Advertisement

Abstract

When a monosaccharide (or sugar fragment of any size) is condensed with either an aliphatic or aromatic alcohol, or another sugar moiety through an oxygen, a glycoside bond is formed. General examples of O-glycosides are shown in Figure 2.1.

Keywords

Cyclic Oligosaccharide Glycosyl Donor Promoter Condition Glycosyl Acceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Toshima, and K. Tatsuta, Chem. Rev. 93, 1503 (1993).CrossRefGoogle Scholar
  2. 2.
    F.B. Anderson, and D.H. Leaback, Tetrahedron 12, 236 (1961).CrossRefGoogle Scholar
  3. 3.
    H.P. Wessel, Carbohydr. Chem. 7, 263 (1988).Google Scholar
  4. 4.
    Y.F. Shearly, C.A. O’Dell, and G. Amett, J. Med. Chem. 30, 1090 (1987).CrossRefGoogle Scholar
  5. 5.
    W. Koenigs, and E. Knorr, Chem. Ber., 34, 957 (1901).CrossRefGoogle Scholar
  6. 6.
    K. Igarashi, Adv. Carbohydr. Chem.Biochem., 34, 243 (1977).Google Scholar
  7. 7.
    J.-H. Kim, H. Yang, J. Park, and G-J. Boons, J. Am. Chem. Soc., 127, 12090 (2005).CrossRefGoogle Scholar
  8. 8.
    M.P. De Ninno, P.A. McCarthy, K.C. Duplatiel, C. Eller, J.B. Etienne, M.P. Zawistowski, F.W. Bangerter, C.E. Chandler, L.A. Morehouse, E.D. Sugarman, R.W. Wilkins, H.A. Woody, and L.M. Zaccaro, J. Med. Chem. 40, 2547 (1997).CrossRefGoogle Scholar
  9. 9.
    R.B. Conrow, and S. Bernstein, J. Org. Chem. 36, 836 (1971).Google Scholar
  10. 10.
    A.V. Stachulski, and G.N. Jenkins, Natural Products Reports 173 (1998).Google Scholar
  11. 11.
    A. Bredereck, A. Wagner, H. Kuhn, and H. Ott, Chem. Ber. 93, 1201 (1960).Google Scholar
  12. 12.
    P. Bächli, E.G. Percival, J. Chem. Soc. 1243 (1952).Google Scholar
  13. 13.
    A.Y. Khorlin, I. M. Privalova, and I.B. Bystrova, Carbohydr. Res. 19, 272 (1971).CrossRefGoogle Scholar
  14. 14.
    H. Paulsen and H. Tietz, Angew. Chem. Int. Ed. Engl. 21, 927 (1982).CrossRefGoogle Scholar
  15. 15.
    H.P. Wessel, N. Iberg, M. Trumtel, and M.-C. Viaud, BioMed. Chem. Lett. 6, 27 (1996).CrossRefGoogle Scholar
  16. 16.
    K. Katano, H. An, Y. Aoyagi, M. Overhand, S.J. Sucheck, W.C. Stevens Jr., C.D. Hess, X. Zhou, and S.M. Hecht, J. Am. Chem. Soc. 120, 11285 (1998).CrossRefGoogle Scholar
  17. 17.
    (a) S. Umezawa, S. Koto, K. Tatsuta, H. Hineno, Y. Nishimura, and T. Tsumura, Bull. Chem. Soc. Jpn., 42, 529 (1969). (b) S. Hanessian, M. Tremblay, and E.E. Swayze, Tetrahedron, 59, 983 (2003). (c) H. Tanaka, Y. Nishida, Y. Furuta, and K. Kobayashi, Bioorg. Med. Chem. Lett., 12, 1723 (2002).CrossRefGoogle Scholar
  18. 18.
    H.J. Roth and A. Kleeman, Pharmaceut.Chem. 7, 263 (1988).Google Scholar
  19. 19.
    T. Suami, T. Otake, T. Nishimura, and Y. Ikeda, Bull. Chem. Soc. Jpn. 46, 1014 (1973).CrossRefGoogle Scholar
  20. 20.
    N. Bagget, A.K. Samra, and A. Smithson, Carbohydr. Res. 124. 63 (1983).CrossRefGoogle Scholar
  21. 21.
    (a) R.R. Schmidt, Angew. Chem. Int. Engl., 25, 213 (1986). (b) R.R. Schmidt, and K.-H. Jung, Carbohydr. Eur., 27, 12 (1999). (c) R.R. Schmidt and W. Kinzy, Adv. Carbohydr. Chem. Biochem., 50, 21 (1994).Google Scholar
  22. 22.
    A. Fürstner and T. Müller, J. Am. Chem. Soc. 121, 7814 (1999).CrossRefGoogle Scholar
  23. 23.
    A. Hasegawa, K. Fushimi, H. Ishida, and M. Kiso, J. Carbohydr. Chem. 12, 1203 (1993).Google Scholar
  24. 24.
    S. Danishefsky and M.D. Shair, J. Org. Chem. 16, 61 (1996).Google Scholar
  25. 25.
    D.P. Larson, C.H. Heathcock, J. Org. Chem. 62, 8406 (1997).CrossRefGoogle Scholar
  26. 26.
    S.F. Lu, Q.O. O’Yang, Z.W. Guo, B. Yu, and Y.Z. Hui, J. Org.Chem. 62, 8400 (1997).CrossRefGoogle Scholar
  27. 27.
    M. Brito-Arias, R. Pereda-Miranda, and C.H. Heathcock, J. Org. Chem. 69, 4567 (2004).CrossRefGoogle Scholar
  28. 28.
    (a) G.J. Boons, S. Isles, J. Org. Chem. 61, 4262 (1996). (b) G.-J. Boons, Contemporary Organic Synthesis 3, 173 (1996).CrossRefGoogle Scholar
  29. 29.
    (a) S. Komba, H. Galustian, H. Ishida, T. Feizi, R. Kannagi, and M. Kiso, Angew. Chem. Int. Ed. 38, 1131. (1999). (b) Y. Zhang, A. Brodsky, P. Sinay, Tetrahedron: Asymmetry 9, 2451 (1998). (c) A. Hasegawa, K. Ito, and H. Ishida, Kiso J. Carbohydr. Chem. 266, 279 (1995).CrossRefGoogle Scholar
  30. 30.
    (a) A. Koenig, R. Jain, R. Vig, K.E. Norgard,-Sumnicht, K.L. Matta, and A. Varki, Glycobiology, 7, 79 (1997). W.J. Sanders, E. J. Gordon, O. Dwir, P. J. Beck, R. Alon, and L.L. Kiessling, J. Biol. Chem. 274, 5271 (1999).CrossRefGoogle Scholar
  31. 31.
    A. Lubineau, J. Alais, and R. Lemoine J. Carbohydr. Chem. 19, 151 (2000).CrossRefGoogle Scholar
  32. 32.
    K.C. Nicolaou, T. Ohshima, F.L. van Delft, D. Vourloumis, J.Y. Xu, J. Pfefferkorn, and S. Kim, J. Am. Chem. Soc. 120, 8674 (1998).CrossRefGoogle Scholar
  33. 33.
    H. Lonn, Carbohydr. Res. 115, 139 (1985).Google Scholar
  34. 34.
    S.V. Ley, and H.W. Priepke, Angew. Chem. Int. Engl. 33, 2292 (1994).CrossRefGoogle Scholar
  35. 35.
    K. Hotta, H. Ishida, M. Kiso, and A. Hasegawa, J. Carbohydr. Chem. 14, 491 (1995).Google Scholar
  36. 36.
    D. Crich, and H. Li, J. Org. Chem. 67, 4640 (2002).CrossRefGoogle Scholar
  37. 37.
    Y. Jing, and X. Huang, Tetrahedron Lett. 45, 4615 (2004).CrossRefGoogle Scholar
  38. 38.
    D.R. Mootoo, P. Konradsson, U. Udodong, and B. Fraser-Reid, J. Am. Chem. Soc. 110, 5583 (1988).CrossRefGoogle Scholar
  39. 39.
    J.D.C. Codee, R.E.J.N. Litjens, R. den Heeten, H.S. Overkleeft, J.N. van Boom, and G.A. van der Marel, Org. Lett. 5, 1519 (2003).CrossRefGoogle Scholar
  40. 40.
    M. Yoshida, T. Kiyoi, T. Tsukida, and H. Kondo, J. Carbohydr. Chem. 17, 673 (1998).Google Scholar
  41. 41.
    A.V. Demchenko, N.N. Malysheva, and C. De Meo, Org. Lett. 5, 455 (2003).CrossRefGoogle Scholar
  42. 42.
    E. Fischer, and K. Zach, Sitz. ber. kgl. preuss. Akad. Wiss., 16, 311 (1913).Google Scholar
  43. 43.
    B. Freiser-Reid, D.R. Kelly, D.B. Tulshian, and P.S. Ravi, J. Carbohydrate Chem. 2, 105 (1983).Google Scholar
  44. 44.
    B.K. Shull, Z. Wu, and M. Koreeda, J. Carbohydr. Chem. 15(8), 955 (1996).Google Scholar
  45. 45.
    R.W. Murray and R. Jeyaraman, J. Org. Chem. 50, 2847 (1985).CrossRefGoogle Scholar
  46. 46.
    W. Adam, J. Bialas, and L. Hadjiarapoglou, Chem. Ber. 124, 2377 (1991).Google Scholar
  47. 47.
    C.H. Marzabadi, and C.D. Spilling, J. Org. Chem. 58, 3761 (1993).CrossRefGoogle Scholar
  48. 48.
    G. Belluci, G Catelani, G., Chiappe, C., D’Andrea, F., Tetrahedron Lett. 53, 10471 (1997).Google Scholar
  49. 49.
    Y. Du and F. Kong, J. Carbohydr. Chem. 14(3), 341 (1995).Google Scholar
  50. 50.
    R.L. Halcomb and S.J. Danishefsky, J. Am. Chem. Soc. 111, 6661 (1989).CrossRefGoogle Scholar
  51. 51.
    M. Upreti, D. Ruhela, and R.A. Vishwakarma, Tetrahedron 56, 6577 (2000).CrossRefGoogle Scholar
  52. 52.
    J. Broddefalk, K.-E. Bergquist, and J. Kihlberg, J. Tetrahedron Lett. 1996, 37, 3011. Broddefalk, J.; Bäcklund, J.; Almqvist, F.; Johansson, M.; Holmdahl, R.; Kilhberg, J. J. Am Chem. Soc. 120, 7676 (1998).CrossRefGoogle Scholar
  53. 53.
    H. Kunz, Angew. Chem. Int. Ed. Engl. 26, 294 (1987).CrossRefGoogle Scholar
  54. 55.
    M. Shimizu, H. Togo, and M. Yokohama, Synthesis 6, 779 (1998).Google Scholar
  55. 56.
    M. Morita, T. Natori, K. Akimoto, T. Osawa, H. Fukushima, and Y. Koezuka, BioMed. Chem Lett 5, 699 (1995).CrossRefGoogle Scholar
  56. 57.
    T. Mukaiyama, Y. Hashimoto, S. Shoda, Chem. Lett. 1983, 935.Google Scholar
  57. 58.
    K.C. Nicolaou, and N.J. Bockovich, and D.R. Carcanague, J. Am. Chem. Soc. 115, 8843 (1993).CrossRefGoogle Scholar
  58. 59.
    L.F. Tietze and R. Fischer, Angew. Chem. 5, 902 (1983).Google Scholar
  59. 60.
    S. Metha, and B.M. Pinto, J. Org. Chem. 58, 3269 (1993).CrossRefGoogle Scholar
  60. 61.
    A. Sobti, K. Kim, and G.A. Solikowski, J. Org. Chem. 6, 61 (1996).Google Scholar
  61. 62.
    K. Takeda, E. Kaji, H. Nakamura, A. Akiyama, A. Konda, and Y. Mizuno, and H. Takayanagi, and Y. Harigaya, Synthesis 341 (1996).Google Scholar
  62. 63.
    D.M. Garcia, H. Yamada, S. Hatakeyama, and M. Nishikawa, Tetrahedron Lett. 35, 3325 (1994).CrossRefGoogle Scholar
  63. 64.
    H. Nagai, S. Matsumura, and K. Toshima, Tetrahedron Lett. 43, 847 (2002).CrossRefGoogle Scholar
  64. 65.
    K. Toshima, H. Nakai, and S. Matsumura, Synlett 9, 1420 (1999).Google Scholar
  65. 66.
    K. Toshima, K. Kasumi, and S. Matsumura, Synlett 6, 813 (1999).Google Scholar
  66. 67.
    M. Oikawa, T. Tanaka, N. Fukuda, S. Kusumoto, Tetrahedron Lett. 45, 4039 (2004).CrossRefGoogle Scholar
  67. 68.
    (a) F. Burkhart, Z. Zhang, S. Wacowich-Sgarbi, and C-H Wong, Angew. Chem. Int. Ed. 40, 1274 (2001). (b) Lahmann, M., Oscarson, S. Org Lett. 2, 3881 (2000).CrossRefGoogle Scholar
  68. 69.
    J.M. Coteron, K. Singh, J.L. Asensio, M. Domingues-Dalda, A. Fernandez-Mayoralis, J. Jimenez-Barbero, and M. Martin-Lomas, J. Org. Chem. 60, 1502 (1995).CrossRefGoogle Scholar
  69. 70.
    K.G. Nilsson, Carbohydr. Res. 95, 167 (1987).Google Scholar
  70. 71.
    G.A. Freeman, S.R. Shauer, J.L. Rideout, and S.A. Short, Bioorg. Med. Chem. 3, 447 (1995).CrossRefGoogle Scholar
  71. 72.
    E.S. Simon, S. Grabowski, G.M. Whitesides, J. Org. Chem. 55, 1834 (1990).CrossRefGoogle Scholar
  72. 73.
    Y. Ichikawa, G.J. Shen, C.-H. Wong, J. Am. Chem. Soc. 113, 4698 (1991).CrossRefGoogle Scholar
  73. 74.
    J.J. Gaudino, J.C. Paulson, J. Am. Chem. Soc. 116, 1149 (1994).CrossRefGoogle Scholar
  74. 75.
    J.E. Heidlas, W.J. Lees, P. Pale, and G.M. Whitesides, J. Org. Chem. 57, 146 (1992).CrossRefGoogle Scholar
  75. 76.
    E.J. Toone, E.S. Simon, and G.M. Whitesides, J. Org. Chem. 56, 5603 (1991).CrossRefGoogle Scholar
  76. 77.
    J.L.C. Liu, G.-J. Shen, Y. Ichikawa, J.F. Rutan, G. Zapata, W.F. Vann, and C.-H. Wong, J. Am. Chem. Soc. 114, 3901 (1992).CrossRefGoogle Scholar
  77. 78.
    L.F. Mackenzie, Q. Wang, Q., R.A.J. Warren, and S.G. Whiters, J. Am. Chem. Soc. 120, 5583 (1998).CrossRefGoogle Scholar
  78. 79.
    D.G. Drueckhammer. W.J. Hennen, R.L. Pederson, C.F. Barbas III, C.M. Gautheron, T. Krach, and C.-H. Wong, Synthesis, 499 (1991).Google Scholar
  79. 80.
    X. Zeng, T. Murata, and T. Usui, J. Carbohydr. Chem. 22, 309 (2003).CrossRefGoogle Scholar
  80. 81.
    B.N. Cook, S. Bhakta, T. Biegel, K.G. Bowman, J.I. Armstrong, S. Hemmerich, and C.R. Bertozzi, J. Am. Chem. Soc. 122, 8612 (2000).CrossRefGoogle Scholar
  81. 82.
    H. Akita, E. Kawahara, and K. Kato, Tetrahedron Asymmetry 15, 1623 (2004).CrossRefGoogle Scholar
  82. 83.
    C.-H. Wong, S.L. Haynie, G.M. Whitesides, J. Org. Chem. 47, 5416 (1982).CrossRefGoogle Scholar
  83. 84.
    (a) K.C. Nicolaou, N. Watanabe, J. Li, J. Pastor, and N. Winssinger, Angew. Chem. Int. Ed. 37, 1559 (1998) K.C. Nicolaou, N. Winssinger, J. Pastor, and F. De Roose, J. Am. Chem. Soc. 119, 449 (1997) Wong, C.-H., Ye, X.-S., Zhang, Z. J. Am. Chem. Soc. 120, 7137 (1998). (b) S.A. Mitchell, M.R. Pratt, U.J. Hruby, and R. Polt, J. Org. Chem. 66, 2327 (2001).CrossRefGoogle Scholar
  84. 85.
    P.H. Seeberger and W.C. Haase, Chem Rev. 100, 4349 (2000).CrossRefGoogle Scholar
  85. 86.
    P. Sears. and C.-H. Wong, Science 291, 2344 (2001).CrossRefGoogle Scholar
  86. 87.
    D. Crich and M. Smith, J. Am. Chem. Soc. 124, 8867 (2002).CrossRefGoogle Scholar
  87. 88.
    H.J.M. Gijsen, L. Qiao, W. Fitz, and C.-H. Wong, Chem Rev. 96, 443 (1996).CrossRefGoogle Scholar
  88. 89.
    G. Gattuso, S.A. Nepogodiev, and J.F. Stoddart, Chem. Rev. 98, 1919 (1998).CrossRefGoogle Scholar
  89. 90.
    T. Ogawa and Y. Takahashi, Carbohydr. Res. 138, C5 (1985).CrossRefGoogle Scholar
  90. 91.
    Y. Takahashi and T. Ogawa, Carbohydr. Res. 169, 277 (1987).CrossRefGoogle Scholar
  91. 92.
    P.M. Collins and M.H. Ali, Tetrahedron Lett. 31, 4517 (1990).CrossRefGoogle Scholar
  92. 93.
    D. Bassieux, D. Gagnaire, and M. Vignon, Carbohydr. Res. 56, 19 (1977).CrossRefGoogle Scholar
  93. 94.
    G. Excoffier, M. Paillet, and M. Vignon, Carbohydr. Res. 135, C10 (1985).CrossRefGoogle Scholar
  94. 95.
    N. Nakamura, Methods Carbohydr. Chem. 10, 269 (1994).Google Scholar
  95. 96.
    S. Cottaz, C. Apparu, and H. Driguez, J. Chem. Soc., Perkin Trans. 1 2235 (1991).CrossRefGoogle Scholar
  96. 97.
    C. Apparu, S. Cottaz, C. Bosso, and H. Driguez, Carbohydr. Lett. 1, 349 (1994).Google Scholar
  97. 98.
    M. Kamakura and T. Uchiyama, Biosc. Biotechnol. Biochem. 57, 343 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations