005).Google Scholar
  72. 72.
    P.P. Deshpande, H.M. Kim, A. Zatorski, T.K. Park, G. Raguphathi, P.O. Livingston, D. Live, and S.J. Danishefsky, J. Am. Chem. Soc. 1998, 120, 1600.CrossRefGoogle Scholar
  73. 73.
    C.R. Bertozzi, D.G. Cook, W.R. Kobertz, F. Gonzalez-Scarano, and M.D. Bednarski, J. Am. Chem. Soc. 1992, 114, 10639.CrossRefGoogle Scholar
  74. 74.
    L.M. Obei, C.M. Linardic, L.A. Karolak, and Y.A. Hannun, Science 1993, 259, 1769.CrossRefGoogle Scholar
  75. 75.
    J. Xue, N. Shao, and Z. Guo, J. Org. Chem. 2003, 68, 4020–4029.Google Scholar
  76. 76.
    U. Kempin, L. Henning, D. Knoll, P. Welzel, D. Müller, J. Markus, van Heijenoort, Tetrahedron, 1997, 53, 17669.CrossRefGoogle Scholar
  77. 77.
    S. Loya, V. Reshef, E. Mizrachi, C. Silbertein, Y. Rachamim, S. Carmeli, and A. Hizi, J. Nat. Prod. 1998, 61, 891.CrossRefGoogle Scholar
  78. 78.
    A. Persidis, Nature Biotechnology 1997, 15, 479.CrossRefGoogle Scholar
  79. 79.
    T. Buskas, Y. Li, and G.-J. Boons, Chem. Eur. J. 2004, 10, 3517.CrossRefGoogle Scholar
  80. 80.
    P.H. Seeberger, R.L. Soucy, Y.-U. Kwon, D.A. Snyder, and T. Konemitsu, Chem. Commun. 2004, 1706.Google Scholar
  81. 81.
    S. Bay, V. Huteau, M.-L. Zarantonelli, R. Pires, J. Ughetto-Monfrin, M.-K. Taha, P. England, and P. Lafaye, J. Med. Chem. 2004, 47, 3916.CrossRefGoogle Scholar
  82. 82.
    V. Verez-Bencomo, et al., Science 2004, 305, 522.CrossRefGoogle Scholar
  83. 83.
    S.J. Danishefsky and J.R. Allen, Angew. Chem. Int. Ed. 2000, 39, 836–863.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations