Advertisement

Abstract

Modified nucleosides are useful therapeutic agents being currently used as antitumor, antiviral, and antibiotic agents. Despite the fact that a significant variety of modified nucleosides displays potent and selective action against the mentioned diseases, the challenge still attracts full attention since most of them do not discriminate between normal and tumor cell and in viral infection resistant strains usually appear during the course of the treatment.

Keywords

Acyclic Nucleoside Porcine Pancreas Lipase Carbocyclic Nucleoside Tributyltin Hydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Mitsuya, R. Yarchoan, and S. Broder, Science, 249, 1533 (1990).Google Scholar
  2. 2.
    D.M. Huryn and M. Okabe, Chem. Rev., 92, 1745 (1992).Google Scholar
  3. 3.
    H. Mitsuya and S. Broder, S. Proc. Natl. Acad. Sci. USA, 83, 1911 (1986).Google Scholar
  4. 4.
    C. Simons, Nucleoside Mimetics, Ed. Gordon and Breach Science Publishers, (2001).Google Scholar
  5. 5.
    L.A. Agrofolio, I. Guillaizeau, and Y. Saito, Chem. Rev., 103, 1875 (2003).Google Scholar
  6. 6.
    G. Crisp and B.L. Flynn, J. Org. Chem., 58, 6614 (1993).Google Scholar
  7. 7.
    T.S. Mansur, C.A. Evans, M. Charron, and B.E. Korba, Bioorg. Med. Chem. Lett., 7, 303 (1997).Google Scholar
  8. 8.
    V. Farina and S.I. Hauck, Synlett, 157 (1991).Google Scholar
  9. 9.
    S.G. Rahim, N. Trivedi, M.V. BogunovicBatchelor, G.W. Hardy, G. Mills, J.W. Selway, W. Snowden, E. Littler, P.L. Coe, I. Basnak, R.F. Whale, and R.T. Walker, J. Med. Chem., 39, 789 (1996).Google Scholar
  10. 10.
    (a) R.F. Heck, J. Am. Chem. Soc., 90, 5518 (1968). (b) J.J. Li and G.W. Gribble, Palladium in Heterocyclic Chemistry; Pergamon Press: New York (2000).Google Scholar
  11. 11.
    T. Hanamoto, T. Kobayashi, and M. Kondo. Synlett, 2, 281 (2001).Google Scholar
  12. 12.
    G. Palmisano, and M. Santagostino, Tetrahedron, 49, 2553 (1993).Google Scholar
  13. 13.
    J.H. Lister, in: The chemistry of Heterocyclic Compounds (Eds. Weissberger, A., Taylor, E.C.), Wiley Interscience, vol. 24. (1971).Google Scholar
  14. 14.
    G. Shaw, in: Comprehensive Heterocycle Chemistry (Eds. Katritzky, A.R., Rees, C.W.), Pergamon Press, 5, 501 (1984).Google Scholar
  15. 15.
    M. Hocek, Eur. J. Org. Chem., 245 (2003).Google Scholar
  16. 16.
    V. Nair and S.D. Chamberlain, J. Am. Chem. Soc., 107, 2183 (1985).Google Scholar
  17. 17.
    V. Nair and D. Young, J. Org. Chem., 49, 4340 (1984).Google Scholar
  18. 18.
    K. Tanji and T. Higashino, Heterocycles, 30, 435 (1990).Google Scholar
  19. 19.
    H. Vorbrügen and K. Krolikiewicz, Angew. Chem., 88, 724 (1976).Google Scholar
  20. 20.
    E.C. Taylor and S.F. Martin, J. Am. Chem. Soc., 96, 8095 (1974).Google Scholar
  21. 21.
    R. Mornet, N.J. Leonard, M. Theiler, and M. Doree, J. Chem. Soc. Perkin Trans 1, 879 (1984).Google Scholar
  22. 22.
    T.C. McKenzie and D. Glass, J. Heterocycl. Chem., 24, 1551 (1987).Google Scholar
  23. 23.
    C.D. Nguyen, L. Beaucourt, and L. Pichat, Tetrahedron Lett., 20, 3159 (1979).Google Scholar
  24. 24.
    K. Hirota, Y. Kitade, Y. Kanbe, and Y. Maki, J. Org. Chem., 57, 5268 (1992).Google Scholar
  25. 25.
    H. Dvo_’aková, D. Dvo_’ak, and A. Hol_, Tetrahedron Lett., 37, 1285 (1996).Google Scholar
  26. 26.
    L.L. Gundersen, A.K. Bakkestuen, A.J. Aasen, H. Øveras, and F. Rise, Tetrahedron 50, 9743 (1994).Google Scholar
  27. 27.
    A.A. Van Aerschot, P. Mamos, N.J. Weyns, S. Ikeda, E. De Clercq, and P. Herdewijn, J. Med. Chem., 36, 2938 (1995).Google Scholar
  28. 28.
    S. Vottori, E. Camaioni, E. Di Francesco, R. Volpini, A. Monopoli, S. Dionisotti, E. Ongini, and G. Cristalli, J. Med. Chem., 39, 4211 (1996).Google Scholar
  29. 29.
    E. Edstrom and Y. Wei, J. Org. Chem., 60, 5069 (1995).Google Scholar
  30. 30.
    J. Balzarini, G.J. Kang, M. Dalal, P. Herdeweijn, E. DeClercq, S. Broder, and D.G. Johns, Mol. Pharmacol., 32, 162 (1987).Google Scholar
  31. 31.
    Y. Hamamoto, H. Nakashima, T. Matsui, A. Matsuda, T. Ueda, and N. Yamamoto, Antimicrob. Agents Chemother., 31, 907 (1987).Google Scholar
  32. 32.
    P.S. Manchand, P.S. Belica, M.J. Holman, T.N. Huang, H. Maehr, S.Y.K. Tam, and T. Yang, T. J. Org. Chem., 57, 3473 (1992).Google Scholar
  33. 33.
    M.J. Robins, F. Hansske, N.W. Low, and J.I. Park, Tetrahedron Lett., 25, 367 (1984).Google Scholar
  34. 34.
    T.S. Lin, M.Z. Luo, M.Ch. Liu, Y.L. Zhu, E. Gullen, E.G. Dutschman, and Y. Ch. Cheng, J. Med. Chem., 39, 1757 (1996).Google Scholar
  35. 35.
    E.J. Corey and R.A.E. Winter, J. Am. Chem. Soc., 85, 2677 (1963).Google Scholar
  36. 36.
    L.W. Dudycz, Nucleosides, Nucleotides, 8, 35 (1989).Google Scholar
  37. 37.
    E.J. Corey, and P.B. Hopkins, Tetrahedron Lett., 23, 1979 (1982).Google Scholar
  38. 38.
    M.M. Mansuri, J.E. Jr. Starrett, J.A. Wos, D.R. Tortolani, P.R. Brodfuerhrer, H.G. Howell, and J.C. Martin, J. Org. Chem, 54, 4780 (1989).Google Scholar
  39. 39.
    H. Shiragami, Y. Irie, H. Yokozeki, and N. Yasuda, J. Org. Chem., 53, 5170 (1988).Google Scholar
  40. 40.
    A. Rosowsky, V.C. Solan, J.G. Sodroski, and R.M. Ruprecht, J. Med. Chem., 32, 1135 (1989).Google Scholar
  41. 41.
    C.H. Kim, V.E. Marquez, S. Broder, H. Mitsuya, and J.S. Driscoll, J. Med. Chem., 30, 862 (1987).Google Scholar
  42. 42.
    D.H.R. Barton, D.O. Jang, and J.C. Jaszberenyi, Tetrahedron Lett., 32, 2569 (1991).Google Scholar
  43. 43.
    C. Chu, U.T. Bhadti, B. Doboszowski, Z.P. Gu, Y. Kosugi, K.C. Pullaiah, and P. Van Roey, J. Org. Chem. 54, 2217 (1989).Google Scholar
  44. 44.
    G.W.J. Fleet, J.C. Son, and A.E. Derome, Tetrahedron, 44, 625 (1988).Google Scholar
  45. 45.
    W. Zhou, G. Gumina, Y. Chong, J. Wang, R.F. Schinazi, and Ch.K. Chu, J. Med. Chem., 47, 3399 (2004).Google Scholar
  46. 46.
    F. Hansske and M.J. Robins, J. Am. Chem. Soc., 105, 6736 (1983).Google Scholar
  47. 47.
    M.S. Motawia, J. Wendel, A.E.S. AbdelMegid, and E.B. Pedersen, Synthesis, 384 (1989).Google Scholar
  48. 48.
    L. Svansson, I. Kvarnström, B. Classon, and B. Samuelson, J. Org. Chem., 56, 2993 (1991).Google Scholar
  49. 49.
    M. Okabe, R.C. Sun, S.Y.K. Tam, L.J. Todaro, and D.L. Coffen, J. Org. Chem. 53, 4780 (1988).Google Scholar
  50. 50.
    C.K. Chu, J.W. Beach, G.V. Ullas, ad Y. Kosugi, Tetrahedron Lett., 29, 5349 (1988).Google Scholar
  51. 51.
    J.F. Lavallée and G. Just, Tetrahedron Lett., 32, 3469 (1991).Google Scholar
  52. 52.
    J.P. Horwitz, J. Chua, and M. Noel, J. Org. Chem., 29, 2076 (1964).Google Scholar
  53. 53.
    J.L. Rideout, D.W. Barry, S.N. Lehman, M.H. St. Clair, P.A. Furman, and G.A. Freeman, 3,608,606; E.P. Chem. Abst. 106, P38480b (1987).Google Scholar
  54. 54.
    V.E. Zaitseva, N.B. Dyatkina, A.A. Krayavskii, N.V. Skaptsova, O.V. Turina, N.V. Gnuchev, B.P. Gottikh, and A.V. Azhaev, Bioorg. Khim., 10, 670 (1984).Google Scholar
  55. 55.
    J.D. Wilson, M.R. Almond, J.L. Rideout, E.P. 295, 090; Chem. Abst., 111, P23914a (1989).Google Scholar
  56. 56.
    M.E. Jung and J.M. Gardiner, J. Org. Chem., 113, 2614 (1991).Google Scholar
  57. 57.
    M.W. Hager and D.C. Liotta, J. Am. Chem. Soc., 113, 5117 (1991).Google Scholar
  58. 58.
    G.A. Freeman, S.R. Shauer, J.L. Rideout, and S.A. Short, Bioorg. Med. Chem. 3, 447 (1995).Google Scholar
  59. 59.
    V.N. Barai, A.I. Zinchenko, L.A. Eroshevskaya, E.V. Zhernosek, J. Balzarini, E. De Clercq, and I.A. Mikhailopulo, Nucleosides, Nucleotides, and Nucleic Acids 22, 751 (2003).Google Scholar
  60. 60.
    K. Izawa, S. Takamatsu, S. Katayama, N. Hirose, S. Kosai, and T. Maruyama, Nucleosides, Nucleotides & Nucleic Acids, 22, 507 (2003).Google Scholar
  61. 61.
    K. Haraguchi, S. Takeda, and H. Tanaka, Org. Lett., 5, 1399 (2003).Google Scholar
  62. 62.
    H. Ohrui, S. Kohgo, K. Kitano, S. Sakata, E. Kodama, K. Yoshimura, M. Matsuoka, S. Shigeta, and H. Mitsuya, J. Med. Chem., 43, 4516 (2000).Google Scholar
  63. 63.
    T. Kondo, T. Ohgi, and T. Goto, Chem Lett., 419 (1983).Google Scholar
  64. 64.
    H. Akimoto, E. Imamiya, T. Hitaka, and H. Nomura, J. Chem. Soc. Perkin Trans. 1, 1637 (1988).Google Scholar
  65. 65.
    Ch.J. Barnett and L.M. Grubb, Tetrahedron, 56, 9221 (2000).Google Scholar
  66. 66.
    S. Knapp and S.R. Nandan, J. Org. Chem., 59, 281 (1994).Google Scholar
  67. 67.
    H. Hotoda, M. Daigo, T. Takatsu, A. Muramatsu, and M. Kaneko, Heterocycles, 52, 133 (2000).Google Scholar
  68. 68.
    A.G. Myers, D.Y. Gin, and D.H. Rogers, J. Am. Chem. Soc., 116, 4697 (1994).Google Scholar
  69. 69.
    Ch. McGwigan, H. Barucki, S. Blewett, A. Caragio, J.T. Erichsen, G. Andrei, R. Snoock, E. De Clercq, and J. Balzarini, J. Med. Chem., 43, 4993 (2000).Google Scholar
  70. 70.
    A.R. Porcari and L.B. Towsend, Nucleosides, Nucleotides & Nucleic Acids, 23, 31 (2004).Google Scholar
  71. 71.
    S. Hannesian and A.G. Pernet, Adv. Carbohydr. Chem.Biochem., 33, 111 (1976).Google Scholar
  72. 72.
    F. De las Heras, S.Y. Tam, R.S. Klein, and J.J. Fox, J. Org. Chem., 41, 84 (1976).Google Scholar
  73. 73.
    M. Bobek, J. Farkas, and F. Sorm, Collec. Czech. Chem. Commun, 34, 1690 (1969).Google Scholar
  74. 74.
    W.A. Asbun, and S.B. Binkley, J. Org. Chem., 33, 140 (1968).Google Scholar
  75. 75.
    P.C. Sriswastava, M.V. Pickering, L.B. Allen, D.G. Streeter, M.T. Campbell, J.T. Witkowski, R.W. Sidwell, and R.K. Robins, J. Med. Chem., 20, 256 (1977).Google Scholar
  76. 76.
    K.S. Ramasamy, R. Bandaru, and D. Averett, J. Org. Chem., 65, 5849 (2000).Google Scholar
  77. 77.
    G. Trummlitz, and J. G. Moffat, J. Org. Chem., 38, 1841 (1973).Google Scholar
  78. 78.
    U. Von Krosigk, and S.A. Benner, Helv. Chim. Acta, 87, 1299 (2004).Google Scholar
  79. 79.
    H.C. Zhang, G.D. Daves, J. Org. Chem., 57, 4690 (1992).Google Scholar
  80. 80.
    G. Kim, and H.S. Kim, Tetrahedron Lett., 41, 225 (2000).Google Scholar
  81. 81.
    J.J. Chen, J.C. Drach, and L.B. Towsend, J. Org. Chem., 68, 4170 (2003).Google Scholar
  82. 82.
    S. Hannessian, S. Marcotte, Machaalani, and G. Huang, Org. Lett., 2003, 5, 4277 (2003).Google Scholar
  83. 83.
    T. Yokamatsu, M. Salto, H. Abe, K. Suemune, K. Matsumoto, T. Kihara, S. Soeda, H. Shimeno, and S. Shibuya, Tetrahedron 53, 11297 (1997).Google Scholar
  84. 84.
    N. Katagiri, Y. Morishita, and M. Yamaguchi, Tetrahedron Lett., 39, 2613 (1998).Google Scholar
  85. 85.
    Deardorff, D.R., Mattews, A.J., McKeenin, D.S., Craney, C.L. Tetrahedron Lett. 1986, 27, 1255.Google Scholar
  86. 86.
    Deardorff, D.R., Shambayati, S., Myles, D.C., Heerding, D. J. Org. Chem. 1989, 54, 3614.Google Scholar
  87. 87.
    Deardorff, D.R., Savin, K.A., Justman, C.J., Karanjawala, Z.E., Sheppeck, J.E.II., Hager, D.C., Aydin, N J. Org. Chem. 1996, 61, 3616.Google Scholar
  88. 88.
    P. Herdewijn, J. Balzarini, E. De Clercq, and H. Vanderhaeghe, J. Chem. Med., 28, 1385 (1985).Google Scholar
  89. 89.
    D.J. Tenney, S.M. Yamanaka, C.W. Voss, C.W. Cianci, A.V. Tuomari, A.K. Sheaffer, M. Alam, and R.J. Colonno,Antimicrob. Agents Chemother., 41, 2680 (1997).Google Scholar
  90. 90.
    D.H.R. Barton, and M. Ramesh, J. Am. Chem. Soc., 112, 891 (1990).Google Scholar
  91. 91.
    M. Kitagawa, S. Hasegawa, S. Saito, N. Shimada, and T. Takita, Tetrahedron Lett., 32, 3531 (1991).Google Scholar
  92. 92.
    M. Honjo, T. Maruyama, Y. Sato, and T. Horii, Chem. Pharm. Bull., 37, 1413 (1989).Google Scholar
  93. 93.
    G.S. Bisacchi, A. Braitman, C.W. Cianci, J.M. Clark, A.K. Field, M.E. Hagen, D.R. Hockstein, M.F. Malley, T. Mitt, W.A. Slusarchyk, J.E. Sundeen, B.J. Terry, A.V. Tuomari, E.R. Weaver, M.G. Young, and R. Zahler, J. Med. Chem. 34, 1415 (1991).Google Scholar
  94. 94.
    Y. Ohnishi, and Y. Ichikawa, Bioorg. Med. Chem. Lett., 12, 997 (2002).Google Scholar
  95. 95.
    P. Russ, P. Schelling, L. Scapozza, G. Folkers, E. De Clercq, V.E. Marquez, J. Med. Chem., 46, 5045 (2003).Google Scholar
  96. 96.
    O.R. Ludek, and C. Meier, Nucleosides, Nucleotides and Nucleic Acids, 22, 683 (2003).Google Scholar
  97. 97.
    H.C. Zhang, and G.D. Daves, J. Org. Chem., 58, 2557 (1993).Google Scholar
  98. 98.
    M.T. Crimmins, and W.J. Zuercher, Org. Lett., 2, 1065 (2000).Google Scholar
  99. 99.
    T. Obara, S. Shuto, Y. Saito, R. Snoeck, G. Andrei, J. Balzarini, E. De Clercq, and A. Matsuda, J. Med. Chem., 39, 3847 (1996).Google Scholar
  100. 100.
    E.A. SavilleStones, S.D. Lindell, N.S. Jennings, J.C. Head, and M.J. Ford, J. Chem. Soc., Perkin Trans 1, 2603 (1991).Google Scholar
  101. 101.
    L.L. Gundersen, T. Benneche, and K. Undheim, Tetrahedron Lett., 33, 1085 (1992).Google Scholar
  102. 102.
    L.S. Jeong, J.G. Park, W.J. Choi, H.R. Moon, K.M. Lee, H.O. Kim, H.D. Kim, M.W. Chun, H.Y. Park, K. Kim, Y.Y. Sheng, Nucleosides, Nucleotides and Nucleic Acids, 22, 919 (2003)Google Scholar
  103. 103.
    R.H. Foster and D. Faulds, Drugs, 55, 729 (1998).Google Scholar
  104. 104.
    M.T. Crimmins and B.W. King, J. Org. Chem., 61, 4192 (1996).Google Scholar
  105. 105.
    S.M. Roberts, S.J. Taylor, A.G. Sutherland, C. Lee, R. Wisdom, S. Thomas, and C. Evans, J. Chem. Soc. Chem. Commun., 1120 (1990).Google Scholar
  106. 106.
    M.I. Lim and V.E. Marquez, Tetrahedron Lett., 24, 5559 (1983).Google Scholar
  107. 107.
    V.E. Marquez, M.I. Lim, S.P. Treanor, J. Plowman, M.A. Priest, A. Markovac, M.S. Khan, B. Kaskar, and J.S. Driscoll, J. Med. Chem., 31, 1687 (1988).Google Scholar
  108. 108.
    Y.F. Shearly, C. A. O’Dell, and G. Amett, J. Med. Chem., 30,1090 (1987).Google Scholar
  109. 109.
    B.K. Chun, G.Y. Song, and Ch.K. Chu, J. Org. Chem., 66, 4852 (2001).Google Scholar
  110. 110.
    Ch.K. Chu, and S. Cutler, J. Heterocyclic Chem, 23, 289 (1986).Google Scholar
  111. 111.
    H.J. Schaeffer, L. Beauchamp, P. de Miranda, G. Elion, D.J. Bauer, and P. Collins, Nature, 272, 583 (1978).Google Scholar
  112. 112.
    J.R. Barrio, J.D. Bryant, and G.E. Keyser, J. Med. Chem, 23, 3263 (1980).Google Scholar
  113. 113.
    G.E. Keyser, J.D. Bryant, and J.R. Barrio, Tetrahedron Lett., 3263 (1979).Google Scholar
  114. 114.
    M.J. Robins and P.W. Hatfield, Can. J. Chem., 60, 547 (1982).Google Scholar
  115. 115.
    L. Naesens and E. De Clercq, Nucleotides & Nucleosides, 16, 983 (1997).Google Scholar
  116. 116.
    Q. Dang, Y. Liu, and M.D. Erion, Nucleotides & Nucleosides, 17, 1445 (1998).Google Scholar
  117. 117.
    A.K. Field, M.E. Davies, C. de Witt, H.C. Perry, R. Liou, J.L. Germerhausen, J.D. Karkas, W.T. Ashton, D.B. Johnson, and R.L. Tolman, Proc. Natl. Acd. Sci., 80, 4139 (1983).Google Scholar
  118. 118.
    M. Yokohama, Synthesis, 1637 (2000).Google Scholar
  119. 119.
    N.A. Van Drannen, G.A. Freeman, S.A. Short, R. Harvey, R. Jansen, G. Szczech, and G.W. Koszalka, J. Med. Chem., 39, 538 (1996).Google Scholar
  120. 120.
    S.G. Rahim, N. Trivedi, M.V. Bogunovic, G.W. Batchelor, G. Hardy, J.W. Mills, W. Selway, E. Snowden, P.L Littler: Coe, I. Basnak, R.F. Whale, and R.T. Walker, J. Med Chem., 39, 789 (1996).Google Scholar
  121. 121.
    M.R. Dyson, P.L. Coe, and R.T. Walker, J. Med. Chem., 34, 2782 (1991).Google Scholar
  122. 122.
    E.J. Reist, D.E. Gueffroy, and L. Goodman, J. Am. Chem. Soc., 86, 5658 (1964).Google Scholar
  123. 123.
    E.J. Reist, L.V. Fischer, and L. Goodman, J. Org. Chem., 33, 189 (1968).Google Scholar
  124. 124.
    R.G.S. Ritchie, D.M. Vyals; and W.A. Szarek, Can. J. Chem., 56, 794 (1978).Google Scholar
  125. 125.
    K. Haraguchi, A. Nishikawa, E. Sasakura, H. Tanaka, K. Nakamura, and T. Miyasaka, Tetrahedron Lett., 39, 3713 (1998).Google Scholar
  126. 126.
    T. Naka, N. Nishizono, N. Minakawa, and A. Matsuda, Tetrahedron Lett., 40, 6297 (1999).Google Scholar
  127. 127.
    N. Nishikono, N. Koike, Y. Yamagata, S. Fujii, and A. Matsuda, Tetrahedron Lett., 37, 7569 (1996).Google Scholar
  128. 128.
    M. Bobek, A. Bloch, R. Parthesarathy, and R.L. Whistler, J. Am. Chem. Soc., 13, 411 (1970).Google Scholar
  129. 129.
    Ritchie et al., J. Chem. Soc. Chem. Commun, 1973, 86, 686.Google Scholar
  130. 130.
    M. Bobek, A. Bloch, R. Parthasarathy, and R.L. Whistler, J. Med. Chem., 18, 784, (1975).Google Scholar
  131. 131.
    J.A. Secrist III, K.M. Tiwari, J.M. Riordan, and J. A. Montgomery, J. Med. Chem., 34, 2361 (1991).Google Scholar
  132. 132.
    U. Niedballa and H. Vorbrüggen, J. Org. Chem. 1974, 39, 3654.Google Scholar
  133. 133.
    M.F. Jones, S.A. Noble, C.A. Robertson, and R. Storer, Tetrahedron Lett., 32, 247 (1991).Google Scholar
  134. 134.
    J.W. Beach, L.S. Jeong, A.J. Alves, D. Pohl, H.O. Kim, C.N. Chang, S.L. Doong, R.F. Schinazi, Y.C. Cheng, C.K. Chu, J. Org. Chem., 57, 2217 (1992).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations