Advertisement

Glycosides, Synthesis, and Characterization

Abstract

Monosaccharides are generally defined as aldoses and ketoses connected to a poly hydroxylated skeleton. In an aqueous solution, the monosaccharides are subject to internal nucleophilic addition to form cyclic hemiacetal structures. When the addition occurs between -OH at C(4) or -OH at C(5) with the carbonyl group, a five-or a six-member ring is formed known as a furanose or a pyranose, respectively. It is also known that equilibrium exists between the open and the cyclic form, being displaced to the latter by more than 90%. Therefore, in aqueous solutions, it is more accurate to consider that most of the sugars are present as cyclic molecules and behave chemically as hemiacetals.

Keywords

Glycosyl Donor Glycosyl Acceptor Fischer Projection Sialic Acid Aldolase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Robyt, Essentials of Carbohydrate Chemistry, Springer, NY (1998).Google Scholar
  2. 2.
    H.S. Khadem, Carbohydrate Chemistry, Academic Press, NY (1988).Google Scholar
  3. 3.
    E. Fischer, Ber. 23, 2114 (1890).Google Scholar
  4. 4.
    G. Casiraghi, F. Zanardi, G. Rassu, and P. Spanu, Chem. Rev. 95, 1677 (1995)CrossRefGoogle Scholar
  5. 5.
    T.-H. Chan, and C-J. Li J. Chem. Soc. Chem. Commun. 747 (1992)Google Scholar
  6. 6.
    J. Gao, R. Härtner, D.M. Gordon, and G.M. Whitesides, J. Org. Chem. 59, 3714 (1994).CrossRefGoogle Scholar
  7. 7.
    R.H. Prenner, W.H. Binder, and W. Schmid, Liebigs Ann. Chem. 73 (1994).Google Scholar
  8. 8.
    K.-I. Sato, T. Miyata, I. Tanai., and Y. Yonezawa, Chem. Lett. 129 (1994).Google Scholar
  9. 9.
    S.G. Davies, R.L. Nicholson., and A.D. Smith, Synlett 1637 (2002).Google Scholar
  10. 10.
    A.B. Northrup, I.K. Mangion, F. Hettche, and D.W.C. MacMillan, Angew. Chem. Int. Ed. 43, 2152 (2004).CrossRefGoogle Scholar
  11. 11.
    A. Lubineau, J. Augé, and N. Lubin, Tetrahedron 49, 4639 (1993).CrossRefGoogle Scholar
  12. 12.
    G. Casiraghi, L. Pinna, G. Rassu, P. Spanu., and F. Ulheri, Tetrahedron: Assimetry 3, 681 (1993).CrossRefGoogle Scholar
  13. 13.
    S.A.W. Gruner, E. Locardi, E. Lohof, and H. Kessler, Chem Rev. 102, 491 (2002).CrossRefGoogle Scholar
  14. 14.
    M.P. Watterson, L. Pickering, M.D. Smith, S.J. Hudson, P.R. Marsh, J.E. Mordaunt, D.J. Watkin, C.J. Newman, and G.W.J. Fleet, Tetrahedron: Asymmetry 10, 1855 (1999).CrossRefGoogle Scholar
  15. 15.
    N.L. Hungerford, and G.W.J. Fleet, J. Chem. Soc. Perkin Trans. 1 3680 (2000).CrossRefGoogle Scholar
  16. 16.
    A. Dondoni, A. Marra, Chem Rev. 100, 4395 (2000).CrossRefGoogle Scholar
  17. 17.
    M.J. Robins, and J.M.R. Parker. Can. J. Chem. 61, 312 (1983).CrossRefGoogle Scholar
  18. 18.
    J.R. Axon, and A.L.J. Beckwith, J. Chem. Soc., Chem. Commun. 549 (1995).Google Scholar
  19. 19.
    G. Li, H.H. Angert, and K.B. Sharpless, Angew. Chem. Int. Ed. Engl. 35, 2813 (1996).CrossRefGoogle Scholar
  20. 20.
    O. Jarreton, T. Skrydstrup, J.-F. Espinosa, J. Jiménez-Barbero, and J.-M. Beau, Chem. Eur. J. 5, 430 (1999).CrossRefGoogle Scholar
  21. 21.
    Y. Ohnishi, and Y. Ichikawa, Bioorg. Med. Chem. Lett. 12, 997 (2002).CrossRefGoogle Scholar
  22. 22.
    M. Oberthur, C. Leimkuhler, and D. Kahne, Org. Lett. 6, 2873 (2004).CrossRefGoogle Scholar
  23. 23.
    O. Meyerhof, and K. Lohmann, Biochem. Z. 271, 89 (1934).Google Scholar
  24. 24.
    H.M. Gijsen, L. Qiao, W. Fitz, and C.-H. Wong, Chem. Rev. 96, 443 (1996).CrossRefGoogle Scholar
  25. 25.
    M.D. Bednarski, H.J. Waldmann, and G.M. Whitesides, Tetrahedron Lett. 27, 5807 (1986).CrossRefGoogle Scholar
  26. 26.
    W. Baumann, J. Freidenreich, G. Weisshaar, R. Brossmer, and H. Friebolin, Biol. Chem. 370, 141 (1989).Google Scholar
  27. 27.
    G.J. Boguslawski, J. App. Biochem. 5, 186 (1983).Google Scholar
  28. 28.
    J.R. Durrwachter, and C.-H. Wong, J. Org. Chem. 53, 4175 (1988).CrossRefGoogle Scholar
  29. 29.
    S.-H. Jung, J.H. Jeong, P. Miller, and C.-H. Wong, J. Org. Chem. 59, 7182 (1994).CrossRefGoogle Scholar
  30. 30.
    G.C. Look, Ch.H. Fotsch, and C.-H. Wong, Acc. Chem. Res. 26, 182 (1993).CrossRefGoogle Scholar
  31. 31.
    T. Aoyagi, T. Yamamoto, K. Kojiri, H. Morishima, M. Nagai, M. Hamada, T. Takechi, and H. Umezawa, J. Antibiot. 42, 883 (1989).Google Scholar
  32. 32.
    R. Saul, R.J. Moylneux, and A.D. Elbein, Arch. Biochem. Biophys. 230, 668 (1984).CrossRefGoogle Scholar
  33. 33.
    H. Kayakiri, K. Nakamura, S. Takase, H. Setoi, I. Uchida, H. Terano, M. Hashimoto, T. Tada, and S. Koda, Chem. Pharm. Bull. 39, 2807 (1991).Google Scholar
  34. 34.
    B.C. Baguley, G. Römmele, J. Gruner, and W. Wehrli, Eur. J. Biochem. 97, 345 (1979).CrossRefGoogle Scholar
  35. 35.
    (a) J. Swenden, C. Borgmann, G. Legler, and E. Bause, Arch. Biochem. Biophys. 248, 335 (1986). b) C. McDonnell, L. Cronin, J.L. O’Brien, P.V. Murphy, J. Org. Chem. 69, 3565 (2004).CrossRefGoogle Scholar
  36. 36.
    A. Dondoni, P. Merino, and D. Perrone, Tetrahedron 49, 2939 (1993).CrossRefGoogle Scholar
  37. 37.
    T. Ziegler, A. Straub, and F. Effenberger, Angew. Chem. Int. Ed. Engl. 27, 716 (1988).CrossRefGoogle Scholar
  38. 38.
    C. Augé, and C. Gautheron, Adv. Carbohydr. Chem. 49, 175 (1991).Google Scholar
  39. 39.
    Y.-F. Wang, D.P. Dumas, and C.-H. Wong, Tetrahedron Lett. 34, 403 (1993).CrossRefGoogle Scholar
  40. 40.
    R. Rai, I. McAlexander, and Ch.-W.T. Chang, Org. Prep. Proced. Int. (OPPI), 37, 339 (2005).Google Scholar
  41. 41.
    Y. LeBlanc, B.J. Fitzsimmons, J.P. Springer and J. Rokach, J. Am. Chem. Soc., 111, 2995 (1989).CrossRefGoogle Scholar
  42. 42.
    J. Dubois, C.S., Tomooka, and E.M. Carreira, J. Am. Chem. Soc., 119, 3179 (1997).CrossRefGoogle Scholar
  43. 43.
    J. Liu and Y.D. Gin, J. Am. Chem. Soc., 124, 9789 (2002).CrossRefGoogle Scholar
  44. 44.
    N.V. Bovin, S.E. Zurabyan and A.Y. Khorlii, Carbohydr. Res., 98, 25 (1981).CrossRefGoogle Scholar
  45. 45.
    Reddy et al J. Org. Chem. 69, 2630 (2004).CrossRefGoogle Scholar
  46. 46.
    B. Elchert, J. Li, J. Wang, Y. Hui, R. Rai, R. Ptak, P. Ward, J.Y. Takemoto, M. Bensaci, and C.-W. Chang, J. Org. Chem., 69, 1513 (2004).CrossRefGoogle Scholar
  47. 47.
    V. Pavliak and P. Kovbk, Carbohydr. Res. 210, 333 (1991)CrossRefGoogle Scholar
  48. 48.
    F. Dasgupta and P.J. Garegg, Synthesis, 262 (1988)Google Scholar
  49. 49.
    W.-C. Chou, L. Chen, J.-M. Fang, C.-H. Wong, J. Am. Chem. Soc. 116, 6169 (1994).CrossRefGoogle Scholar
  50. 50.
    R.V. Stick, K.A. Stubbs, Tetrahedron Asymmetry 16, 321 (2005).CrossRefGoogle Scholar
  51. 51.
    S. Ogawa, N. Matsunaga, H. Li, and M.M. Palcic, Eur. J. Org. Chem. 631 (1999).Google Scholar
  52. 52.
    a) T.D. Heingtmann, and A.T. Vassela, Angew. Chem. Int. Ed. 38, 750 (1999). b) A. Bianchi, A. Russo, A. Bernanrdi, Tetrahedron Asymmetry 16, 381 (2005).CrossRefGoogle Scholar
  53. 53.
    S. Ogawa, M. Ohmura, S. Hisamatsu, Synthesis 312 (2001).Google Scholar
  54. 54.
    R.M. van Well, K.P. Kartha, and R.A. Field, J. Carbohydr. Chem. 24, 463 (2005).CrossRefGoogle Scholar
  55. 55.
    M. Shimizu, H. Togo and M. Yokohama Synthesis 779 (1998).Google Scholar
  56. 56.
    E. Juaristi, and G. Cuevas, The Anomeric Effect, CRC, Boca Raton 4 (1995).Google Scholar
  57. 57.
    W. Koenigs, and E. Knorr, Chem. Ber. 34, 957, (1901).CrossRefGoogle Scholar
  58. 58.
    a) W. Roth, and W. Pigman, in Methods in Carbohydrate Chemistry; Whistler R.L. and Wolfrom, M.L., Eds.; Academic Press: New York, 1963, Vol. 2, 405 (1963).; b) B.K. Shull, Z. Wu, and M. Koreeda, J. Carbohydr. Chem. 15(8), 955 (1996).; A. Fürstner, and H. Weidmann, J. Carbohydr. Chem., 7(4), 773 (1988).Google Scholar
  59. 59.
    R.U. Lemieux, and A.R. Morgan, Can. J. Chem. 43, 2199 (1965).;W. Wang, F. Kong, J. Org. Chem. 63, 5744 (1998).Google Scholar
  60. 60.
    M. Blanc-Muessen, J. Defaye, and H. Driguez, Carbohydr. Res. 67, 305 (1978).CrossRefGoogle Scholar
  61. 61.
    Ch. McCloskey, and G.H. Coleman, Org. Synth. 3, 434, (1955).Google Scholar
  62. 62.
    J.A. Perrie, J.H. Harding, C. King, D. Sinnott, and A.V. Stachulski, Org. Lett. 5, 4545 (2003).CrossRefGoogle Scholar
  63. 63.
    K.C. Nicolaou, J. Li, and G. Zenke, Helv. Chim. Acta 83, 1977 (2000).CrossRefGoogle Scholar
  64. 64.
    Z. Györgydeák, L. Szilágyi, and H. Paulsen, J. Carbohydr. Chem. 12(2), 139 (1993).Google Scholar
  65. 65.
    G.-J. Boons, and A.V. Demchenko, Chem Rev. 100, 4539 (2000).CrossRefGoogle Scholar
  66. 66.
    H. Paulsen, and H. Tietz, Carbohydr. Res. 125, 47 (1984).CrossRefGoogle Scholar
  67. 67.
    H. Maeda, K. Ito, H. Ishida, M. Kiso., and A. Hasegawa, J. Carbohydr. Res. 14, 387 (1995).Google Scholar
  68. 68.
    S. Sugiyama, and J.M. Diakur, Organic Lett. 2, 2713 (2000).CrossRefGoogle Scholar
  69. 69.
    D. Kahne, S. Walker, Y. Cheng, and D. Van Engen, J. Am. Chem. Soc. 111, 6881 (1989).CrossRefGoogle Scholar
  70. 70.
    O.J. Plante, and P. Seeberg, J. Org. Chem. 63, 9150 (1998).CrossRefGoogle Scholar
  71. 71.
    V. Constantino, C. Imperatore, E. Fattoruso, and A. Magnoni, Tetrahedron Lett. 41, 9177, (2000).CrossRefGoogle Scholar
  72. 72.
    A. Dios, A. Geer, C.H. Marzabadi, and W.R. Franck, J. Org. Chem. 63, 6673 (1998).CrossRefGoogle Scholar
  73. 73.
    F. Bosse, L.A. Marcaurelle, and P.H. Seeberger, J. Org. Chem. 67, 6659 (2002).CrossRefGoogle Scholar
  74. 74.
    R.R. Schmidt, Angew. Chem. Int. Engl. 25, 213 (1986).Google Scholar
  75. 75.
    P.G.M. Guts, and T.W. Greene, Protecting groups in Organic Synthesis; Wiley, New York, (1991).Google Scholar
  76. 76.
    L. Olsson, Z.J. Jia, and B. Fraser-Reid, J. Org. Chem. 63, 3790 (1998).; K.C. Nicolaou, N. Winssinger, J. Pastor, and F. De Roose, J. Am. Chem. Soc. 119, 449 (1997).CrossRefGoogle Scholar
  77. 77.
    D.P. Larson, and C.H. Heathcock, J. Org. Chem. 62, 8406 (1997).CrossRefGoogle Scholar
  78. 78.
    L. Liu, and H. Liu, Tetrahedron Lett. 30, 35 (1989).CrossRefGoogle Scholar
  79. 79.
    B. Classon, P.J. Garegg, S. Oscarson, and A.K. Tiden, Carbohydr. Res. 216, 187 (1991).CrossRefGoogle Scholar
  80. 80.
    K.C. Nicolaou, T. Ohshima, F.L. van Delft, D. Vourloumis, J.Y. Xu, J.S. Pfefferkorn, and S. Kim, J. Am. Chem. Soc. 120, 8674 (1998).CrossRefGoogle Scholar
  81. 81.
    I. Kitagawa, K. Ohashi, N.I. Baek, M. Sakagami, M. Yoshikawa, and H. Shibuya, Chem. Pharm., Bull. 45(5), 786 (1997).Google Scholar
  82. 82.
    V. Ellervik, and G. Magnusson, J. Org. Chem. 63, 9314 (1998).CrossRefGoogle Scholar
  83. 83.
    D. Crich, and H. Li, J. Org. Chem. 67, 4640 (2002).CrossRefGoogle Scholar
  84. 84.
    J.M. Frechét, Polymer-supported Reactions in Organic Synthesis; Hodge, P., Sherrington, D.C., Eds.; Wiley. (1980)Google Scholar
  85. 85.
    G.G. Cross, and D.M. Whitfield, Synlett 487 (1999).Google Scholar
  86. 86.
    J.L. Koviak, M.D. Chapell, and R.L. Halcomb, J. Org. Chem. 66, 2318 (2001).CrossRefGoogle Scholar
  87. 87.
    C.-H. Wong, X.-S. Ye, and Z. Zhang, J. Am. Chem. Soc. 120, 7173 (1998).Google Scholar
  88. 88.
    R. Lakhmiri, P. Lhoste, and D. Sinou, Tetrahedron Lett. 30, 4669 (1989).CrossRefGoogle Scholar
  89. 89.
    S.K. Chaudhary, and O. Hernández, Tetrahedron Lett. 95 (1979).Google Scholar
  90. 90.
    T.W. Hart, D.A. Metcalfe, and F. Scheinmann, J. Chem. Soc. Chem. Commun. 156 (1979).Google Scholar
  91. 91.
    M. Oikawa, A. Wada, F. Okazaki, and S. Kusumoto, J. Org. Chem. 61, 4469 (1996).CrossRefGoogle Scholar
  92. 92.
    I. Matsuo, M. Isomura, R. Walton, and K. Ajisaka, Tetrahedron Lett. 37, 8795 (1996).CrossRefGoogle Scholar
  93. 93.
    F. Theil, and H. Schick, Synthesis 533 (1991).Google Scholar
  94. 94.
    A.B. Smith III, and K.J. Hale, Tetrahedron Lett. 30, 1037 (1989).CrossRefGoogle Scholar
  95. 95.
    H. Yamada, T. Harada, and T. Takahashi. J. Am. Chem. Soc. 116, 7919 (1994).CrossRefGoogle Scholar
  96. 96.
    L. Leau, N. Goren, Carbohydr. Res. C8, 131, (1984).Google Scholar
  97. 97.
    M. Guiso, C. Procaccio, M.R. Fizzano, and F. Piccioni, Tetrahedron Lett. 38, 4291 (1997).CrossRefGoogle Scholar
  98. 98.
    J. Cai, B.E. Davison, C.R. Ganellin, and S. Thaisrivongs, Tetrahedron Lett. 36, 6535 (1995).CrossRefGoogle Scholar
  99. 99.
    R.W. Binkley, G.S. Goewey, and J.C. Johnston, J. Org. Chem. 49, 992 (1984).CrossRefGoogle Scholar
  100. 100.
    A. Arasappan, and P.L. Fuchs, J. Am. Chem. Soc. 117, 177 (1995).CrossRefGoogle Scholar
  101. 101.
    L. Jiang, and T.-H. Chan, J. Org. Chem. 63, 6035 (1998).CrossRefGoogle Scholar
  102. 102.
    Tsatsuda et al., Bull. Chem. Soc. Jpn. 58, 1699 (1985).CrossRefGoogle Scholar
  103. 103.
    S.V. Ley, and S. Mio, Synlett 789 (1996).Google Scholar
  104. 104.
    J.G. Fernandez-Bolaños, J.G. García, J. Fernandez-Bolaños, M.J. Diánez, M.D. Estrada, A. López-Castro, and S. Pérez Garrido, Tetrahedron Assymetry 14, 3761 (2003).CrossRefGoogle Scholar
  105. 105.
    J.G.S. Lohman, and P.H. Seeberger, J. Org. Chem. 68, 7541 (2003).Google Scholar
  106. 106.
    H. Liang, and T.B. Grindley J. Carbohydr. Chem. 23, 71 (2004).CrossRefGoogle Scholar
  107. 107.
    M. Adinolfi, G. Borone, L. Guariniello, and A. Iadonisi, Tetrahedron Lett. 41, 9305 (2000).CrossRefGoogle Scholar
  108. 108.
    S. Forsén, B. Lindberg, and B.-G. Silvander, Acta Chem. Scand. 19, 359, (1965).CrossRefGoogle Scholar
  109. 109.
    K. Koch, and R. J. Chambers, Carbohydr. Res 241, 295 (1993).CrossRefGoogle Scholar
  110. 110.
    J.L. Wahlstrom, and R.C. Ronald, J. Org. Chem. 63, 6021 (1998).CrossRefGoogle Scholar
  111. 111.
    B. Classon, P.J. Garegg, and B. Samuelson Acta Chem Scan. Ser. B, 38, 419 (1984).CrossRefGoogle Scholar
  112. 112.
    R. López, E. Montero, F. Sanchez, J. Cañada, and A. Fernandez-Mayoralas, J. Org. Chem. 59, 7029 (1994).Google Scholar
  113. 113.
    R. Miethchen, J. Holz, H. Prade, and A. Liptak, Tetrahedron 3061 (1992).Google Scholar
  114. 114.
    P.M. Collins, A. Manro, E.C. Opara-Mottah, and M.H. Ali, J. Chem. Soc. Chem. Commun. 272 (1988).Google Scholar
  115. 115.
    S. Hanessian, and N.R. Plessas, J. Org. Chem. 34, 1035 (1969).CrossRefGoogle Scholar
  116. 116.
    C.A.A. Van Boeckel, and J.H. van Boom, Tetrahedron 41, 4545 (1985).CrossRefGoogle Scholar
  117. 117.
    M. Wilstermann, and G. Magnusson, J. Org. Chem. 62, 7961 (1997).CrossRefGoogle Scholar
  118. 118.
    S. Hanessian, and R. Roy, Can. J. Chem. 63, 163 (1985).CrossRefGoogle Scholar
  119. 119.
    D.T. Hurst, A.G. McIness, Can. J. Chem. 43, 2004 (1965).CrossRefGoogle Scholar
  120. 120.
    P.J. Garegg, Acc. Chem. Res. 25, 575 (1992).CrossRefGoogle Scholar
  121. 121.
    R. Johansson, and B. Samuelson, J. Chem. Soc. Perkin Trans 1 2371 (1984).CrossRefGoogle Scholar
  122. 122.
    X. Liu, and P.H. Seeberger, Chem. Commun. 1708 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations