Possible role of bioaminergic systems in the respiratory disorders of Rett syndrome

  • John Bissonnette
  • Gerard Hilaire


Biogenic Amine High Pressure Liquid Chromatography Intermittent Hypoxia Rett Syndrome Respiratory Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akbarian S, Rios M, Liu RJ, Gold SJ, Fong HF, Zeiler S, Coppola V, Tessarollo L, Jones KR, Nestler EJ, Aghajanian GK, Jaenisch R (2002) Brain-derived neurotrophic factor is essential for opiate-induced plasticity of noradrenergic neurons. J Neurosci 22:4153-4162PubMedGoogle Scholar
  2. 2.
    Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185-188PubMedCrossRefGoogle Scholar
  3. 3.
    Andaku DK, Mercadante MT, Schwartzman JS (2005) Buspirone in Rett syndrome respiratory dysfunction. Brain Dev 2:437-438CrossRefGoogle Scholar
  4. 4.
    Bissonnette JM, Knopp SJ (2006) Separate respiratory phenotypes in methyl-CpG-binding protein 2 (Mecp2) deficient mice. Pediatr Res 59:513-518PubMedCrossRefGoogle Scholar
  5. 5.
    Bissonnette J, Knopp S, McKinney B, Blue M (2005) Separate roles for central and pulmonary methyl-CpG-binding protein 2 (Mecp2) in establishing respiratory pattern (2005) FASEB J 19:372Google Scholar
  6. 6.
    Blanchi B, Kelly LM, Viemari JC, Lafon I, Burnet H, Bevengut M, Tillmanns S, Daniel L, Graf T, Hilaire G, Sieweke MH (2003) MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth. Nat Neurosci 6:1091-1100PubMedCrossRefGoogle Scholar
  7. 7.
    Bou-Flores C, Lajard AM, Monteau R, De Maeyer E, Seif I, Lanoir J, Hilaire G (2000) Abnormal phrenic motoneuron activity and morphology in neonatal monoamine oxidase A-deficient transgenic mice: possible role of a serotonin excess. J Neurosci 20:4646-4656PubMedGoogle Scholar
  8. 8.
    Braunschweig D, Simcox T, Samaco RC, LaSalle JM (2004) X-Chromosome inactivation ratios affect wild-type Mecp2 expression within mosaic Rett syndrome and Mecp2$- / +$ mouse brain. Hum Mol Genet 13:1275-1286PubMedCrossRefGoogle Scholar
  9. 9.
    Brucke T, Sofic E, Killian W, Rett A, Riederer P (1987) Reduced concentrations and increased metabolism of biogenic amines in a single case of Rett-syndrome: a postmortem brain study. J Neural Transm 68:315-324PubMedCrossRefGoogle Scholar
  10. 10.
    Burnet H, Bevengut M, Chakri F, Bou-Flores C, Coulon P, Gaytan S, Pasaro R, Hilaire G (2001) Altered respiratory activity and respiratory regulations in adult monoamine oxidase A-deficient mice. J Neurosci 21:5212-5221PubMedGoogle Scholar
  11. 11.
    Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Muller U, Aguet M, Babinet C, Shih JC (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268:1763-1766PubMedCrossRefGoogle Scholar
  12. 12.
    Cassel S, Carouge D, Gensburger C, Anglard P, Burgun C, Dietrich JB, Aunis D, Zwiller J (2006) Fluoxetine and cocaine induce the epigenetic factors Mecp2 and MBD1 in adult rat brain. Mol Pharmacol 70:487-492PubMedCrossRefGoogle Scholar
  13. 13.
    Chang Q, Khare G, Dani V, Nelson S, Jaenisch R (2006) The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron 49:341-348PubMedCrossRefGoogle Scholar
  14. 14.
    Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27:327-331PubMedCrossRefGoogle Scholar
  15. 15.
    Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of Mecp2. Science 302:885-889PubMedCrossRefGoogle Scholar
  16. 16.
    Cheng L, Chen CL, Luo P, Tan M, Qiu M, Johnson R, Ma Q (2003) Lmx1b, Pet1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J Neurosci 23:9961-9967PubMedGoogle Scholar
  17. 17.
    Cho HJ, Yoon KT, Kim HS, Lee SJ, Kim JK, Kim DS, Lee WJ (1999) Expression of brain-derived neurotrophic factor in catecholaminergic neurons of the rat lower brainstem after colchicine treatment or hemorrhage. Neuroscience 92: 901909CrossRefGoogle Scholar
  18. 18.
    Colvin L, Fyfe S, Leonard S, Schiavello T, Ellaway C, De Klerk N, Christodoulou J, Msall M, Leonard H (2003) Describing the phenotype in Rett syndrome using a population database. Arch Dis Child 88:38-43PubMedCrossRefGoogle Scholar
  19. 19.
    Copray JC, Bastiaansen M, Gibbons H, van Roon WM, Comer AM, Lipski J (1999) Neurotrophic requirements of rat embryonic catecholaminergic neurons from the rostral ventrolateral medulla. Brain Res Dev Brain Res 116:217-222PubMedCrossRefGoogle Scholar
  20. 20.
    Di Pasquale E, Monteau R, Hilaire G (1994) Endogenous serotonin modulates the fetal respiratory rhythm: an in vitro study in the rat. Brain Res Dev Brain Res 80:222-232PubMedCrossRefGoogle Scholar
  21. 21.
    Errchidi S, Monteau R, Hilaire G (1991) Noradrenergic modulation of the medullary respiratory rhythm generator in the newborn rat: an in vitro study. J Physiol 443:477-498PubMedGoogle Scholar
  22. 22.
    Errchidi S, Hilaire G, Monteau R (1990) Permanent release of noradrenaline modulates respiratory frequency in the newborn rat: an in vitro study. J Physiol 429:497-510PubMedGoogle Scholar
  23. 23.
    Franke U (2006) Mechanisms of disease: neurogenetics of MeCP2 deficiency. Nat Clin Pract Neurol 2:212-221CrossRefGoogle Scholar
  24. 24.
    Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4:1002-1012Google Scholar
  25. 25.
    Glaze DG, Frost JD, Jr., Zoghbi HY, Percy AK (1987) Rett’s syndrome: characterization of respiratory patterns and sleep. Ann Neurol 21:377-382PubMedCrossRefGoogle Scholar
  26. 26.
    Goridis C, Rohrer H (2002) Specification of catecholaminergic and serotonergic neurons. Nat Rev 3:531-541Google Scholar
  27. 27.
    Gozal E, Row BW, Schurr A, Gozal D (2001) Developmental differences in cortical and hippocampal vulnerability to intermittent hypoxia in the rat. Neurosci Lett 305:197-201PubMedCrossRefGoogle Scholar
  28. 28.
    Guideri F, Acampa M, Blardi P, de Lalla A, Zappella M, Hayek Y (2004) Cardiac dysautonomia and serotonin plasma levels in Rett syndrome. Neuropediatrics 35:36-38PubMedCrossRefGoogle Scholar
  29. 29.
    Guo H, Hellard DT, Huang L, Katz DM (2005) Development of pontine noradrenergic A5 neurons requires brain-derived neurotrophic factor. Eur J Neurosci 21:2019-2023PubMedCrossRefGoogle Scholar
  30. 30.
    Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27:322-326PubMedCrossRefGoogle Scholar
  31. 31.
    Hagberg B (2002) Clinical manifestations and stages of Rett syndrome. Ment Retard Dev Disabil Res Rev 8:61-65PubMedCrossRefGoogle Scholar
  32. 32.
    Hagberg B, Aicardi J, Dias K, Ramos O (1983) A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol 14:471-479PubMedCrossRefGoogle Scholar
  33. 33.
    Hilaire, G (2006) Endogenous noradrenaline affects the maturation and function of the respiratory network: Possible implication for SIDS. Auton Neurosci 127:320-331Google Scholar
  34. 34.
    Hilaire G, Duron B (1999) Maturation of the mammalian respiratory system. Physiol Rev 79:325-360PubMedGoogle Scholar
  35. 35.
    Hilaire G, Pasaro R (2003) Genesis and control of the respiratory rhythm in adult mammals. News Physiol Sci 18:23-28PubMedGoogle Scholar
  36. 36.
    Hilaire G, Viemari JC, Coulon P, Simonneau M, Bévengut M (2004) Modulation of the medullary respiratory rhythm generator by pontine noradrenergic A5 and A6 groups in rodents. Respir Physiol Neurobiol 143: 187-197PubMedCrossRefGoogle Scholar
  37. 37.
    Hirsch M, Tiveron MC, Guillemot F, Brunet JF, Goridis C (1998) Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125:599-608PubMedGoogle Scholar
  38. 38.
    Holm PC, Rodriguez FJ, Kresse A, Canals JM, Silos-Santiago I, Arenas E (2003) Crucial role of TrkB ligands in the survival and phenotypic differentiation of developing locus coeruleus noradrenergic neurons. Development 130:3535-3545PubMedCrossRefGoogle Scholar
  39. 39.
    Ide S, Itoh M, Goto Y (2005) Defect in normal developmental increase of the brain biogenic amine concentrations in the Mecp2-null mouse. Neurosci Lett 386:14-17PubMedCrossRefGoogle Scholar
  40. 40.
    Julu PO, Kerr AM, Apartopoulos F, Al-Rawas S, Engerstrom IW, Engerstrom L, Jamal GA, Hansen S (2001) Characterisation of breathing and associated central autonomic dysfunction in the Rett disorder. Arch Dis Child 85:29-37PubMedCrossRefGoogle Scholar
  41. 41.
    Kheirandish L, Gozal D, Pequignot JM, Pequignot J, Row BW (2005) Intermittent hypoxia during development induces long-term alterations in spatial working memory, monoamines, and dendritic branching in rat frontal cortex. Pediatr Res 58:594-599PubMedCrossRefGoogle Scholar
  42. 42.
    Kim MA, Lee HS, Lee BY, Waterhouse BD (2004) Reciprocal connections between subdivisions of the dorsal raphe and the nuclear core of the locus coeruleus in the rat. Brain Res 1026:56-67PubMedCrossRefGoogle Scholar
  43. 43.
    Lajard AM, Bou C, Monteau R, Hilaire G (1999) Serotonin levels are abnormally elevated in the fetus of the monoamine oxidase-A-deficient transgenic mouse. Neurosci Lett 261:41-44PubMedCrossRefGoogle Scholar
  44. 44.
    44. LaSalle JM, Goldstine J, Balmer D, Greco CM (2001) Quantitative localization of heterogeneous methyl-CpG-binding protein 2 (MeCP2) expression phenotypes in normal and Rett syndrome brain by laser scanning cytometry. Hum Mol Genet 10:1729-1740PubMedCrossRefGoogle Scholar
  45. 45.
    Lekman A, Witt-Engerstrom I, Gottfries J, Hagberg BA, Percy AK, Svennerholm L (1989) Rett syndrome: biogenic amines and metabolites in postmortem brain. Pediatr Neurol 5:357-362PubMedCrossRefGoogle Scholar
  46. 46.
    Lekman A, Witt-Engerstrom I, Holmberg B, Percy A, Svennerholm L, Hagberg B (1990) CSF and urine biogenic amine metabolites in Rett syndrome Clin Genet 37:173-178Google Scholar
  47. 47.
    Lindsey BG, Hernandez YM, Morris KF, Shannon R, Gerstein GL (1992) Respiratory-related neural assemblies in the brain stem midline. J Neurophysiol 67:905-922PubMedGoogle Scholar
  48. 48.
    Lo L, Tiveron MC, Anderson D (1998) MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development 125: 609-620PubMedGoogle Scholar
  49. 49.
    Lugaresi E, Cirignotta F, Montagna P (1985) Abnormal breathing in the Rett syndrome. Brain Dev 7:329-333PubMedGoogle Scholar
  50. 50.
    Marcus CL, Carroll JL, McColley SA, Loughlin GM, Curtis S, Pyzik P, Naidu S (1994) Polysomnographic characteristics of patients with Rett syndrome. J Pediatr 125:218-224PubMedCrossRefGoogle Scholar
  51. 51.
    Mojca Juric D, Miklic S, Carman-Krzan M (2006) Monoaminergic neuronal activity up-regulates BDNF synthesis in cultured neonatal rat astrocytes. Brain Res 1108:54-62CrossRefGoogle Scholar
  52. 52.
    Morin D, Monteau R, Hilaire G (1991) 5-Hydroxytryptamine modulates central respiratory activity in the newborn rat: an in vitro study. Eur J Pharmacol 192:89-95PubMedCrossRefGoogle Scholar
  53. 53.
    Morin D, Hennequin S, Monteau R, Hilaire G (1990) Serotonergic influences on central respiratory activity: an in vitro study in the newborn rat. Brain Res 535:281-287PubMedCrossRefGoogle Scholar
  54. 54.
    Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG (2004) Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7:1360-1369PubMedCrossRefGoogle Scholar
  55. 55.
    Mullaney BC, Johnston MV, Blue ME (2004) Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain. Neuroscience 123:939-949PubMedCrossRefGoogle Scholar
  56. 56.
    56.Nakai S, Matsunaga W, Ishida Y, Isobe K, Shirokawa T (2006) Effects of BDNF infusion on the axon terminals of locus coeruleus neurons of aging rats. Neurosci Res 54:213-219PubMedCrossRefGoogle Scholar
  57. 57.
    Nattie EE, Li A (2001) CO2 dialysis in the medullary raphe of the rat increases ventilation in sleep. J Appl Physiol 90:1247-1257PubMedGoogle Scholar
  58. 58.
    Nattie EE, Li A, Richerson G, Lappi DA (2004) Medullary serotonergic neurones and adjacent neurones that express neurokinin-1 receptors are both involved in chemoreception in vivo. J Physiol 556:235-253PubMedCrossRefGoogle Scholar
  59. 59.
    Neul JL, Zoghbi HY (2004) Rett syndrome: a prototypical neurodevelopmental disorder. Neuroscientist 10:118-128PubMedCrossRefGoogle Scholar
  60. 60.
    Nielsen JB, Lou HC, Andresen J (1990) Biochemical and clinical effects of tyrosine and tryptophan in the Rett syndrome. Brain Dev 12:143-147PubMedGoogle Scholar
  61. 61.
    Nomura Y, Segawa M, Higurashi M (1985) Rett syndrome -an early catecholamine and indolamine deficient disorder? Brain Dev 7:334-341PubMedGoogle Scholar
  62. 62.
    Paterson DS, Thompson EG, Belliveau RA, Antalffy BA, Trachtenberg FL, Armstrong DD, Kinney HC (2005) Serotonin transporter abnormality in the dorsal motor nucleus of the vagus in Rett syndrome: potential implications for clinical autonomic dysfunction. J Neuropathol Exp Neurol 64:1018-1027PubMedCrossRefGoogle Scholar
  63. 63.
    Paton JF (1996) A working heart-brainstem preparation of the mouse. J Neurosci Meth 65:63-68CrossRefGoogle Scholar
  64. 64.
    Pattyn A, Simplicio N, van Doorninck JH, Goridis C, Guillemot F, Brunet JF (2004) Ascl1/Mash1 is required for the development of central serotonergic neurons. Nat Neurosci 7:589-595PubMedCrossRefGoogle Scholar
  65. 65.
    Pattyn A, Goridis C, Brunet JF (2000) Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol Cell Neurosci 15: 235-243PubMedCrossRefGoogle Scholar
  66. 66.
    Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399:366-370PubMedCrossRefGoogle Scholar
  67. 67.
    Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1997) Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124:4065-4075PubMedGoogle Scholar
  68. 68.
    Pickel VM, Joh TH, Chan J, Beaudet A (1984) Serotoninergic terminals: ultrastructure and synaptic interaction with catecholamine-containing neurons in the medial nuclei of the solitary tracts. J Comp Neurol 225: 291-301PubMedCrossRefGoogle Scholar
  69. 69.
    Pelka GJ, Watson CM, Radziewic T, Hayward M, Lahooti H, Christodoulou J, Tam PP (2006) Mecp2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice. Brain 129:887898CrossRefGoogle Scholar
  70. 70.
    Pelligra R, Norton RD, Wilkinson R, Leon HA, Matson WR (1992) Rett syndrome: stimulation of endogenous biogenic amines. Neuropediatrics 23:131-137PubMedGoogle Scholar
  71. 71.
    Perry TL, Dunn HG, Ho HH, Crichton JU (1988) Cerebrospinal fluid values for monoamine metabolites, gamma-aminobutyric acid, and other amino compounds in Rett syndrome. J Pediatr 112:234-238PubMedCrossRefGoogle Scholar
  72. 72.
    QianY, Shirasawa S, Chen C, Cheng L, Ma Q (2002) Proper development of relay somatic sensory neurons and D2/D4 interneurons requires homeobox genes Rnx/Tlx-3 and Tlx-1. Gene Dev 16:1220-1233CrossRefGoogle Scholar
  73. 73.
    Qian Y, Fritzsch B, Shirasawa S, Chen CL, Choi Y, Ma Q (2001) Formation of brainstem (nor)adrenergic centers and first-order relay visceral sensory neurons is dependent on homeodomain protein Rnx/Tlx3. Gene Dev 15:2533-2545PubMedCrossRefGoogle Scholar
  74. 74.
    Ramaekers VT, Hansen SI, Holm J, Opladen T, Senderek J, Hausler M, Heimann G, Fowler B, Maiwald R, Blau N (2003) Reduced folate transport to the CNS in female Rett patients. Neurology 61:506-515PubMedGoogle Scholar
  75. 75.
    Rett A (1977) Cerebral atrophy associated with hyperammonaemia. In : Handbook of clinical neurology. Vinken PJ, Bruyn GW (eds): North Holland, Amsterdam; pp 305-329Google Scholar
  76. 76.
    Richerson GB (2004) Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci 5:449-461PubMedCrossRefGoogle Scholar
  77. 77.
    Riederer P, Weiser M, Wichart I, Schmidt B, Killian W, Rett A (1986) Preliminary brain autopsy findings in progredient Rett syndrome. Am J Med Genet Suppl 1:305-315PubMedCrossRefGoogle Scholar
  78. 78.
    Row BW, Liu R, Xu W, Kheirandish L, Gozal D (2003) Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am J Respir Crit Care Med 167:1548–1553PubMedCrossRefGoogle Scholar
  79. 79.
    Rumajogee P, Verge D, Darmon M, Brisorgueil MJ, Hamon M, Miquel MC (2005) Rapid up-regulation of the neuronal serotoninergic phenotype by brain-derived neurotrophic factor and cyclic adenosine monophosphate: relations with raphe astrocytes. J Neurosci Res 81:481-487PubMedCrossRefGoogle Scholar
  80. 80.
    Rumajogee P, Madeira A, Verge D, Hamon M, Miquel MC (2002) Up-regulation of the neuronal serotoninergic phenotype in vitro: BDNF and cAMP share Trk B-dependent mechanisms. J Neurochem 83:1525-1528PubMedCrossRefGoogle Scholar
  81. 81.
    Scott MM, Wylie CJ, Lerch JK, Murphy R, Lobur K, Herlitze S, Jiang W, Conlon RA, Strowbridge BW, Deneris ES (2005) A genetic approach to access serotonin neurons for in vivo and in vitro studies. Proc Natl Acad Sci USA 102: 16472-16477PubMedCrossRefGoogle Scholar
  82. 82.
    82. Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, Armstrong D, Paylor R, Zoghbi H (2002a) Mice with truncated Mecp2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35:243-254Google Scholar
  83. 83.
    Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY (2002b) Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 11:115-124Google Scholar
  84. 84.
    Siuciak JA, Boylan C, Fritsche M, Altar CA, Lindsay RM (1996) BDNF increases monoaminergic activity in rat brain following intracerebroventricular or intraparenchymal administration. Brain Res 710:11-20PubMedCrossRefGoogle Scholar
  85. 85.
    Smeets EJ, Julu PO, Van Waardenburg, D, Engerstrom IG, Hansen S, Apartopoulos F, Curfs LM, Schrander-Stumpel C (2006) Management of a severe forceful breather with Rett Syndrome using carbogen. Brain Dev 28:625-632PubMedCrossRefGoogle Scholar
  86. 86.
    Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman, JL (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726-729PubMedCrossRefGoogle Scholar
  87. 87.
    Sood S, Raddatz E, Liu X, Liu H, Horner RL (2006) Inhibition of serotonergic medullary raphe obscurus neurons suppresses genioglossus and diaphragm activities in anesthetized but not conscious rats. J Appl Physiol 100: 1807-1821PubMedCrossRefGoogle Scholar
  88. 88.
    Southall DP, Kerr AM, Tirosh E, Amos P, Lang MH, Stephenson JB (1988) Hyperventilation in the awake state: potentially treatable component of Rett syndrome. Arch Dis Child 63:1039-1048PubMedCrossRefGoogle Scholar
  89. 89.
    Stettner GM, Huppke P, Gärtner J, Richter D, Dutschmann M (2007) Disturbances of breathing pattern in Rett Syndrome: results from patients and animals models. Adv Exp Biol Med 579:863-876Google Scholar
  90. 90.
    90. Taylor NC, Li A, Nattie EE (2005) Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats. J Physiol 566:543-557CrossRefGoogle Scholar
  91. 91.
    Thomas SA, Matsumoto AM, Palmiter RD (1995) Noradrenaline is essential for mouse fetal development. Nature 374:643-646PubMedCrossRefGoogle Scholar
  92. 92.
    Tiveron MC, Hirsch MR, Brunet JF (1996) The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system. J Neurosci 16:7649-7660PubMedGoogle Scholar
  93. 93.
    Tryba AK, Pena F, Ramirez JM (2006) Gasping activity in vitro: A rhythm dependent on 5-HT2A receptors. J Neurosci 26:2623-2634PubMedCrossRefGoogle Scholar
  94. 94.
    Veasey SC, Fornal CA, Metzler CW, Jacobs BL (1995) Response of serotonergic caudal raphe neurons in relation to specific motor activities in freely moving cats. J Neurosci 15:5346-5359PubMedGoogle Scholar
  95. 95.
    95. Viemari JC, Ramirez JM (2006) Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons. JNeurophysiol 95:2070-2082Google Scholar
  96. 96.
    Viemari JC, Roux JC, Tryba AK, Saywell V, Burnet H, Pena F, Zanella S, Bevengut M, Barthelemy-Requin M, Herzing LB, Moncla A, Mancini J, Ramirez JM, Villard L, Hilaire G (2005a) Mecp2 deficiency disrupts norepinephrine and respiratory systems in mice. J Neurosci 25:11521-11530Google Scholar
  97. 97.
    Viemari JC, Maussion G, Bevengut M, Burnet H, Pequignot JM, Nepote V, Pachnis V, Simonneau M, Hilaire G (2005b) Ret deficiency in mice impairs the development of A5 and A6 neurons and the functional maturation of the respiratory rhythm. Eur J Neurosci 22:2403-2412Google Scholar
  98. 98.
    Viemari JC, Bevengut M, Burnet H, Coulon P, Pequignot JM, Tiveron MC, Hilaire G (2004) Phox2a gene, A6 neurons, and noradrenaline are essential for development of normal respiratory rhythm in mice. J Neurosci 24:928-937PubMedCrossRefGoogle Scholar
  99. 99.
    99. Viemari JC, Burnet H, Bevengut M, Hilaire G (2003) Perinatal maturation of the mouse respiratory rhythm-generator: in vivo and in vitro studies. Eur J Neurosci 17:1233-1244PubMedCrossRefGoogle Scholar
  100. 100.
    100. Wang W, Bradley SR, Richerson GB (2002) Quantification of the response of rat medullary raphe neurones to independent changes in pH(o) and P(CO2). J Physiol 540:951-970PubMedCrossRefGoogle Scholar
  101. 101.
    Wang W, Pizzonia JH, Richerson GB (1998) Chemosensitivity of rat medullary raphe neurones in primary tissue culture. J Physiol 511:433-450PubMedCrossRefGoogle Scholar
  102. 102.
    Weese-Mayer DE, Lieske SP, Boothby CM, Kenny AS, Bennett HL, Silvestri JM, Ramirez JM (2006) Autonomic nervous system dysregulation: breathing and heart rate perturbation during wakefulness in young girls with Rett syndrome. Pediatr Res 60:443-449PubMedCrossRefGoogle Scholar
  103. 103.
    Zanella S, Roux JC, Viemari JC, Hilaire G (2006). Possible modulation of the mouse respiratory rhythm generator by A1/C1 neurons. Respir Physiol Neurobiol 153:126-138PubMedCrossRefGoogle Scholar
  104. 104.
    Zoghbi HY, Milstien S, Butler IJ, Smith EO, Kaufman S, Glaze DG, Percy AK (1989) Cerebrospinal fluid biogenic amines and biopterin in Rett syndrome. Ann Neurol 25:56-60PubMedCrossRefGoogle Scholar
  105. 105.
    Zoghbi HY, Percy AK, Glaze DG, Butler IJ, Riccardi VM (1985) Reduction of biogenic amine levels in the Rett syndrome. N Engl J Med 313:921-924PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John Bissonnette
    • 1
  • Gerard Hilaire
    • 1
  1. 1.Oregon Health and Science UniversityPortlandU.S.A.

Personalised recommendations