Respiratory plasticity following intermittent hypoxia: a guide for novel therapeutic approaches to ventilatory control disorders?

  • Gordon S. Mitchell


Obstructive Sleep Apnea Amyotrophic Lateral Sclerosis Motor Neuron Intermittent Hypoxia Motor Neuron Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babcock M, Shkoukani M, Aboubakr SE, Badr MS (2003) Determinants of long-term facilitation in humans during NREM sleep. J Appl Physiol94: 53-59PubMedGoogle Scholar
  2. 2.
    Bach KB, Mitchell GS (1996) Hypoxia-induced long-term facilitation of respiratory activity is serotonin dependent. Respir Physiol104: 251-260PubMedCrossRefGoogle Scholar
  3. 3.
    Baker TL, Mitchell GS (2000) Episodic but not continuous hypoxia elicits long-term facilitation of phrenic motor output in rats. J Physiol529: 215-219PubMedCrossRefGoogle Scholar
  4. 4.
    Baker-Herman TL, Fuller DD, Bavis RW, Zabka AG, Golder FJ, Doperalski NJ, Johnson RA, Watters JJ, Mitchell GS (2004) BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci7: 48-55PubMedCrossRefGoogle Scholar
  5. 5.
    Barr MRL, Sibigtroth CM, Mitchell GS (2007) Daily acute intermittent hypoxia improves respiratory function in rats with chronic cervical spinal hemisection. FASEB J, in pressGoogle Scholar
  6. 6.
    Bavis RW, Baker-Herman TL, Zabka AG, Golder FJ, Fuller DD, Behan M, Mitchell GS (2003) Respiratory long-term facilitation differs among inbred rat strains. FASEB J 17: A824Google Scholar
  7. 7.
    Bocchiaro CM, Feldman JL (2004) Synaptic activity-independent persistent plasticity in endogenously active mammalian motoneurons. Proc Natl Acad Sci USA101: 4292-4295PubMedCrossRefGoogle Scholar
  8. 8.
    Bourke SC, Shaw PJ, Gibson GJ (2001) Respiratory function vs sleep-disordered breathing as predictors of QOL in ALS. Neurology57: 2040-2044PubMedGoogle Scholar
  9. 9.
    Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science302: 885-889PubMedCrossRefGoogle Scholar
  10. 10.
    Dahlberg JM, Wilkerson JER, Mitchell GS (2005) Differential 5HT2A, 5HT7, BDNF and TrkB receptor mRNA expression in ventral spinal segments associated with phrenic motor nucleus of four inbred rat strains. FASEB J 19: A1638Google Scholar
  11. 11.
    Dale EA, Nashold LJ, Mahamed S, Svendsen CN, Mitchell GS (2006) Sustained ventilatory capacity in a rat model of amyotrophic lateral sclerosis. FASEB J 20: A1213Google Scholar
  12. 12.
    Dale EA, Satriotomo I, Mitchell GS (2007) Thrice-weekly acute intermittent hypoxia induces Vascular Endothelial Growth Factor (VEGF) in phrenic motor neurons. FASEB J, in pressGoogle Scholar
  13. 13.
    Denli AM, Hannon GJ (2003) RNAi: an ever-growing puzzle. Trends Biochem Sci28: 196-201PubMedCrossRefGoogle Scholar
  14. 14.
    DeVivo MJ, Ivie CS (1995) Life expectancy of ventilator-dependent persons with spinal cord injuries. Chest108: 226-232PubMedGoogle Scholar
  15. 15.
    Dimitrejivic MR (1988) Model for the study of plasticity of the human nervous system: features of residual spinal cord motor activity resulting from established post-traumatic injury. Ciba Found Symp138: 227-239Google Scholar
  16. 16.
    Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol4: 457-467PubMedCrossRefGoogle Scholar
  17. 17.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev15: 188-200PubMedCrossRefGoogle Scholar
  18. 18.
    Feldman JL, Mitchell GS, Nattie EE (2003) Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci26: 239-266CrossRefGoogle Scholar
  19. 19.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811PubMedCrossRefGoogle Scholar
  20. 20.
    Fletcher EC (1981) Invited review: Physiological consequences of intermittent hypoxia: systemic blood pressure. J Appl Physiol90: 1600-1605Google Scholar
  21. 21.
    Fregosi RF, Mitchell GS (1994) Long-term facilitation of inspiratory intercostal nerve activity following carotid sinus nerve stimulation in cats. J Physiol477: 469-479PubMedGoogle Scholar
  22. 22.
    Fuller DD, Bach KB, Baker TL, Kinkead R, Mitchell GS (2000) Long term facilitation of phrenic motor output. Respir Physiol121: 135-146PubMedCrossRefGoogle Scholar
  23. 23.
    Fuller DD, Baker TL, Behan M, Mitchell GS (2001a) Expression of hypoglossal long-term facilitation differs between substrains of Sprague-Dawley rat. Physiol Genomics 4: 175-181Google Scholar
  24. 24.
    Fuller DD, Wang ZY, Ling L, Olson EB, Bisgard GE, Mitchell GS (2001b) Induced recovery of hypoxic phrenic responses in adult rats exposed to hyperoxia for the first month of life. J Physiol 536: 917-926CrossRefGoogle Scholar
  25. 25.
    Fuller DD, Johnson SM, Johnson RA, GS Mitchell (2002a) Chronic cervical spinal sensory denervation reveals ineffective spinal pathways to phrenic motoneurons in the rat. Neurosci Lett 323: 25-28CrossRefGoogle Scholar
  26. 26.
    Fuller DD, Johnson SM, Mitchell GS (2002b) Respiratory long-term facilitation (LTF) is associated with enhanced spinally evoked phrenic potentials. Program No. 363.1, Abstract Viewer/Itinerary Planner, Washington, DC: Society for NeuroscienceGoogle Scholar
  27. 27.
    Fuller DD, Johnson SM, Olson EB, Mitchell GS (2003) Synaptic pathways to phrenic motoneurons are enhanced by chronic intermittent hypoxia after cervical spinal cord injury. J Neurosci23: 2993-3000PubMedGoogle Scholar
  28. 28.
    Fuller DD, Baker-Herman TL, Golder FJ, Doperalski NJ, Watters JJ, Mitchell GS (2005) Cervical spinal cord injury upregulates ventral spinal 5HT2A receptors. J Neurotrama 22:203-213.Google Scholar
  29. 29.
    Fuller DD, Golder FJ, Olson EB, Mitchell GS (2006) Recovery of phrenic activity and ventilation after cervical spinal hemisection in rats. J Appl Physiol100: 800-806PubMedCrossRefGoogle Scholar
  30. 30.
    Golder FJ, Mitchell GS (2005) Spinal synaptic enhancement with acute intermittent hypoxia improves respiratory function after chronic cervical spinal cord injury. J Neurosci25: 2925-2932PubMedCrossRefGoogle Scholar
  31. 31.
    Golder FJ, Ranganathan L, Satriotomo I, Hoffman S, Mahamed S, Baker-Herman TL and Mitchell GS (2007) A2a receptor transactivation of cervical TrkB protein improves respiratory function after cervical spinal injury. FASEB J, in press.Google Scholar
  32. 32.
    Goshgarian HG (1981) The role of cervical afferent nerve fiber inhibition of the crossed phrenic phenomenon. Exp Neurol72: 211-225PubMedCrossRefGoogle Scholar
  33. 33.
    Goshgarian HG (2003) The crossed phrenic phenomenon: a model for plasticity in the respiratory pathways following spinal cord injury. J Appl Physiol94: 795810Google Scholar
  34. 34.
    Gozal D (2001) Morbitity of obstructive sleep apnea in children: facts and theory. Sleep Breath5: 35-42PubMedCrossRefGoogle Scholar
  35. 35.
    Gozal D, Kheirandish-Gozal L (2006) Sleep apnea in children-treatment considerations. Paediatr Respir Rev 7 Supp 1: S58-61Google Scholar
  36. 36.
    Guth L (1976) Functional plasticity in the respiratory plasticity of the mammalian spinal cord. Exp Neurol51: 414-420PubMedCrossRefGoogle Scholar
  37. 37.
    Hadley SD, Walker PD, Goshgarian HG (1999) Effects of the serotonin synthesis inhibitor p-CPA on the expression of the crossed phrenic phenomenon 4 h following C2 spinal cord hemisection. Exp Neurol160: 479-488PubMedCrossRefGoogle Scholar
  38. 38.
    Hannon GJ (2003) RNAi: A guide to gene silencing. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory PressGoogle Scholar
  39. 39.
    Harris DP, Balasubramaniam A, Badr MS, Mateika JH (2006) Long-term facilitation of ventilation and genioglossus muscle activity is evident in the presence of elevated levels of carbon dioxide in awake humans. Am J Physiol Regul Integr Comp Physiol 291: R1111-1119PubMedGoogle Scholar
  40. 40.
    Hoffman MS, Mahamed S, Golder FJ, Mitchell GS (2007) Adenosine A2A receptors constrain phrenic long term facilitation following acute intermittent hypoxia. FASEB J, in pressGoogle Scholar
  41. 41.
    Ilzecka J, Stelmasiak Z, Balicka G (2003) Respiratory function in amyotrophic lateral sclerosis. Neurol Sci24: 288-289PubMedCrossRefGoogle Scholar
  42. 42.
    Johnson RA, Okragly AJ, Haak-Frendscho M, Mitchell GS (2000) Cervical dorsal rhizotomy increases brain-derived neurotrophic factor and neurotrophin-3 expression in the ventral spinal cord. J Neurosci 20 RC77: 1-5Google Scholar
  43. 43.
    Kalaria RN, Spoors L, Laude EA, Emery CJ, Thwaites-Bee D, Fairlie J, Oakley AE, Barer DH, Barer GR (2004) Hypoxia of sleep apnoea: cardiopulmonary and cerebran changes after intermittent hypoxia in rats. Respir Physiol Neurobiol140: 53-62PubMedCrossRefGoogle Scholar
  44. 44.
    Kinkead R, Zhan WZ, Prakash YS, Bach KB, Sieck GC, Mitchell GS (1998) Cervical dorsal rhizotomy enhances serotonergic innervation of phrenic motoneurons and serotonin-dependent long-term facilitation of respiratory motor output in rats. J Neurosci18: 8436-8443PubMedGoogle Scholar
  45. 45.
    Kinney HC, Filiano JJ, White WF (2001) Medullary serotonergic network deficiency in the sudden infant death syndrome: review of a 15-year study of a single dataset. J Neuropathol Exp Neurol60: 228-247PubMedGoogle Scholar
  46. 46.
    Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen CN (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther16: 509-521PubMedCrossRefGoogle Scholar
  47. 47.
    Klose R, Bird A (2003) Molecular biology. MeCP2 repression goes nonglobal. Science302: 793-795Google Scholar
  48. 48.
    Kraiczi H, Hedner J, Dahlof P, Ejnell H, Carlson J (1999) Effect of serotonin uptake inhibition on breathing during sleep and daytime symptoms in obstructive sleep apnea. Sleep22: 61-67PubMedGoogle Scholar
  49. 49.
    Lechtzin N, Rothstein J, Clawson L, Diette GB Wiener CM (2002) Amyotrophic lateral sclerosis: evaluation and treatment of respiratory impairment. Amyotrophic Lateral Scler Other Motor Neuron Disord3: 5-13CrossRefGoogle Scholar
  50. 50.
    Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci USA98: 3555-3560PubMedCrossRefGoogle Scholar
  51. 51.
    Lee FS, Rajagopal R, Chao MV (2002) Distinctive features of Trk neurotrophin receptor transactivation by G protein-coupled receptors. Cytokine Growth Factor Rev.13: 11-17PubMedCrossRefGoogle Scholar
  52. 52.
    Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol.23: 215-221PubMedCrossRefGoogle Scholar
  53. 53.
    53. Ling L, Bach KB, Mitchell GS (1994) Serotonin reveals ineffective spinal pathways to contralateral phrenic motoneurons in spinally hemisected rats. Exp Brain Res101: 35-43PubMedCrossRefGoogle Scholar
  54. 54.
    Ling L, Fuller DD, Bach KB, Kinkead R, Olson EB, Mitchell GS (2001) Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing. J Neurosci21: 5381-5388PubMedGoogle Scholar
  55. 55.
    Llado J, Haenggeli C, Pardo A, Wong V, Benson L, Coccia C, Rothstein JD, Shefner JM, Maragakis NJ (2005) Degeneration of respiratory motor neurons in the SOD1 G93A transgenic rat model of ALS. Neurobiol Dis21: 110-118PubMedCrossRefGoogle Scholar
  56. 56.
    Lovett-Barr MR, Mitchell GS, Satriotomo I, Johnson SM (2006) Serotonin-induced in vitro long-term facilitation exhibits differential pattern sensitivity in cervical and thoracic inspiratory motor output. Neuroscience142: 885-892PubMedCrossRefGoogle Scholar
  57. 57.
    57. Lyall RA, Donaldson N, Polkey MI, Leigh PN, Moxham J (2001) Respiratory muscle strength and ventilatory failure in amyotrophic lateral sclerosis. Brain 124: 2000-2013CrossRefGoogle Scholar
  58. 58.
    MacFarlane P, Mitchell GS (2006) Respiratory long term facilitation evoked by acute intermittent hypoxia is impaired following intravenous injection of a superoxide dismutase mimetic. FASEB J 20: A372Google Scholar
  59. 59.
    MacFarlane PM, Satriotomo I, Mitchell GS (2007) Reactive oxygen species generated by NADPH oxidase are necessary for phrenic long-term facilitation following acute intermittent hypoxia. FASEB J, in pressGoogle Scholar
  60. 60.
    Mahamed S, Mitchell GS (2006) Is there a link between intermittent hypoxia-induced respiratory plasticity and obstructive sleep apnoea? Exp Physiol92: 2737Google Scholar
  61. 61.
    Mahamed S, Mitchell GS (2006) Does simulated apnea elicit respiratory long-term facilitation? FASEB J 20: A372Google Scholar
  62. 62.
    Mansel JK, Norman JR (1990) Respiratory complications and management of spinal cord injuries. Chest97: 1446-1452Google Scholar
  63. 63.
    McGuire M, Zhang Y, White DP, Ling L (2004) Serotonin receptor subtypes required for ventilatory long-term facilitation and its enhancement after chronic intermittent hypoxia in awake rats. Am J Physiol Regul Integr Comp Physiol 286: R334-341PubMedGoogle Scholar
  64. 64.
    McGuire M, Zhang Y, White DP, Ling L (2005) Phrenic long-term facilitation requires NMDA receptors in the phrenic motonucleus in rats. J Physiol567: 599611CrossRefGoogle Scholar
  65. 65.
    McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet3: 737-747PubMedCrossRefGoogle Scholar
  66. 66.
    Mitchell GS, Baker TL, Nanda SA, Fuller DD, Zabka AG, Hodgeman BA, Bavis RW, Mack KJ, Olson EB (2001) Physiological and genomic, consequences of intermittent hypoxia. J Appl Physiol90: 2466-2475PubMedGoogle Scholar
  67. 67.
    Mitchell GS, Johnson SM (2003) Neuroplasticity in respiratory motor control. J Appl Physiol94: 358-374PubMedGoogle Scholar
  68. 68.
    Mitchell GS, Sloan HE, Jiang C, Hayashi F, J Lipski (1992) 5Hydroxytryptophan (5-HTP) augments spontaneous and evoked phrenic motoneuron discharge in spinalized rats. Neurosci Lett141: 75-78PubMedCrossRefGoogle Scholar
  69. 69.
    Nakamura A, Wenninger JM, Olson EB, Bisgard GE, Mitchell GS (2006) Ventilatory long-term facilitation following intermittent hypoxia is state-dependent in rats. J Physiol Sci 56 (Suppl): S75Google Scholar
  70. 70.
    Nakamura A, Wenninger JM, Olson EB, Bisgard GE, Mitchell GS (2005) Ventilatory long-term facilitation in sleeping Lewis rats. FASEB J 19: A1284Google Scholar
  71. 71.
    Nakano H Magalang UJ, Lee SD, Krasney JA, Farkas GA (2001) Serotonergic modulation of ventilation and upper airway stability in obese Zucker rats. Am J Respir Crit Care Med163: 1191-1197PubMedGoogle Scholar
  72. 72.
    Nantwi KD, Goshgarian HG (1998) Effects of chronic systemic theophylline injections on recovery of hemidiaphragmatic function after cervical spinal cord injury in adult rats. Brain Res789: 126-129PubMedCrossRefGoogle Scholar
  73. 73.
    Nashold LJ, Wilkerson JER, Satriotomo I, Dale EA, Svendsen CN, Mitchell GS (2006) Phrenic, but not hypoglossal, motor output is diminished in a rat model of amyotrophic lateral sclerosis (ALS). FASEB J 20: A1212CrossRefGoogle Scholar
  74. 74.
    Peng YJ, Prabhakar NR (2003) Reactive oxygen species in the plasticity of respiratory behavior elicited by chronic intermittent hypoxia. J Appl Physiol94: 23422349Google Scholar
  75. 75.
    Porter WT (1895) The path of the respiratory impulse from the bulb to the phrenic nuclei. J Physiol17: 455-485PubMedGoogle Scholar
  76. 76.
    Prochazka A, Mushahwar VK (2001) Spinal cord function and rehabilitation-an overview. J Physiol533: 3-4PubMedCrossRefGoogle Scholar
  77. 77.
    Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC, Wong LF, Bilsland LG, Greensmith L, Kingsman SM, Mitrophanous KA, Mazarakis ND, Azzouz M (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med.11: 429-433PubMedCrossRefGoogle Scholar
  78. 78.
    Ramer MS, Priestly JV, McMahon SB (2000) Functional regeneration of sensory axons into the adult spinal cord. Nature403: 312-316PubMedCrossRefGoogle Scholar
  79. 79.
    Raoul C, Abbas-Terki T, Bensadoun JC, Guillot S, Haase G, Szulc J, Henderson CE, Aebischer P (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med11: 423-428PubMedCrossRefGoogle Scholar
  80. 80.
    Satriotomo I, Nashold LJ, Svendsen CN, Mitchell GS (2006) Enhancement of BDNF and serotonin terminal density in phrenic and hypoglossal motor nuclei in a rat model of Amyotrophic Lateral Sclerosis (ALS). FASEB J 20: A1212Google Scholar
  81. 81.
    Satriotomo I, Dale EJ, Mitchell GS (2007) Thrice weekly intermittent hypoxia increases expression of key proteins necessary for phrenic long-term facilitation: a possible mechanism of respiratory metaplasticity? FASEB J, in pressGoogle Scholar
  82. 82.
    Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays26: 943954CrossRefGoogle Scholar
  83. 83.
    83. Tai Q, Palazzolo KL, Goshgarian HG (1996) Synaptic plasticity of 5hydroxytryptamine-immunoreactive terminals in the phrenic nucleus following spinal cord injury: a quantitative electron microscopic analysis. J Comp Neurol86: 613-624Google Scholar
  84. 84.
    Tankersley CG, Haengelli C, Rothstein J (2007) Respiratory impairment in a mouse model of Amyotrophic Lateral Sclerosis. J Appl Physiol102: 926-932PubMedCrossRefGoogle Scholar
  85. 85.
    Veasey SC, Panckeri KA, Hoffman EA, Pack AI, Hendricks JC (1996) The effects of serotonin antagonists in an animal model of sleep-disordered breathing. Am J Respir Crit Care Med153: 776-786PubMedGoogle Scholar
  86. 86.
    Veasey SC, Chachkes J, Fenik P, Hendricks JC (2001) The effects of ondansetron on sleep-disordered breathing in the English bulldog. Sleep24: 155-160PubMedGoogle Scholar
  87. 87.
    Wilkerson JER, Baker-Herman TL, Mitchell GS (2005) BDNF synthesis and ERK1 activation are induced in ventral cervical spinal cord following intermittent hypoxia in Brown Norway rats. Program No. 635.8. Abstract Viewer/Itinerary Planner, Washington, DC: Society for NeuroscienceGoogle Scholar
  88. 88.
    88. Wilkerson JER, Mitchell GS (2005) Daily acute intermittent hypoxia enhances hypoglossal, but not phrenic Long Term Facilitation (LTF) in Brown Norway rats FASEB J 19: A1639 Respiratory plasticity and ventilatory control disorders 311Google Scholar
  89. 89.
    Wilkerson JER, Baker-Herman TL, Mitchell GS (2006) Okadaic acid-sensitive protein phosphatases constrain phrenic long-term facilitation following sustained hypoxia. FASEB J 20: A372Google Scholar
  90. 90.
    Wong PC, Cai H, Borchelt DR, Price DL (2002) Genetically engineered mouse models of neurodegenerative diseases. Nat Neurosci5: 633-639PubMedCrossRefGoogle Scholar
  91. 91.
    Young W (1996) Spinal cord regeneration. Science273: 451PubMedCrossRefGoogle Scholar
  92. 92.
    Zabka AG, Behan M and Mitchell GS (2001a) Long term facilitation of respiratory motor output decreases with age in male rats. J Physiol531: 509-514Google Scholar
  93. 93.
    Zabka AG, Behan M and Mitchell GS (2001b) Selected contribution: time-dependent hypoxic respiratory responses in female rats are influenced by age and by the estrus cycle. J Appl Physiol91: 2831-2838Google Scholar
  94. 94.
    Zabka AG, Mitchell GS and Behan M (2005) Ageing and gonadectomy have similar effects on hypoglossal long-term facilitation in male Fischer rats. J Physiol563: 557-568PubMedCrossRefGoogle Scholar
  95. 95.
    Zabka AG, Mitchell GS and Behan M (2006) Conversion from testosterone to oestradiol is required to modulate respiratory long-term facilitation in male rats. J Physiol576: 903-912PubMedCrossRefGoogle Scholar
  96. 96.
    Zabka AG, Mitchell GS, Olson EB Jr, Behan M (2003) Selected contribution: chronic intermittent hypoxia enhances respiratory long-term facilitation in geriatric female rats. J Appl Physiol95: 2614-2623PubMedGoogle Scholar
  97. 97.
    97. Zachary I (2005) Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals14: 207-221PubMedCrossRefGoogle Scholar
  98. 98.
    Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA.100: 9779-9784PubMedCrossRefGoogle Scholar
  99. 99.
    Zhou SY, Goshgarian HG (1999) 5-Hydroxytryptophan-induced respiratory recovery after cervical spinal cord hemisection in rats. J Appl Physiol89: 15281536Google Scholar
  100. 100.
    Zhou SY, Goshgarian HG (1999) Effects of serotonin on crossed phrenic nerve activity in cervical spinal cord hemisected rats. Exp Neurol160: 446-453PubMedCrossRefGoogle Scholar
  101. 101.
    Zhou SY, Basura GJ, Goshgarian HG (2001) Serotonin(2) receptors mediate respiratory recovery after cervical spinal cord hemisection in adult rats. J Appl Physiol91: 2665-2673PubMedGoogle Scholar
  102. 102.
    Zimmer MB, Goshgarian HG (2006) Spinal activation of serotonin 1A receptors enhances latent respiratory activity after spinal cord injury. J Spinal Cord MedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gordon S. Mitchell
    • 1
  1. 1.Department of Comparative BiosciencesUniversity of WisconsinMadisonU.S.A.

Personalised recommendations