These types of glycosides have attracted much attention, considering that many of them have demonstrated their effectiveness as therapeutic agents. The increasing significance of C-glycosides is that the conformational differences compared to O- or N-glycosides are minimal and that they are resistant to enzymatic or acidic hydrolysis since the anomeric center has been transformed from acetal to ether. A glycoside is defined as C-glycoside when what it is suppose to be the anomeric carbon of a sugar is interconnected to the aglycon, generating a new C-C bond. According to Levy and Tang the term C-glycoside describes those structures in which a common structural motifs the presence of carbon functionality at what would otherwise be the anomeric position of a sugar or derivative. Structurally C-glycosides can be constituted by aliphatic, or aromatic aglycon, and the sugar can be pyranose or furanose. A variety of natural product C-glycosides has been described. Examples of C-glycosides isolated from different plant genus and characterized spectroscopically are: Carminic acid, Aloin, Scoparin, Saponarin, and more recently Cucumerins (flavonoid phytoalexins) and C-glucosylxanthones and complex benzoquinone Altromycin B among others (Figure 5.1).


Glycosyl Donor Carminic Acid Mitsunobu Reaction Ethyl Isocyanoacetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.S. Belica, and R.W. Franck, Tetrahedron Lett. 39, 8225 (1998).CrossRefGoogle Scholar
  2. 2.
    D.E. Levy, and C. Tang, The Chemistry of C-Glycosides, Pergamon Press: Oxford (1995).Google Scholar
  3. 3.
    D.J. McNally, K.V. Wurms, C. Labbé, S. Quideau, and R.R. Belanger, J. Nat. Prod. 66, 1280 (2003).Google Scholar
  4. 4.
    P.M. Pauletti, I. Castro-Gamboa, D.H. Siqueira-Silva, M.C. Marx-Young, D.M. Tomazela, M.N. Eberlin, V. da Silva-Bolzani, J. Nat. Prod. 66, 1384 (2003).CrossRefGoogle Scholar
  5. 5.
    P. Pasetto and W. Franck, J. Org. Chem. 68, 8042 (2003).CrossRefGoogle Scholar
  6. 6.
    R.E. Dolle and K.C. Niclolaou, J. Am. Chem. Soc. 107, 1691 (1985).CrossRefGoogle Scholar
  7. 7.
    R.E. Ireland, R.C. Anderson, R. Badoub, B. Fitzsimmons, S. McGarvey, S. Thaissivongs, and C.S. Wicox, J. Am. Chem. Soc., 105, 1983 (1983).CrossRefGoogle Scholar
  8. 8.
    F. Emery and P. Vogel, Tetrahedron Lett. 4209 (1993).Google Scholar
  9. 9.
    L. Paterson and L.E. Keown, Tetrahedron Lett. 38, 5727 (1997).CrossRefGoogle Scholar
  10. 10.
    M.D. Lewis, J.K. Cha, and Y. Kishi, J. Am. Chem. Soc. 104, 4976 (1982).CrossRefGoogle Scholar
  11. 11.
    Y. Du, R.J. Linhardt, and I. Vlahov, Tetrahedron 54, 9913 (1998).CrossRefGoogle Scholar
  12. 12.
    (a) M.H.D. Postema, C-glycoside Synthesis; CRC Press: Boca Ratón (1995); b) M.H.D. Postema Tetrahedron 48, 8545 (1992).Google Scholar
  13. 13.
    P. Sinaÿ, Pure & Appl. Chem. 69, 459 (1997).Google Scholar
  14. 14.
    J. Gervay, and M.J. Hadd, J. Org. Chem. 62, 6961 (1997).CrossRefGoogle Scholar
  15. 15.
    K. Oyama and T.J. Kondo, Org. Chem. 69, 5240 (2004).CrossRefGoogle Scholar
  16. 16.
    E. Calzada, C.A. Clarke, C. Roussin-Bouchard, and R.H. Wightman, J. Chem. Soc. Perkin Trans 1, 717 (1995).Google Scholar
  17. 17.
    R.W. Schmidt, B. Frick, B. Haag-Zeino and S. Apparao, Tetrahedron Lett. 28, 4045 (1987).CrossRefGoogle Scholar
  18. 18.
    J.M. Lancelin, J.R. Pougny, and P. Sinaÿ, Carbohydr. Res. 136, 369 (1985).CrossRefGoogle Scholar
  19. 19.
    D. Craig, M.W. Pennington, and P. Warner, Tetrahedron 55, 13495 (1999).CrossRefGoogle Scholar
  20. 20.
    R.R. Schmidt and P. Shorma, Carbohydr. Res. 14, 1353 (1985).Google Scholar
  21. 21.
    M.A. Tius, J. Gomez-Galano, X. Gu, and J.H. Zaidi, J. Am. Chem. Soc. 113, 5775 (1991).CrossRefGoogle Scholar
  22. 22.
    A. Abas, R.L. Beddoes, J.C. Conway, P. Quayle, and C.J. Urch, Synlett, 1264 (1995).Google Scholar
  23. 23.
    B.A. Johns, Y.T. Pan, A.D. Elbein, and C.R. Johnson, Carbohydr. Res. 136, 369 (1985).CrossRefGoogle Scholar
  24. 24.
    T. Kometani, H. Kondo, and Y. Fujimori, Synthesis 1005 (1988).Google Scholar
  25. 25.
    F. Burkhart, M. Hoffmann, and H. Kessler, Angew. Chem. Int. Ed. Engl. 36, 1191 (1997).CrossRefGoogle Scholar
  26. 26.
    K.A. Parker and C.A. Coburn, J. Am. Chem. Soc. 113, 8516 (1991).CrossRefGoogle Scholar
  27. 27.
    O.R. Martin and W. Lai, J. Org. Chem. 58, 176 (1993).CrossRefGoogle Scholar
  28. 28.
    (a) P. Schawab, M.B. France, J.W. Ziller, and R.H. Grubbs, Angew. Chem., Int, Ed. Engl. 34, 2039 (1995). (b) M.H.D Postema, J.L. Piper, and R.L. Betts, J. Org. Chem. 70, 829 (2005).CrossRefGoogle Scholar
  29. 29.
    R. Roy, R. Dominique, and S.K. Das, J. Org. Chem. 64, 5408 (1999).CrossRefGoogle Scholar
  30. 30.
    T. Mazéas, J.M. Skrydstrup, and J.M. Beau, Angew. Chem, 107, 990 (1995).Google Scholar
  31. 31.
    S.L. Krintel, J. Jiménez-Barbero, and T. Skrydstrup, Tetrahedron Lett., 40, 7565 (1999).CrossRefGoogle Scholar
  32. 32.
    A. Dondoni and A. Marra, Chem. Rev. 100, 4395 (2000).CrossRefGoogle Scholar
  33. 33.
    Y. Ohnishi and Y. Ichikawa, Bioorg. Med. Chem. Lett. 12, 997 (2002).CrossRefGoogle Scholar
  34. 34.
    G. Yang, R.W. Franck, R. Bittman, P. Samadder, and G. Arthur, Org. Lett. 3, 197 (2001).CrossRefGoogle Scholar
  35. 35.
    F.K. Griffin, D.E. Paterson, and R.J. Taylor, Angew. Chem., Int. Ed. 38, 2939 (1999).CrossRefGoogle Scholar
  36. 36.
    H. Togo, W. He, and Y. Waki, and M. Yokohama, Synlett 700 (1998).Google Scholar
  37. 37.
    A. Chenede, E. Perrin, E.D. Rekai, and P. Sinaÿ, Synlett 420 (1994).Google Scholar
  38. 38.
    B. Giese, K.S. Gröninger, T. Witzel, H.G. Korth, and R. Sustmann, Angew. Chem. Int. Ed. Engl., 26, 233 (1987).CrossRefGoogle Scholar
  39. 39.
    C. Taillefumier and Y. Chapleur, Chem. Rev. 104, 263 (2004).CrossRefGoogle Scholar
  40. 40.
    K. Bischofberger, R.H. Hall, and A.J. Jordaan, Chem. Soc. Chem. Commun. 806 (1975).Google Scholar
  41. 41.
    R.H. Hall, K. Bischofberger, S.J. Eitelman, and A.J. Jordaan, Chem. Soc. Perkin Trans. 1, 743 (1977).CrossRefGoogle Scholar
  42. 42.
    Y. Chapleur J. Chem. Soc. Chem. Commun. 449 (1984).Google Scholar
  43. 43.
    C.S. Wilcox, G.W. Long, and H. Suh, Tetrahedron Lett. 25, 395 (1984).CrossRefGoogle Scholar
  44. 44.
    M. Brockhaus and J. Lehmann, Carbohydr. Res. 53, 21 (1977).CrossRefGoogle Scholar
  45. 45.
    S.J. Eitelman, R.H. Hall, and A.J. Jordaan, Chem. Soc., Chem. Commun. 923 (1976).Google Scholar
  46. 46.
    F.K. Griffin, D.E. Paterson, P.V. Murphy, and R.J.K. Taylor, Eur. J. Org. Chem. 1305 (2002).Google Scholar
  47. 47.
    M. Toth and L. Somsak, J. Chem. Soc., Perkin Trans. 1, 942 (2001).CrossRefGoogle Scholar
  48. 48.
    L. Lay, F. Nicotra, L. Panza, G. Russo, E. Caneva, J. Org. Chem. 57, 1304 (1992).CrossRefGoogle Scholar
  49. 49.
    X. Li, H. Takahasi, H. Ohtake, and S. Ikegami, Tetrahedron Lett, 45, 3981 (2004).CrossRefGoogle Scholar
  50. 50.
    G. Casiraghi, F. Zanardi, G. Rassu, and P. Spanu, Chem. Rev. 95, 1677 (1995).CrossRefGoogle Scholar
  51. 51.
    B. Vauzeilles, D. Cravo, J.-M. Mallet, and P. Sinaÿ, Synlett, 522 (1993).Google Scholar
  52. 52.
    A.J. Fairbanks, E. Perrin, and P. Sinaÿ, Synlett 679 (1996).Google Scholar
  53. 53.
    D.S.T. Mazeas, O. Doumeix, J.-M. Beau, Angew. Chem. Int. Ed. Engl. 33, 1383 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations