Advertisement

Phox2b and the homeostatic brain

  • Jean-François Brunet
  • Christo Goridis

Keywords

Carotid Body Respiratory Rhythm Generation Petrosal Ganglion PHOX2B Mutation Congenital Fibrosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adachi M, Lewis EJ (2002) The paired-like homeodomain protein, Arix, mediates protein kinase A-stimulated dopamine beta-hydroxylase gene transcription through its phosphorylation status. J Biol Chem 277: 22915-22924PubMedCrossRefGoogle Scholar
  2. 2.
    Adachi M, Browne D, Lewis EJ (2000) Paired-like homeodomain proteins Phox2a/Arix and Phox2b/NBPhox have similar genetic organization and independently regulate dopamine beta-hydroxylase gene transcription. DNA Cell Biol 19: 539-554PubMedCrossRefGoogle Scholar
  3. 3.
    Amiel J, Laudier B, Attié-Bitach T, Trang H, de Pontual L, Gener B, Trochet D, Simonneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S (2003) Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome (Ondine’s curse). Nat Genet 33: 459-461PubMedCrossRefGoogle Scholar
  4. 4.
    Aroca P, Lorente-Canovas B, Mateos FR, Puelles L (2006) Locus coeruleus neurons originate in alar rhombomere 1 and migrate into the basal plate: studies in chick and mouse embryos. J Comp Neurol 496: 802-818PubMedCrossRefGoogle Scholar
  5. 5.
    Bachetti T, Matera I, Borghini S, Di Duca M, Ravazzolo R, Ceccherini I (2005) Distinct pathogenetic mechanisms for PHOX2B associated polyalanine expansions and frameshift mutations in congenital central hypoventilation syndrome. Hum Mol Genet 14: 1815-1824PubMedCrossRefGoogle Scholar
  6. 6.
    Benjanirut C, Paris M, Wang WH, Hong SJ, Kim KS, Hullinger RL, Andrisani OM (2006) The cAMP pathway in combination with BMP2 regulates Phox2a transcription via cAMP response element binding sites. J Biol Chem 281: 2969-2981PubMedCrossRefGoogle Scholar
  7. 7.
    Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30: 411-422PubMedCrossRefGoogle Scholar
  8. 8.
    Blanchi B, Kelly LM, Viemari JC, Lafon I, Burnet H, Bevengut M, Tillmanns S, Daniel L, Graf T, Hilaire G, Sieweke MH (2003) MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth. Nat Neurosci 6: 1091-1100PubMedCrossRefGoogle Scholar
  9. Blessing WW (1997a) Anatomy of the lower brainstem. In: The lower brainstem and bodily homeostasis, 1 Edition (Blessing WW, ed), pp 29-99. New York, Oxford University PressGoogle Scholar
  10. Blessing WW (1997b) Breathing. In: The lower brainstem and bodily homeostasis, pp 101-164. New York, Oxford University PressGoogle Scholar
  11. 11.
    Bosley TM, Oystreck DT, Robertson RL, al Awad A, Abu-Amero K, Engle EC (2006) Neurological features of congenital fibrosis of the extraocular muscles type 2 with mutations in PHOX2A. Brain 129: 2363-2374PubMedCrossRefGoogle Scholar
  12. 12.
    Brosenitsch TA, Katz DM (2002) Expression of Phox2 transcription factors and induction of the dopaminergic phenotype in primary sensory neurons. Mol Cell Neurosci 20: 447-457PubMedCrossRefGoogle Scholar
  13. 13.
    Cargnin F, Flora A, Di Lascio S, Battaglioli E, Longhi R, Clementi F, Fornasari D (2005) PHOX2B regulates its own expression by a transcriptional autoregulatory mechanism. J Biol Chem 280: 37439-37448PubMedCrossRefGoogle Scholar
  14. 14.
    Chen S, Ji M, Paris M, Hullinger RL, Andrisani OM (2005) The cAMP pathway regulates both transcription and activity of the paired homeobox transcription factor Phox2a required for development of neural crest-derived and central nervous system-derived catecholaminergic neurons. J Biol Chem 280: 41025-41036PubMedCrossRefGoogle Scholar
  15. 15.
    Chen ZF, Rebelo S, White F, Malmberg AB, Baba H, Lima D, Woolf CJ, Basbaum AI, Anderson DJ (2001) The paired homeodomain protein DRG11 is required for the projection of cutaneous sensory afferent fibers to the dorsal spinal cord. Neuron 31: 59-73PubMedCrossRefGoogle Scholar
  16. 16.
    Coppola E, Pattyn A, Guthrie SC, Goridis C, Studer M (2005) Reciprocal gene replacements reveal unique functions for Phox2 genes during neural differentiation. EMBO J 24: 4392-4403PubMedCrossRefGoogle Scholar
  17. 17.
    Cross SH, Morgan JE, Pattyn A, West K, McKie L, Hart A, Thaung C, Brunet JF, Jackson IJ (2004) Haploinsufficiency for Phox2b in mice causes dilated pupils and atrophy of the ciliary ganglion: mechanistic insights into human congenital central hypoventilation syndrome. Hum Mol Genet 13: 1433-1439PubMedCrossRefGoogle Scholar
  18. 18.
    Dauger S, Pattyn A, Lofaso F, Gaultier C, Goridis C, Gallego J, Brunet JF (2003) Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development 130: 6635-6642PubMedCrossRefGoogle Scholar
  19. 19.
    Dubreuil V, Hirsch MR, Pattyn A, Brunet JF, Goridis C (2000) The Phox2b transcription factor coordinately regulates neuronal cell cycle exit and identity. Development 127: 5191-5201PubMedGoogle Scholar
  20. 20.
    Dubreuil V, Hirsch MR, Jouve C, Brunet JF, Goridis C (2002) The role of Phox2b in synchronizing pan-neuronal and type-specific aspects of neurogenesis. Development 129: 5241-5253PubMedGoogle Scholar
  21. 21.
    Dufour HD, Chettouh Z, Deyts C, de Rosa R, Goridis C, Joly JS, Brunet JF (2006) Pre-craniate origin of cranial motoneurons. Proc Natl Acad Sci USA 103: 8727-8732PubMedCrossRefGoogle Scholar
  22. 22.
    Durand E, Dauger S, Pattyn A, Gaultier C, Goridis C, Gallego J (2005) Sleep-disordered breathing in newborn mice heterozygous for the transcription factor Phox2b. Am J Respir Crit Care Med 172: 238-243PubMedCrossRefGoogle Scholar
  23. 23.
    Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A, van Heyningen V, Jessell TM, Briscoe J (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90: 169-180PubMedCrossRefGoogle Scholar
  24. 24.
    Flora A, Lucchetti H, Benfante R, Goridis C, Clementi F, Fornasari D (2001) Sp proteins and Phox2b regulate the expression of the human Phox2a gene. J Neurosci 21: 7037-7745PubMedGoogle Scholar
  25. 25.
    Gaultier C, Trang H, Dauger S, Gallego J (2005) Pediatric disorders with autonomic dysfunction: what role for PHOX2B? Pediatr Res 58: 1-6PubMedCrossRefGoogle Scholar
  26. 26.
    Goldberg DS, Ludwig IH (1996) Congenital central hypoventilation syndrome: ocular findings in 37 children. J Pediatr Ophthalmol Strabismus 33: 175-180PubMedGoogle Scholar
  27. 27.
    Goridis C, Rohrer H (2002) Specification of catecholaminergic and serotonergic neurons. Nat Rev Neurosci 3: 531-541PubMedCrossRefGoogle Scholar
  28. 28.
    Gozal D (1998) Congenital central hypoventilation syndrome: an update. Pediatr Pulmonol 26: 273-282PubMedCrossRefGoogle Scholar
  29. 29.
    Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75: 463-476PubMedCrossRefGoogle Scholar
  30. 30.
    Guo S, Brush J, Teraoka H, Goddard A, Wilson SW, Mullins MC, Rosenthal A (1999) Development of noradrenergic neurons in the Zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron 24: 555-566PubMedCrossRefGoogle Scholar
  31. 31.
    Hilaire G, Viemari JC, Coulon P, Simonneau M, Bevengut M (2004) Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents. Respir Physiol Neurobiol 143: 187-197PubMedCrossRefGoogle Scholar
  32. 32.
    Hirsch MR, Tiveron MC, Guillemot F, Brunet JF, Goridis C (1998) Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125: 599-608PubMedGoogle Scholar
  33. 33.
    Hirsch MR, Glover JC, Dufour HD, Brunet JF, Goridis C (2006) Forced expression of Phox2 homeodomain transcription factors induces a branchiovisceromotor axonal phenotype. Dev Biol 303: 687-702PubMedCrossRefGoogle Scholar
  34. 34.
    Holzschuh J, Barrallo-Gimeno A, Ettl AK, Durr K, Knapik EW, Driever W (2003) Noradrenergic neurons in the zebrafish hindbrain are induced by retinoic acid and require tfap2a for expression of the neurotransmitter phenotype. Development 130: 5741-5754PubMedCrossRefGoogle Scholar
  35. 35.
    Hong SJ, Kim CH, Kim KS (2001) Structural and functional characterization of the 5’ upstream promoter of the human Phox2a gene: possible direct transactivation by transcription factor Phox2b. J Neurochem 79: 1225-1236PubMedCrossRefGoogle Scholar
  36. 36.
    Hong SJ, Chae H, Kim KS (2004) Molecular cloning and characterization of the promoter region of the human Phox2b gene. Brain Res Mol Brain Res 125: 29-39Google Scholar
  37. 37.
    Howard M, Stanke M, Schneider C, Wu X, Rohrer H (2000) The transcription factor dHAND is a downstream effector of BMPs in sympathetic neuron specification. Development 127: 4073-4081PubMedGoogle Scholar
  38. 38.
    Howard MJ (2005) Mechanisms and perspectives on differentiation of autonomic neurons. Dev Biol 277: 271-286PubMedCrossRefGoogle Scholar
  39. 39.
    Hsieh MM, Lupas G, Rychlik J, Dziennis S, Habecker BA, Lewis EJ (2005) ERK1/2 is a negative regulator of homeodomain protein Arix/Phox2a. J Neurochem 94: 1719-1727PubMedCrossRefGoogle Scholar
  40. 40.
    Huber K, Karch N, Ernsberger U, Goridis C, Unsicker K (2005) The role of Phox2B in chromaffin cell development. Dev Biol 279: 501-508PubMedCrossRefGoogle Scholar
  41. 41.
    Janczewski WA, Feldman JL (2006) Distinct rhythm generators for inspiration and expiration in the juvenile rat. J Physiol 570: 407-420PubMedGoogle Scholar
  42. 42.
    Kim H, Seo H, Yang C, Brunet JF, Kim K (1998) Noradrenergic-specific transcription of the dopamine b-hydroxylase gene requires synergy of multiple cis-acting elements including at least two Phox2a-binding sites. J Neurosci 18: 8247-8260PubMedGoogle Scholar
  43. 43.
    Lo L, Tiveron MC, Anderson DJ (1998) MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development 125: 609-620PubMedGoogle Scholar
  44. 44.
    Lo L, Morin X, Brunet JF, Anderson DJ (1999) Specification of neurotransmitter identity by Phox2 proteins in neural crest stem cells. Neuron 22: 693-705PubMedCrossRefGoogle Scholar
  45. 45.
    Lucas ME, Muller F, Rudiger R, Henion PD, Rohrer H (2006) The bHLH transcription factor hand2 is essential for noradrenergic differentiation of sympathetic neurons. Development 133: 4015-4024PubMedCrossRefGoogle Scholar
  46. 46.
    Moriguchi T, Takako N, Hamada M, Maeda A, Fujioka Y, Kuroha T, Huber RE, Hasegawa SL, Rao A, Yamamoto M, Takahashi S, Lim KC, Engel JD (2006) Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation. Development 133: 3871-3881PubMedCrossRefGoogle Scholar
  47. 47.
    Morikawa Y, Dai YS, Hao J, Bonin C, Hwang S, Cserjesi P (2005) The basic helix-loop-helix factor Hand 2 regulates autonomic nervous system development. Dev Dyn 234: 613-621PubMedCrossRefGoogle Scholar
  48. 48.
    Morin X, Cremer H, Hirsch M-R, Kapur RP, Goridis C, Brunet JF (1997) Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18: 411-423PubMedCrossRefGoogle Scholar
  49. 49.
    Mosse YP, Laudenslager M, Khazi D, Carlisle AJ, Winter CL, Rappaport E, Maris JM (2004) Germline PHOX2B mutation in hereditary neuroblastoma. Am J Hum Genet 75: 727-730PubMedCrossRefGoogle Scholar
  50. 50.
    Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG (2004) Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7: 1360-1369PubMedCrossRefGoogle Scholar
  51. 51.
    Nakano M, Yamada K, Fain J, Sener EC, Selleck CJ, Awad AH, Zwaan J, Mullaney PB, Bosley TM, Engle EC (2001) Homozygous mutations in ARIX (PHOX2A) result in congenital fibrosis of the extraocular muscles type 2. Nat Genet 29: 315-320PubMedCrossRefGoogle Scholar
  52. 52.
    Noden DM, Francis-West P (2006) The differentiation and morphogenesis of craniofacial muscles. Dev Dyn 235: 1194-1218PubMedCrossRefGoogle Scholar
  53. 53.
    Onimaru H, Homma I (2003) A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23: 1478-1486PubMedGoogle Scholar
  54. 54.
    Paris M, Wang WH, Shin MH, Franklin DS, Andrisani OM (2006) The homeodomain transcription factor Phox2a, via cAMP-mediated activation, induces p27Kip1 transcription, coordinating neural progenitor cell cycle exit and differentiation. Mol Cell Biol 18: 18Google Scholar
  55. 55.
    Pattyn A, Goridis C, Brunet JF (2000a) Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol Cell Neurosci 15: 235-243CrossRefGoogle Scholar
  56. 56.
    Pattyn A, Guillemot F, Brunet JF (2006) Delays in neuronal differentiation in Mash1/Ascl1 mutants. Dev Biol 295: 67-75PubMedCrossRefGoogle Scholar
  57. 57.
    Pattyn A, Hirsch M-R, Goridis C, Brunet JF (2000b) Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127: 1349-1358Google Scholar
  58. 58.
    Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1997) Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124: 4065-4075PubMedGoogle Scholar
  59. 59.
    Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399: 366-370PubMedCrossRefGoogle Scholar
  60. 60.
    Pattyn A, Simplicio N, van Doorninck JH, Goridis C, Guillemot F, Brunet J-F (2004) Mash1/Ascl1 is required for the development of central serotonergic neurons. Nat Neurosci 7: 589-595PubMedCrossRefGoogle Scholar
  61. 61.
    Pattyn A, Vallstedt A, Dias JM, Samad OA, Krumlauf R, Rijli FM, Brunet JF, Ericson J (2003) Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev 17: 729-737PubMedCrossRefGoogle Scholar
  62. 62.
    Perri P, Bachetti T, Longo L, Matera I, Seri M, Tonini GP, Ceccherini I (2005) PHOX2B mutations and genetic predisposition to neuroblastoma. Oncogene 24: 3050-3053PubMedCrossRefGoogle Scholar
  63. 63.
    Pujol N, Torregrossa P, Ewbank JJ, Brunet JF (2000) The homeodomain protein CePHOX2/CEH-17 controls antero-posterior axonal growth in C. elegans. Development 127: 3361-3371Google Scholar
  64. 64.
    Qian Y, Shirasawa S, Chen CL, Cheng L, Ma Q (2002) Proper development of relay somatic sensory neurons and D2/D4 interneurons requires homeobox genes Rnx/Tlx-3 and Tlx-1. Genes Dev 16: 1220-1233PubMedCrossRefGoogle Scholar
  65. 65.
    Rekling JC, Feldman JL (1998) PreBötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu Rev Physiol 60: 385-405PubMedCrossRefGoogle Scholar
  66. 66.
    Richerson GB (2004) Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci 5: 449-461PubMedCrossRefGoogle Scholar
  67. 67.
    Romer AS (1972) The vertebrate as a dual animal-somatic and visceral. Evol Biol 6: 121-156Google Scholar
  68. 68.
    Rychlik JL, Gerbasi V, Lewis EJ (2003) The interaction between dHAND and Arix at the dopamine beta-hydroxylase promoter region is independent of direct dHAND binding to DNA. J Biol Chem 278: 49652-49660PubMedCrossRefGoogle Scholar
  69. 69.
    Samad OA, Geisen MJ, Caronia G, Varlet I, Zappavigna V, Ericson J, Goridis C, Rijli FM (2004) Integration of anteroposterior and dorsoventral regulation of Phox2b transcription in cranial motoneuron progenitors by homeodomain proteins. Development 131: 4071-4083PubMedCrossRefGoogle Scholar
  70. 70.
    Schreihofer AM, Guyenet PG (1997) Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J Comp Neurol 387: 524-536PubMedCrossRefGoogle Scholar
  71. 71.
    Stanke M, Stubbusch J, Rohrer H (2004) Interaction of Mash1 and Phox2b in sympathetic neuron development. Mol Cell Neurosci 25: 374-382PubMedCrossRefGoogle Scholar
  72. 72.
    Stanke M, Junghans D, Geissen M, Goridis C, Ernsberger U, Rohrer H (1999) The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons. Development 126: 4087-4494PubMedGoogle Scholar
  73. 73.
    Stornetta RL, Moreira TS, Takakura AC, Kang BJ, Chang DA, West GH, Brunet JF, Mulkey DK, Bayliss DA, Guyenet PG (2007) Expression of Phox2b by brain-stem neurons involved in chemosensory intergration in the adult rat. J Neurosci 20: 10305-10314Google Scholar
  74. 74.
    Swanson DJ, Adachi M, Lewis EJ (2000) The homeodomain protein Arix promotes protein kinase A-dependent activation of the dopamine beta-hydroxylase promoter through multiple elements and interaction with the coactivator cAMPresponse element-binding protein-binding protein. J Biol Chem 275: 2911-2223PubMedCrossRefGoogle Scholar
  75. 75.
    Talikka M, Stefani G, Brivanlou AH, Zimmerman K (2004) Characterization of Xenopus Phox2a and Phox2b defines expression domains within the embryonic nervous system and early heart field. Gene Expr Patterns 4: 601-607PubMedCrossRefGoogle Scholar
  76. 76.
    Thaler JP, Koo SJ, Kania A, Lettieri K, Andrews S, Cox C, Jessell TM, Pfaff SL (2004) A postmitotic role for Isl-class LIM homeodomain proteins in the assignment of visceral spinal motor neuron identity. Neuron 41: 337-350PubMedCrossRefGoogle Scholar
  77. 77.
    Tiveron MC, Hirsch MR, Brunet JF (1996) The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system. J Neurosci 16: 7649-7660PubMedGoogle Scholar
  78. 78.
    Tiveron M-C, Pattyn A, Hirsch MR, Brunet JF (2003) Role of Phox2b and Mash1 in the generation of the vestibular efferent nucleus. Dev Biol 260: 46-57PubMedCrossRefGoogle Scholar
  79. 79.
    Trochet D, Hong SJ, Lim JK, Brunet JF, Munnich A, Kim KS, Lyonnet S, Goridis C, Amiel J (2005a) Molecular consequences of PHOX2B missense, frameshift and alanine expansion mutations leading to autonomic dysfunction. Hum Mol Genet 14: 3697-3708CrossRefGoogle Scholar
  80. 80.
    Trochet D, Bourdeaut F, Janoueix-Lerosey I, Deville A, de Pontual L, Schleiermacher G, Coze C, Philip N, Frebourg T, Munnich A, Lyonnet S, Delattre O, Amiel J (2004) Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet 74: 761-764PubMedCrossRefGoogle Scholar
  81. 81.
    Trochet D, O’Brien LM, Gozal D, Trang H, Nordenskjold A, Laudier B, Svensson PJ, Uhrig S, Cole T, Niemann S, Munnich A, Gaultier C, Lyonnet S, Amiel J (2005b) PHOX2B genotype allows for prediction of tumor risk in congenital central hypoventilation syndrome. Am J Hum Genet 76: 421-426CrossRefGoogle Scholar
  82. 82.
    Tsarovina K, Pattyn A, Stubbusch J, Muller F, van der Wees J, Schneider C, Brunet JF, Rohrer H (2004) Essential role of Gata transcription factors in sympathetic neuron development. Development 131: 4775-4786PubMedCrossRefGoogle Scholar
  83. 83.
    Valarché I, Tissier-Seta JP, Hirsch MR, Martinez S, Goridis C, Brunet JF (1993) The mouse homeodomain protein Phox2 regulates Ncam promoter activity in concert with Cux/CDP and is a putative determinant of neurotransmitter phenotype. Development 119: 881-896PubMedGoogle Scholar
  84. 84.
    Van Limpt V, Schramm A, van Lakeman A, Sluis P, Chan A, van Noesel M, Baas F, Caron H, Eggert A, Versteeg R (2004) The Phox2B homeobox gene is mutated in sporadic neuroblastomas. Oncogene 23: 9280-9288PubMedGoogle Scholar
  85. 85.
    Viemari JC, Bevengut M, Burnet H, Coulon P, Pequignot JM, Tiveron MC, Hilaire G (2004) Phox2a gene, A6 neurons, and noradrenaline are essential for development of normal respiratory rhythm in mice. J Neurosci 24: 928-937PubMedCrossRefGoogle Scholar
  86. 86.
    Weese-Mayer DE, Berry-Kravis EM, Marazita ML (2005) In pursuit (and discovery) of a genetic basis for congenital central hypoventilation syndrome. Respir Physiol Neurobiol 149: 73-82PubMedCrossRefGoogle Scholar
  87. 87.
    Xu H, Firulli AB, Zhang X, Howard MJ (2003) HAND2 synergistically enhances transcription of dopamine-beta-hydroxylase in the presence of Phox2a. Dev Biol 262: 183-193PubMedCrossRefGoogle Scholar
  88. 88.
    Yazdani A, Chung DC, Abbaszadegan MR, Al-Khayer K, Chan WM, Yazdani M, Ghodsi K, Engle EC, Traboulsi EI (2003) A novel PHOX2A/ARIX mutation in an Iranian family with congenital fibrosis of extra-ocular muscles type 2 (CFEOM2). Am J Ophthalmol 136: 861-865PubMedCrossRefGoogle Scholar
  89. 89.
    Yang C, Kim HS, Seo H, Kim CH, Brunet JF, Kim K-S (1998) Paired-like homeodomain proteins, Phox2a and Phox2b, are responsible for noradrenergic cell-Specific transcription of the dopamine-β-hydroxylase gene. J Neurochem 71: 1813-1826PubMedCrossRefGoogle Scholar
  90. 90.
    Zellmer E, Zhang Z, Greco D, Rhodes J, Cassel S, Lewis EJ (1995) A homeodomain protein selectively expressed in noradrenergic tissue regulates transcription of neurotransmitter biosynthetic genes. J Neurosci 15: 8109-8120PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jean-François Brunet
    • 1
  • Christo Goridis
    • 1
  1. 1.CNRS UMR 8542 Ecole Normale Supérieure75005 ParisFrance

Personalised recommendations