Transcription factor control of central respiratory neuron development

  • Bruno C. Blanchi
  • Michael H. Sieweke


Carotid Body Rett Syndrome Serotonergic Neuron Central Sleep Apnea Respiratory Rhythm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Zubaidy ZA, Erickson RL, Greer JJ (1996) Serotonergic and noradrenergic effects on respiratory neural discharge in the medullary slice preparation of neonatal rats. Pflugers Arch 431: 942-949PubMedGoogle Scholar
  2. 2.
    Amiel J, Laudier B, Attie-Bitach T, Trang H, de Pontual L, Gener B, Trochet D, Etchevers H, Ray P, Simonneau M, Vekemans M, Munnich A, Gaultier C, Lyon-net S (2003) Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 33: 459-461PubMedGoogle Scholar
  3. 3.
    Amiel J, Pelet A, Trang H, de Pontual L, Simonneau M, Munnich A, Gaultier C, Lyonnet S (2003) Exclusion of RNX as a major gene in congenital central hypo-ventilation syndrome (CCHS, Ondine’s curse). Am J Med Genet A 117: 18-20PubMedGoogle Scholar
  4. 4.
    Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23: 185-188PubMedGoogle Scholar
  5. 5.
    Ballantyne D, Scheid P (2000) Mammalian brainstem chemosensitive neurones: linking them to respiration in vitro. J Physiol 525: 567-577PubMedGoogle Scholar
  6. 6.
    Berry-Kravis EM, Zhou L, Rand CM, Weese-Mayer DE (2006) Congenital central hypoventilation syndrome: PHOX2B mutations and phenotype. Am J Respir Crit Care Med 174: 1139-1144PubMedGoogle Scholar
  7. 7.
    Bianchi AL, Denavit-Saubie M, Champagnat J (1995) Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol Rev 75: 1-45PubMedGoogle Scholar
  8. 8.
    Bissonnette JM, Knopp SJ (2006) Separate respiratory phenotypes in methyl-CpG-binding protein 2 (Mecp2) deficient mice. Pediatr Res 59: 513-518PubMedGoogle Scholar
  9. 9.
    Blanchi B, Kelly LM, Viemari JC, Lafon I, Burnet H, Bevengut M, Tillmanns S, Daniel L, Graf T, Hilaire G, Sieweke MH (2003) MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth. Nat Neurosci 6: 1091-1100PubMedGoogle Scholar
  10. 10.
    Blanchi B, Sieweke MH (2005) Mutations of brainstem transcription factors and central respiratory disorders. Trends Mol Med 11: 23-30PubMedGoogle Scholar
  11. 11.
    Borday C, Chatonnet F, Thoby-Brisson M, Champagnat J, Fortin G (2005) Neural tube patterning by Krox20 and emergence of a respiratory control. Respir Physiol Neurobiol 149: 63-72PubMedGoogle Scholar
  12. 12.
    Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell TM, Rubenstein JL, Ericson J (1999) Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398: 622-627PubMedGoogle Scholar
  13. 13.
    Brunet JF, Pattyn A (2002) Phox2 genes - from patterning to connectivity. Curr Opin Genet Dev 12: 435-440PubMedGoogle Scholar
  14. 14.
    Chatonnet F, del Toro ED, Voiculescu O, Charnay P, Champagnat J (2002) Different respiratory control systems are affected in homozygous and heterozygous kreisler mutant mice. Eur J Neurosci 15: 684-692PubMedGoogle Scholar
  15. 15.
    Chatonnet F, Dominguez del Toro E, Thoby-Brisson M, Champagnat J, Fortin G, Rijli FM, Thaeron-Antono C (2003) From hindbrain segmentation to breathing after birth: developmental patterning in rhombomeres 3 and 4. Mol Neurobiol 28: 277-294PubMedGoogle Scholar
  16. 16.
    Chen H, Lun Y, Ovchinnikov D, Kokubo H, Oberg KC, Pepicelli CV, Gan L, Lee B, Johnson RL (1998) Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat Genet 19: 51-55PubMedGoogle Scholar
  17. 17.
    Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27: 327-331PubMedGoogle Scholar
  18. 18.
    Cheng L, Chen CL, Luo P, Tan M, Qiu M, Johnson R, Ma Q (2003) Lmx1b, Pet1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J Neurosci 23: 9961-9967PubMedGoogle Scholar
  19. 19.
    Coppola E, Pattyn A, Guthrie SC, Goridis C, Studer M (2005) Reciprocal gene replacements reveal unique functions for Phox2 genes during neural differentiation. Embo J 24: 4392-4403PubMedGoogle Scholar
  20. 20.
    Cordes SP, Barsh GS (1994) The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79: 1025-1034PubMedGoogle Scholar
  21. 21.
    Cordes SP (2005) Molecular genetics of the early development of hindbrain serotonergic neurons. Clin Genet 68: 487-494PubMedGoogle Scholar
  22. 22.
    Craven SE, Lim KC, Ye W, Engel JD, de Sauvage F, Rosenthal A (2004) Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development 131: 1165-1173PubMedGoogle Scholar
  23. 23.
    Daley KC (2004) Update on sudden infant death syndrome. Curr Opin Pediatr 16: 227-232PubMedGoogle Scholar
  24. 24.
    Dauger S, Renolleau S, Vardon G, Nepote V, Mas C, Simonneau M, Gaultier C, Gallego J (1999) Ventilatory responses to hypercapnia and hypoxia in Mash-1 heterozygous newborn and adult mice. Pediatr Res 46: 535-542PubMedGoogle Scholar
  25. 25.
    Dauger S, Guimiot F, Renolleau S, Levacher B, Boda B, Mas C, Nepote V, Simonneau M, Gaultier C, Gallego J (2001) MASH-1/RET pathway involvement in development of brainstem control of respiratory frequency in newborn mice. Physiol Genomics 7: 149-157PubMedGoogle Scholar
  26. 26.
    Dauger S, Pattyn A, Lofaso F, Gaultier C, Goridis C, Gallego J, Brunet JF (2003) Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development 130: 6635-6642PubMedGoogle Scholar
  27. 27.
    De Pontual L, Nepote V, Attie-Bitach T, Al Halabiah H, Trang H, Elghouzzi V, Levacher B, Benihoud K, Auge J, Faure C, Laudier B, Vekemans M, Munnich A, Perricaudet M, Guillemot F, Gaultier C, Lyonnet S, Simonneau M, Amiel J (2003) Noradrenergic neuronal development is impaired by mutation of the proneural HASH-1 gene in congenital central hypoventilation syndrome (Ondine’s curse). Hum Mol Genet 12: 3173-3180PubMedGoogle Scholar
  28. 28.
    Del Toro ED, Borday V, Davenne M, Neun R, Rijli FM and Champagnat J (2001) Generation of a novel functional neuronal circuit in Hoxa1 mutant mice. J Neurosci 21: 5637-5642PubMedGoogle Scholar
  29. 29.
    Ding YQ, Marklund U, Yuan W, Yin J, Wegman L, Ericson J, Deneris E, Johnson RL, Chen ZF (2003) Lmx1b is essential for the development of serotonergic neurons. Nat Neurosci 6: 933-938PubMedGoogle Scholar
  30. 30.
    Durand E, Dauger S, Pattyn A, Gaultier C, Goridis C, Gallego J (2005) Sleep-disordered breathing in newborn mice heterozygous for the transcription factor Phox2b. Am J Respir Crit Care Med 172: 238-243PubMedGoogle Scholar
  31. 31.
    Eichmann A, Grapin-Botton A, Kelly L, Graf T, Le Douarin NM, Sieweke M (1997) The expression pattern of the mafB/kr gene in birds and mice reveals that the kreisler phenotype does not represent a null mutant. Mech Dev 65: 111-122PubMedGoogle Scholar
  32. 32.
    Erickson T, Scholpp S, Brand M, Moens CB, Jan Waskiewicz A (2006) Pbx proteins cooperate with Engrailed to pattern the midbrain-hindbrain and diencephalic-mesencephalic boundaries. Dev Biol 301: 504-517PubMedGoogle Scholar
  33. 33.
    Errchidi S, Monteau R, Hilaire G (1991) Noradrenergic modulation of the medullary respiratory rhythm generator in the newborn rat: an in vitro study. J Physiol 443: 477-498PubMedGoogle Scholar
  34. 34.
    Feldman JL, Mitchell GS, Nattie EE (2003) Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci 26: 239-266PubMedGoogle Scholar
  35. 35.
    Feldman JL, Del Negro CA (2006) Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci 7: 232-242PubMedGoogle Scholar
  36. 36.
    Feldman JL, Janczewski WA (2006) The Last Word: Point: Counterpoint authors respond to commentaries on “the parafacial respiratory group (pFRG)/pre-Botzinger complex (preBotC) is the primary site of respiratory rhythm generation in the mammal”. J Appl Physiol 101: 689PubMedGoogle Scholar
  37. 37.
    Forster HV, Pan LG, Lowry TF, Serra A, Wenninger J, Martino P (2000) Important role of carotid chemoreceptor afferents in control of breathing of adult and neonatal mammals. Respir Physiol 119: 199-208PubMedGoogle Scholar
  38. 38.
    Goridis C, Rohrer H (2002) Specification of catecholaminergic and serotonergic neurons. Nat Rev Neurosci 3: 531-541PubMedGoogle Scholar
  39. 39.
    Gourine AV, Llaudet E, Dale N, Spyer KM (2005) ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436: 108-111PubMedGoogle Scholar
  40. 40.
    Gozal D (1998) Congenital central hypoventilation syndrome: an update. Pediatr Pulmonol 26: 273-282PubMedGoogle Scholar
  41. 41.
    Gray PA, Rekling JC, Bocchiaro CM, Feldman JL (1999) Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the pre-Botzinger complex. Science 286: 1566-1568PubMedGoogle Scholar
  42. 42.
    Gray PA, Janczewski WA, Mellen N, McCrimmon DR, Feldman JL (2001) Normal breathing requires preBotzinger complex neurokinin-1 receptor-expressing neurons. Nat Neurosci 4: 927-930PubMedGoogle Scholar
  43. 43.
    Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75: 463-476PubMedGoogle Scholar
  44. 44.
    Guo S, Brush J, Teraoka H, Goddard A, Wilson SW, Mullins MC, Rosenthal A (1999) Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron 24: 555-566PubMedGoogle Scholar
  45. 45.
    Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27: 322-326PubMedGoogle Scholar
  46. 46.
    Guyenet PG, Sevigny CP, Weston MC, Stornetta RL (2002) Neurokinin-1 receptor-expressing cells of the ventral respiratory group are functionally heterogeneous and predominantly glutamatergic. J Neurosci 22: 3806-3816PubMedGoogle Scholar
  47. 47.
    Hendricks T, Francis N, Fyodorov D, Deneris ES (1999) The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J Neurosci 19: 10348-10356PubMedGoogle Scholar
  48. 48.
    Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B, Silver J, Weeber EJ, Sweatt JD, Deneris ES (2003) Pet-1 ETS gene plays a critical role in 5HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37: 233-247PubMedGoogle Scholar
  49. 49.
    Hilaire G, Viemari JC, Coulon P, Simonneau M, Bevengut M (2004) Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents. Respir Physiol Neurobiol 143: 187-197PubMedGoogle Scholar
  50. 50.
    Hirsch MR, Tiveron MC, Guillemot F, Brunet JF, Goridis C (1998) Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125: 599-608PubMedGoogle Scholar
  51. 51.
    Holzschuh J, Barrallo-Gimeno A, Ettl AK, Durr K, Knapik EW, Driever W (2003) Noradrenergic neurons in the zebrafish hindbrain are induced by retinoic acid and require tfap2a for expression of the neurotransmitter phenotype. Development 130: 5741-5754PubMedGoogle Scholar
  52. 52.
    Hornbruch A, Ma G, Ballermann MA, Tumova K, Liu D, Cairine Logan C (2005) A BMP-mediated transcriptional cascade involving Cash1 and Tlx-3 specifies first-order relay sensory neurons in the developing hindbrain. Mech Dev 122: 900-913PubMedGoogle Scholar
  53. 53.
    Hunt CE (2001) Sudden infant death syndrome and other causes of infant mortality: diagnosis, mechanisms, and risk for recurrence in siblings. Am J Respir Crit Care Med 164: 346-357PubMedGoogle Scholar
  54. 54.
    Jacquin TD, Borday V, Schneider-Maunoury S, Topilko P, Ghilini G, Kato F, Charnay P, Champagnat J (1996) Reorganization of pontine rhythmogenic neuronal networks in Krox-20 knockout mice. Neuron 17: 747-758PubMedGoogle Scholar
  55. 55.
    Janczewski WA, Feldman JL (2006) Distinct rhythm generators for inspiration and expiration in the juvenile rat. J Physiol 570: 407-420PubMedGoogle Scholar
  56. 56.
    Johnson SM, Koshiya N, Smith JC (2001) Isolation of the kernel for respiratory rhythm generation in a novel preparation: the pre-Botzinger complex "island". J Neurophysiol 85: 1772-1776PubMedGoogle Scholar
  57. 57.
    Jrdan D (2001) Central nervous pathways and control of the airways. Respir Physiol 125: 67-81Google Scholar
  58. 58.
    Julu PO, Kerr AM, Apartopoulos F, Al-Rawas S, Engerstrom IW, Engerstrom L, Jamal GA, Hansen S (2001) Characterisation of breathing and associated central autonomic dysfunction in the Rett disorder. Arch Dis Child 85: 29-37PubMedGoogle Scholar
  59. 59.
    Kanai M, Numakura C, Sasaki A, Shirahata E, Akaba K, Hashimoto M, Hasegawa H, Shirasawa S, Hayasaka K (2002) Congenital central hypoventilation syndrome: a novel mutation of the RET gene in an isolated case. Tohoku J Exp Med 196: 241-246PubMedGoogle Scholar
  60. 60.
    Kelly LM, Englmeier U, Lafon I, Sieweke MH, Graf T (2000) MafB is an inducer of monocytic differentiation. Embo J 19: 1987-1997PubMedGoogle Scholar
  61. 61.
    Kijima K, Sasaki A, Niki T, Umetsu K, Osawa M, Matoba R, Hayasaka K (2004) Sudden infant death syndrome is not associated with the mutation of PHOX2B gene, a major causative gene of congenital central hypoventilation syndrome. Tohoku J Exp Med 203: 65-68PubMedGoogle Scholar
  62. 62.
    Kinney HC, Filiano JJ, White WF (2001) Medullary serotonergic network deficiency in the sudden infant death syndrome: review of a 15-year study of a single dataset. J Neuropathol Exp Neurol 60: 228-247PubMedGoogle Scholar
  63. 63.
    Kinney HC (2005) Abnormalities of the brainstem serotonergic system in the sudden infant death syndrome: a review. Pediatr Dev Pathol 8: 507-524PubMedGoogle Scholar
  64. 64.
    Kinney HC, Myers MM, Belliveau RA, Randall LL, Trachtenberg FL, Fingers ST, Youngman M, Habbe D, Fifer WP (2005) Subtle autonomic and respiratory dysfunction in sudden infant death syndrome associated with serotonergic brain-stem abnormalities: a case report. J Neuropathol Exp Neurol 64: 689-694PubMedGoogle Scholar
  65. 65.
    Kohnlein T, Welte T, Tan LB, Elliott MW (2002) Central sleep apnoea syndrome in patients with chronic heart disease: a critical review of the current literature. Thorax 57: 547-554PubMedGoogle Scholar
  66. 66.
    Li A, Nattie E (2006) Catecholamine neurones in rats modulate sleep, breathing, central chemoreception and breathing variability. J Physiol 570: 385-396PubMedGoogle Scholar
  67. 67.
    Li MA, Alls JD, Avancini RM, Koo K, Godt D (2003) The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila. Nat Cell Biol 5: 994-1000PubMedGoogle Scholar
  68. 68.
    Lim KC, Lakshmanan G, Crawford SE, Gu Y, Grosveld F, Engel JD (2000) Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat Genet 25: 209-212PubMedGoogle Scholar
  69. 69.
    Manzke T, Guenther U, Ponimaskin EG, Haller M, Dutschmann M, Schwarzacher S, Richter DW (2003) 5HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science 301: 226-229PubMedGoogle Scholar
  70. 70.
    Matera I, Bachetti T, Cinti R, Lerone M, Gagliardi L, Morandi F, Motta M, Mosca F, Ottonello G, Piumelli R, Schober JG, Ravazzolo R, Ceccherini I (2002) Mutational analysis of the RNX gene in congenital central hypoventilation syndrome. Am J Med Genet 113: 178-182PubMedGoogle Scholar
  71. 71.
    Matise MP, Epstein DJ, Park HL, Platt KA, Joyner AL (1998) Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125: 2759-2770PubMedGoogle Scholar
  72. 72.
    McKay IJ, Muchamore I, Krumlauf R, Maden M, Lumsden A, Lewis J (1994) The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120: 2199-2211PubMedGoogle Scholar
  73. 73.
    McKay LC, Janczewski WA, Feldman JL (2005) Sleep-disordered breathing after targeted ablation of preBotzinger complex neurons. Nat Neurosci 8: 1142-1144PubMedGoogle Scholar
  74. 74.
    Mellen NM, Janczewski WA, Bocchiaro CM, Feldman JL (2003) Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation. Neuron 37: 821-826PubMedGoogle Scholar
  75. 75.
    Morin X, Cremer H, Hirsch MR, Kapur RP, Goridis C, Brunet JF (1997) Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18: 411-423PubMedGoogle Scholar
  76. 76.
    Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG (2004) Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7: 1360-1369PubMedGoogle Scholar
  77. 77.
    Narita N, Narita M, Takashima S, Nakayama M, Nagai T, Okado N (2001) Serotonin transporter gene variation is a risk factor for sudden infant death syndrome in the Japanese population. Pediatrics 107: 690-692PubMedGoogle Scholar
  78. 78.
    Nattie E, Li A (2000) Muscimol dialysis in the retrotrapezoid nucleus region inhibits breathing in the awake rat. J Appl Physiol 89: 153-162PubMedGoogle Scholar
  79. 79.
    Nattie E, Li A (2006) Central chemoreception 2005: a brief review. Auton Neurosci 126-127: 332-338PubMedGoogle Scholar
  80. 80.
    Nattie EE, Li A (2002) Substance P-saporin lesion of neurons with NK1 receptors in one chemoreceptor site in rats decreases ventilation and chemosensitivity. J Physiol 544: 603-616PubMedGoogle Scholar
  81. 81.
    Nattie EE, Li A, Richerson G, Lappi DA (2004) Medullary serotonergic neurones and adjacent neurones that express neurokinin-1 receptors are both involved in chemoreception in vivo. J Physiol 556: 235-253PubMedGoogle Scholar
  82. 82.
    Norton WH, Mangoli M, Lele Z, Pogoda HM, Diamond B, Mercurio S, Russell C, Teraoka H, Stickney HL, Rauch GJ, Heisenberg CP, Houart C, Schilling TF, Frohnhoefer HG, Rastegar S, Neumann CJ, Gardiner RM, Strahle U, Geisler R, Rees M, Talbot WS, Wilson SW (2005) Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphe neurones and cranial motoneurones. Development 132: 645-658PubMedGoogle Scholar
  83. 83.
    Nsegbe E, Wallen-Mackenzie A, Dauger S, Roux JC, Shvarev Y, Lagercrantz H, Perlmann T, Herlenius E (2004) Congenital hypoventilation and impaired hypoxic response in Nurr1 mutant mice. J Physiol 556: 43-59PubMedGoogle Scholar
  84. 84.
    Onimaru H, Homma I (2003) A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23: 1478-1486PubMedGoogle Scholar
  85. 85.
    Onimaru H, Homma I (2006) Point: Counterpoint: The parafacial respiratory group (pFRG)/pre-Botzinger complex (preBotC) is the primary site of respiratory rhythm generation in the mammal. Point: the PFRG is the primary site of respiratory rhythm generation in the mammal. J Appl Physiol 100: 2094-2095PubMedGoogle Scholar
  86. 86.
    Ozawa Y, Okado N (2002) Alteration of serotonergic receptors in the brain stems of human patients with respiratory disorders. Neuropediatrics 33: 142-149PubMedGoogle Scholar
  87. 87.
    Panigrahy A, Filiano J, Sleeper LA, Mandell F, Valdes-Dapena M, Krous HF, Rava LA, Foley E, White WF, Kinney HC (2000) Decreased serotonergic receptor binding in rhombic lip-derived regions of the medulla oblongata in the sudden infant death syndrome. J Neuropathol Exp Neurol 59: 377-384PubMedGoogle Scholar
  88. 88.
    Parras CM, Schuurmans C, Scardigli R, Kim J, Anderson DJ, Guillemot F (2002) Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev 16: 324-338PubMedGoogle Scholar
  89. 89.
    Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, Chadwick AE, Krous HF, Kinney HC (2006) Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. JAMA 296: 2124-2132PubMedGoogle Scholar
  90. 90.
    Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1997) Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124: 4065-4075PubMedGoogle Scholar
  91. 91.
    Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399: 366-370PubMedGoogle Scholar
  92. 92.
    Pattyn A, Goridis C, Brunet JF (2000) Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol Cell Neurosci 15: 235-243PubMedGoogle Scholar
  93. 93.
    Pattyn A, Vallstedt A, Dias JM, Samad OA, Krumlauf R, Rijli FM, Brunet JF, Ericson J (2003) Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev 17: 729-737PubMedGoogle Scholar
  94. 94.
    Pattyn A, Simplicio N, van Doorninck JH, Goridis C, Guillemot F, Brunet JF (2004) Ascl1/Mash1 is required for the development of central serotonergic neurons. Nat Neurosci 7: 589-595PubMedGoogle Scholar
  95. 95.
    Pattyn A, Guillemot F, Brunet JF (2006) Delays in neuronal differentiation in Mash1/Ascl1 mutants. Dev Biol 295: 67-75PubMedGoogle Scholar
  96. 96.
    Pfaar H, von Holst A, Vogt Weisenhorn DM, Brodski C, Guimera J, Wurst W (2002) mPet-1, a mouse ETS-domain transcription factor, is expressed in central serotonergic neurons. Dev Genes Evol 212: 43-46PubMedGoogle Scholar
  97. 97.
    Qian Y, Fritzsch B, Shirasawa S, Chen CL, Choi Y, Ma Q (2001) Formation of brainstem (nor)adrenergic centers and first-order relay visceral sensory neurons is dependent on homeodomain protein Rnx/Tlx3. Genes Dev 15: 2533-2545PubMedGoogle Scholar
  98. 98.
    Ramanantsoa N, Vaubourg V, Dauger S, Matrot B, Vardon G, Chettouh Z, Gaultier C, Goridis C, Gallego J (2006) Ventilatory response to hyperoxia in newborn mice heterozygous for the transcription factor Phox2b. Am J Physiol 290: R1691-1696Google Scholar
  99. 99.
    Ramirez JM, Schwarzacher SW, Pierrefiche O, Olivera BM, Richter DW (1998) Selective lesioning of the cat pre-Botzinger complex in vivo eliminates breathing but not gasping. J Physiol 507: 895-907PubMedGoogle Scholar
  100. 100.
    Rhee JW, Arata A, Selleri L, Jacobs Y, Arata S, Onimaru H, Cleary ML (2004) Pbx3 deficiency results in central hypoventilation. Am J Pathol 165: 1343-1350PubMedGoogle Scholar
  101. 101.
    Sadl V, Jin F, Yu J, Cui S, Holmyard D, Quaggin S, Barsh G, Cordes S (2002) The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. Dev Biol 249: 16-29PubMedGoogle Scholar
  102. 102.
    Sasaki A, Kanai M, Kijima K, Akaba K, Hashimoto M, Hasegawa H, Otaki S, Koizumi T, Kusuda S, Ogawa Y, Tuchiya K, Yamamoto W, Nakamura T, Hayasaka K (2003) Molecular analysis of congenital central hypoventilation syndrome. Hum Genet 114: 22-26PubMedGoogle Scholar
  103. 103.
    Shimamura K, Hartigan DJ, Martinez S, Puelles L, Rubenstein JL (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121: 3923-3933PubMedGoogle Scholar
  104. 104.
    Shirasawa S, Arata A, Onimaru H, Roth KA, Brown GA, Horning S, Arata S, Okumura K, Sasazuki T, Korsmeyer SJ (2000) Rnx deficiency results in congenital central hypoventilation. Nat Genet 24: 287-290PubMedGoogle Scholar
  105. 105.
    Sieweke MH, Tekotte H, Frampton J, Graf T (1996) MafB is an interaction part ner and repressor of Ets-1 that inhibits erythroid differentiation. Cell 85: 49-60PubMedGoogle Scholar
  106. 106.
    Sieweke MH, Graf T (1998) A transcription factor party during blood cell differentiation. Curr Opin Genet Dev 8: 545-551PubMedGoogle Scholar
  107. 107.
    Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254: 726-729PubMedGoogle Scholar
  108. 108.
    Stornetta RL, Rosin DL, Wang H, Sevigny CP, Weston MC, Guyenet PG (2003) A group of glutamatergic interneurons expressing high levels of both neurokinin 1 receptors and somatostatin identifies the region of the pre-Botzinger complex. J Comp Neurol 455: 499-512PubMedGoogle Scholar
  109. 109.
    Sussel L, Kalamaras J, Hartigan-O’Connor DJ, Meneses JJ, Pedersen RA, Ruben-stein JL, German MS (1998) Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. De velopment 125: 2213-2221Google Scholar
  110. 110.
    Taylor NC, Li A, Nattie EE (2005) Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats. J Physiol 566: 543-557PubMedGoogle Scholar
  111. 111.
    Taylor NC, Li A, Nattie EE (2006) Ventilatory effects of muscimol microdialysis into the rostral medullary raphe region of conscious rats. Respir Physiol Neurobiol 153: 203-216PubMedGoogle Scholar
  112. 112.
    Van Doorninck JH, van Der Wees J, Karis A, Goedknegt E, Engel JD, Coesmans M, Rutteman M, Grosveld F, De Zeeuw CI (1999) GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J Neurosci 19: RC12PubMedGoogle Scholar
  113. 113.
    Viemari JC, Burnet H, Bevengut M, Hilaire G (2003) Perinatal maturation of the mouse respiratory rhythm-generator: in vivo and in vitro studies. Eur J Neurosci 17: 1233-1244PubMedGoogle Scholar
  114. 114.
    Viemari JC, Bevengut M, Burnet H, Coulon P, Pequignot JM, Tiveron MC, Hilaire G (2004) Phox2a gene, A6 neurons, and noradrenaline are essential for development of normal respiratory rhythm in mice. J Neurosci 24: 928-937PubMedGoogle Scholar
  115. 115.
    Viemari JC, Roux JC, Tryba AK, Saywell V, Burnet H, Pena F, Zanella S, Bevengut M, Barthelemy-Requin M, Herzing LB, Moncla A, Mancini J, Ramirez JM, Villard L, Hilaire G (2005) Mecp2 deficiency disrupts norepinephrine and respiratory systems in mice. J Neurosci 25: 11521-11530PubMedGoogle Scholar
  116. 116.
    Wallen AA, Castro DS, Zetterstrom RH, Karlen M, Olson L, Ericson J, Perlmann T (2001) Orphan nuclear receptor Nurr1 is essential for Ret expression in midbrain dopamine neurons and in the brain stem. Mol Cell Neurosci 18: 649-663 Warnecke M, Oster H, Revelli JP, Alvarez-Bolado G, Eichele G (2005) Abnormal development of the locus coeruleus in Ear2(Nr2f6)-deficient mice impairs the functionality of the forebrain clock and affects nociception. Gene Dev 19:614-625Google Scholar
  117. 117.
    Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Silvestri JM, Curran ME, Marazita ML (2003) Idiopathic congenital central hypoventilation syn drome: analysis of genes pertinent to early autonomic nervous system embryolo gic development and identification of mutations in PHOX2B. Am J Med Genet 123: 267-278Google Scholar
  118. 118.
    Weese-Mayer DE, Zhou L, Berry-Kravis EM, Maher BS, Silvestri JM, Marazita ML (2003) Association of the serotonin transporter gene with sudden infant death syndrome: a haplotype analysis. Am J Med Genet 122: 238-245Google Scholar
  119. 119.
    Weese-Mayer DE, Berry-Kravis EM, Maher BS, Silvestri JM, Curran ME, Marazita ML (2003) Sudden infant death syndrome: association with a promoter polymorphism of the serotonin transporter gene. Am J Med Genet 117: 268-274Google Scholar
  120. 120.
    Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Curran ME, Silvestri JM, Marazita ML (2004) Sudden infant death syndrome: case-control frequency differences at genes pertinent to early autonomic nervous system embryologic development. Pediatr Res 56: 391-395PubMedGoogle Scholar
  121. 121.
    Weese-Mayer DE, Berry-Kravis EM, Marazita ML (2005) In pursuit (and dis covery) of a genetic basis for congenital central hypoventilation syndrome. Res pir Physiol Neurobiol 149: 73-82Google Scholar
  122. 122.
    Weese-Mayer DE (2006) Sudden infant death syndrome: is serotonin the key factor? JAMA 296: 2143-2144PubMedGoogle Scholar
  123. 123.
    Weese-Mayer DE, Lieske SP, Boothby CM, Kenny AS, Bennett HL, Silvestri JM, Ramirez JM (2006) Autonomic nervous system dysregulation: breathing and heart rate perturbation during wakefulness in young girls with Rett syndrome. Pediatr Res 60: 443-449PubMedGoogle Scholar
  124. 124.
    Wenninger JM, Pan LG, Klum L, Leekley T, Bastastic J, Hodges MR, Feroah TR, Davis S, Forster HV (2004) Large lesions in the pre-Botzinger complex area eliminate eupneic respiratory rhythm in awake goats. J Appl Physiol 97: 1629Google Scholar
  125. 125.
    Wenninger JM, Pan LG, Klum L, Leekley T, Bastastic J, Hodges MR, Feroah T, Davis S, Forster HV (2004) Small reduction of neurokinin-1 receptor-expressing neurons in the pre-Bötzinger complex area induces abnormal breathing periods in awake goats. J Appl Physiol 97: 1620-1628PubMedGoogle Scholar
  126. 126.
    White DP (2005) Pathogenesis of obstructive and central sleep apnea. Am J Res pir Crit Care Med 172: 1363-1370Google Scholar
  127. 127.
    Zanella S, Roux JC, Viemari JC, Hilaire G (2006) Possible modulation of the mouse respiratory rhythm generator by A1/C1 neurones. Respir Physiol Neurobiol 153: 126-138PubMedGoogle Scholar
  128. 128.
    Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276: 248-250PubMedGoogle Scholar
  129. 129.
    Zhou QY, Palmiter RD (1995) Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83: 1197-1209PubMedGoogle Scholar
  130. 130.
    Zoghbi HY (2003) Postnatal neurodevelopmental disorders: meeting at the synapse? Science 302: 826-830PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bruno C. Blanchi
    • 1
  • Michael H. Sieweke
    • 1
  1. 1.Semel Institute for Neuroscience and Human Behavior, Mental Retardation Research Center, Neuroscience Research Building, University of California-Los AngelesLos AngelesU.S.A.

Personalised recommendations