Advertisement

Abstract

These types of glycosides are generated when a sugar component is attached to an aglycon, through a nitrogen atom, establishing as a result a C-N-C linkage. Nucleosides are among the most relevant N-glycosides since they are essential components of DNA, RNA, cofactors, and a variety of antiviral and anti-neoplasic drugs.

Keywords

Oligonucleotide Synthesis Mitsunobu Reaction Porcine Pancreas Lipase Adenine Cytosine PRPP Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Nishimura, Progress Research Molecular Biology 12, 49 (1972).CrossRefGoogle Scholar
  2. 2.
    T. Kondo, T. Ohgi, and T. Goto, Agric. Biol. Chem. 41, 1501 (1977).Google Scholar
  3. 3.
    H. Akimoto, E. Imayima, T. Hitaka, H. Nomura, and S. Nishimura, J. Chem Soc Perkin Trans. I 1637 (1988).Google Scholar
  4. 4.
    C.J. Barnett and L.M. Grubb, Tetrahedron 56, 9221 (2000).CrossRefGoogle Scholar
  5. 5.
    T. Itaya, Chem. Pharm. Bull. 38, 2656 (1990).Google Scholar
  6. 6.
    (a) S. Knapp, Chem. Rev. 95, 1859 (1995). (b) M.T. Migawa, L.M. Risen, R.H. Griffey, and E.E. Swayze Org. Lett. 7, 3429 (2005).CrossRefGoogle Scholar
  7. 7.
    N. Chida, K. Koizumi, Y. Kitada, C. Yokohama, and S. Ogawa, J. Chem. Soc. Chem. Comm. 11 (1994).Google Scholar
  8. 8.
    M.P. Maguire, P.L. Feldman, and H. Rapoport, J. Org. Chem. 55, 948 (1990).CrossRefGoogle Scholar
  9. 9.
    L. Kalvoda, M. Prystas, and F. Sorm, Collect. Czech. Chem. Commun. 41, 788 (1976).Google Scholar
  10. 10.
    A.G. Myers, D.Y. Gin, and D.H. Rogers, J. Am. Chem. Soc. 116, 4697 (1994).CrossRefGoogle Scholar
  11. 11.
    H. Hahn, H. Heitsch, R. Rathmann, G. Zimmermann, C. Bormann, H. Zahner, and W. Konig, Liebigs Ann. Chem. 803 (1987).Google Scholar
  12. 12.
    S. Hanessian, J. Kloss, and T. Sugawara, J. Am. Chem. Soc. 108, 2758 (1986).CrossRefGoogle Scholar
  13. 13.
    N. Ikemoto and S.L. Schreiber, J. Am. Chem. Soc. 114, 2524 (1992).CrossRefGoogle Scholar
  14. 14.
    S. Knapp and S.R. Nandan, J. Org. Chem. 59, 281 (1994).CrossRefGoogle Scholar
  15. 15.
    G.M. Blackburn and M. Gait, Nucleic Acids in Chemistry and Biology, IRL 77 (1990).Google Scholar
  16. 16.
    C.-H. Wong, S.T. Chen, W.J. Hennen, J.A. Bibbs, Y-F. Wang, J.L-C. Liu, M.W. Pantoliano, M. Whitlo, and P.N. Bryan, J. Am. Chem. Soc. 112, 945 (1990).CrossRefGoogle Scholar
  17. 17.
    A. De la Cruz, J. Elguero, V. Gotor, P. Goya, A. Martínez, and F. Moris, Synth. Commun. 21, 1477 (1991). V. Gotor, and F. Morís, Synthesis 626 (1992).Google Scholar
  18. 18.
    S. Ozaki, K. Yamashita, T. Konishi, T. Maekawa, M. Eshima, A. Uemura, and L. Ling, Nucleosides Nucleotides 14, 401 (1995).Google Scholar
  19. 19.
    H.K. Singh, G.L. Cote, and R.S. Sikirski, Tetrahedron Lett. 34, 5201 (1993).CrossRefGoogle Scholar
  20. 20.
    D.L. Damkjaer, M. Petersen, and J. Wengel, Nucleosides Nucleotides 13, 1801 (1994).Google Scholar
  21. 21.
    Kawana et al., Chem Lett. 1541 (1981).Google Scholar
  22. 22.
    S. Kozai, T. Fuzikawa, K. Harumoto, T. Maruyama Nucleosides, Nucleotides & Nucleic Acids 22, 779 (2003).CrossRefGoogle Scholar
  23. 23.
    V. Serebryany and L. Beigelman, Tetrahedron Lett. 43, 1983 (2002).CrossRefGoogle Scholar
  24. 24.
    Taniguchi et al., Angew. Chem. Int. Ed. 37, 1136 (1988).CrossRefGoogle Scholar
  25. 25.
    M.J. Robins, V. Samano, and M.D. Johnson, J. Org. Chem. 55, 410 (1990).CrossRefGoogle Scholar
  26. 26.
    T. Kondo, T. Ohgi, and T. Goto, Chemistry Lett. 419 (1983).Google Scholar
  27. 27.
    B.K. Battacharya, T.S. Rao, and G.R. Revankar, J. Chem. Soc. 1543 (1995).Google Scholar
  28. 28.
    F. Seela, H. Steker,. H. Driller, and U. Bindig, Liebigs Ann. Chem. 15 (1987).Google Scholar
  29. 29.
    F. Seela and A. Kehne, Liebigs Ann. Chem. 876 (1983).Google Scholar
  30. 30.
    Z. Kazimierczuk, H.B. Cottam, G.R. Revankar, and R.K. Robins, J. Am. Chem. Soc. 106, 6379 (1984).CrossRefGoogle Scholar
  31. 31.
    E. Edstrom and Y. Wei, J. Org. Chem. 60, 5069 (1995).CrossRefGoogle Scholar
  32. 32.
    J. Davoll, B. Lythgoe, and A.R. Todd, J. Chem. Soc. 967 (1948).Google Scholar
  33. 33.
    R. S. Tipson, J. Biol. Chem. 55, 130 (1939).Google Scholar
  34. 34.
    K.H. Jung, and R.R. Schmidt, Liebigs, Ann., Chem. 1013 (1988).Google Scholar
  35. 35.
    E. De Clercq, G. Gosselin, M.C. Bergogne, J. De Ruddes, and J.L. Imbach, J. Med. Chem. 30, 982 (1987).CrossRefGoogle Scholar
  36. 36.
    G.E. Hilbert and T.B. Johnson, J. Am. Chem. Soc 52, 4489 (1930).CrossRefGoogle Scholar
  37. 37.
    (a) H. Vorbrüggen, K. Krolikiewicz and B. Bennua, Chem. Ber. 114, 1234 (1981). (b) H. Vorbrüggen and G. Höfle, Chem. Ber. 114, 1256 (1981).Google Scholar
  38. 38.
    S. Maier, R. Preuss, and R.R. Schmidt, Liebigs Ann. Chem. 483 (1990).Google Scholar
  39. 39.
    O. Mitsunobu, Synthesis 1 (1981).Google Scholar
  40. 40.
    Marminon et al., J. Med. Chem. 46, 609 (2003).CrossRefGoogle Scholar
  41. 41.
    R.F. Heck, Organic Rect. 27, 345 (1982).Google Scholar
  42. 42.
    N. Miyaura and A. Suzuki, Chem. Rev. 95, 2457 (1995).CrossRefGoogle Scholar
  43. 43.
    W.J. Scott, G.T. Crisp, and J.K. Stille, J. Am. Chem. Soc. 106, 4630 (1984).CrossRefGoogle Scholar
  44. 44.
    E.-I. Negishi, J. Organomet. Chem 653,1 (2002).Google Scholar
  45. 45.
    K. Sonogashira, In Comprehensive Organic Chemistry, Trost, B. M., Fleming, I., Eds.; Pergamon Press: N.Y. 3, 521 (1991).Google Scholar
  46. 46.
    Y. Hatanaka and T. Hiyama, Synlett 845 (1991).Google Scholar
  47. 47.
    (a) B.M. Trost, and D.L. Van Vranken, Chem Rev. 96, 395 (1996). (b) Tsuji, J., Yamakawa, T., Tetrahedron Lett. 20, 613 (1979).CrossRefGoogle Scholar
  48. 48.
    J.L. Ruth and D.E. Bergstrom, J. Org. Chem. 43, 2870 (1978). D.E. Bergstrom and J.L. Ruth, J. Am. Chem. Soc. 98, 1587 (1976). D.E. Bergstrom, J.L. Ruth, and P. Warwick, J. Org. Chem. 46, 1432 (1981).CrossRefGoogle Scholar
  49. 49.
    L.A. Agrofolio, I. Gillaizeau, and Y. Saito, Chem. Rev. 103, 1877 (2003).Google Scholar
  50. 50.
    A. Gross, O. Abril, J.M. Lewis, S. Geresh, and G.M. Whitesides, J. Am. Chem. Soc. 105, 7428 (1983).CrossRefGoogle Scholar
  51. 51.
    F. Eckstein, Oligonucleotides and Analog:-a Practical Approach, IRL (1991).Google Scholar
  52. 52.
    N.-S Li and J.A. Piccirilli, J. Org. Chem. 69, 4751 (2004).CrossRefGoogle Scholar
  53. 53.
    A. De Mesmaeker, R. Haner, P. Martin, and H.E. Moser, Acc. Chem. Res. 28, 366 (1995).CrossRefGoogle Scholar
  54. 54.
    M.J. Damha, P.A. Giannaris, P.A. Marfey, and L.S. Reid, Tetrahedon Lett. 32, 2573 (1991).CrossRefGoogle Scholar
  55. 55.
    M. Sekine, H. Tsuruoka, S. Iimura, H. Kusuoku, and T. Wada,. J. Org. Chem. 61, 4087 (1996).CrossRefGoogle Scholar
  56. 56.
    H. Mitsuya, R. Yarchoan, and S. Broder, Science 249, 1533 (1990).CrossRefGoogle Scholar
  57. 57.
    R. Dempcy, K.A. Browne, and T.C. Bruice, J. Am. Chem. Soc. 117, 6140 (1995).CrossRefGoogle Scholar
  58. 58.
    D.H.R. Barton and S.W. McCombie, J. Chem. Soc. Perkin Trans 1 1574 (1975).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations