Genes and development of respiratory rhythm generation

  • Jean Champagnat
  • Gilles Fortin
  • Muriel Thoby-Brisson


Neural Tube Respiratory Rhythm Rhythm Generation Joubert Syndrome Respiratory Neuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadie V, Champagnat J, Fortin F (2000) Branchiomotor activities in mouse embryo. Neuroreport 11: 141-145PubMedGoogle Scholar
  2. 2.
    Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A (1996) Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet 14: 341-344PubMedCrossRefGoogle Scholar
  3. 3.
    Amiel J, Salomon R, Attie T, Pelet A, Trang H, Mokhtari M, Gaultier C, Munnich A, Lyonnet S (1998) Mutations of the RET-GDNF signaling pathway in Ondine’s curse. Am J Hum Genet 62: 715-717PubMedCrossRefGoogle Scholar
  4. 4.
    Amiel J, Laudier B, Attie-Bitach T, Trang H, de Pontual L, Gener B, Trochet D, Etchevers H, Ray P, Simmoneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S (2003) Polyalanine expansion and frameshift mutations of the paired-like moeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 33: 459-461PubMedCrossRefGoogle Scholar
  5. 5.
    Baker-Herman TL, Fuller DD, Bavis RW, Zabka AG, Golder FJ, Doperalski NJ, Johnson RA, Watters JJ, Mitchell GS (2004) BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci 7: 48-55PubMedCrossRefGoogle Scholar
  6. 6.
    Balkowiec A, Katz DM (1998) Brain-derived neurotrophic factor is required for normal development of the central respiratory rhythm in mice. J Physiol 510: 527-533PubMedCrossRefGoogle Scholar
  7. 7.
    Ben-Ari Y (2001) Developing networks play a similar melody. Trends Neurosci 24: 353-360PubMedCrossRefGoogle Scholar
  8. 8.
    Bianchi AL, Denavit-Saubiè M, Champagnat J (1995) Central control of breathing in mammals: neuronal circuitry, membrane properties and neurotransmitters. Physiol Rev 75: 1-45PubMedGoogle Scholar
  9. 9.
    Blum R, Kafitz KW, Konnerth A (2002) Neurotrophin-evoked depolarization requires the sodium channel Nav1.9. Nature 419: 687-692PubMedCrossRefGoogle Scholar
  10. 10.
    Borday C, Abadie V, Chatonnet F, Thoby-Brisson M, Champagnat J, Fortin G (2003) Developmental molecular switches regulating breathing patterns in CNS. Respir Physiol Neurobiol 135: 121-132PubMedCrossRefGoogle Scholar
  11. 11.
    Borday C, Chatonnet F, Thoby-Brisson M, Champagnat J, Fortin G (2005) Neural tube patterning by Krox20 and emergence of a respiratory control. Respir Physiol Neurobiol 149: 63-72PubMedCrossRefGoogle Scholar
  12. 12.
    Borday C, Coutinho A, Gernon I, Champagnat J, Fortin G (2006) Pre-/post-otic rhombomeric interactions control emergence of a fetal-like respiratory rhythm in the mouse embryo. J Neurobiol 66: 1285-1301PubMedCrossRefGoogle Scholar
  13. 13.
    Borday V, Kato F, Champagnat J (1997) A ventral pontine pathway promotes rhythmic activity in the medulla of neonate mice. Neuroreport 8: 3679-3683PubMedCrossRefGoogle Scholar
  14. 14.
    Brady R, Zaidi SI, Mayer C, Katz D.M (1999) BDNF is a target-derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. J Neurosci 19: 2131-2142PubMedGoogle Scholar
  15. 15.
    Branchereau P, Morin D, Bonnot A, Ballion B, Chapron J, Viala D (2000) Development of lumbar rhythmic networks: from embryonic to neonate locomotor-like patterns in the mouse. Brain Res Bull 53: 711-718PubMedCrossRefGoogle Scholar
  16. 16.
    Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessel TM, Rubenstein JL, Ericson J (1999) Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398: 622-627PubMedCrossRefGoogle Scholar
  17. 17.
    Brosenitsch TA, Katz DM (2002) Expression of Phox2 transcription factors and induction of the dopaminergic phenotype in primary sensory neurons. Mol Cell Neurosci 20: 447-457PubMedCrossRefGoogle Scholar
  18. 18.
    Brunet JF, Pattyn A (2002) Phox2 genes – from patterning to connectivity. Curr Opin Genet Dev 12: 435-440PubMedCrossRefGoogle Scholar
  19. 19.
    Carter AR, Chen C, Schwartz PM, Segal RA (2002) Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J Neurosci 22: 1316-1327PubMedGoogle Scholar
  20. 20.
    Champagnat J, Fortin G (1997) Primordial respiratory-like rhythm generation in the vertebrate embryo. Trends Neurosci 3: 119-124CrossRefGoogle Scholar
  21. 21.
    Chatonnet F, Domìnguez del Toro E, Voiculescu O, Charnay P, Champagnat J (2002) Different respiratory control systems are affected in homozygous and heterozygous kreisler mutant mice. Eur J Neurosci 15: 684-692PubMedCrossRefGoogle Scholar
  22. 22.
    Chatonnet F, Dominguez del Toro E, Thoby-Brisson M, Champagnat J, Fortin G, Rijli FM, Thaeron-Antono C (2003a) From hindbrain segmentation to breathing: developmental pattern in rhombomeres 3 and 4. Mol Neurobiol 28: 277-294CrossRefGoogle Scholar
  23. 23.
    Chatonnet F, Boudinot E, Chatonnet A, Taysse L, Daulon S, Champagnat J, Foutz AS (2003b) Respiratory survival mechanisms in acetylcholinesterase knockout mouse. Eur J Neurosci 18: 1419-1427CrossRefGoogle Scholar
  24. 24.
    Chub N, O’Donovan MJ (1998) Blockade and recovery of spontaneous rhythmic activity after application of neurotransmitter antagonists to spinal networks of the chick embryo. J Neurosci 18: 294-306PubMedGoogle Scholar
  25. 25.
    Clarke J D, Lumsden A (1993) Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development 118: 151-162PubMedGoogle Scholar
  26. 26.
    Coutinho AP, Borday C, Gilthorpe J, Jungbuth S, Champagnat J, Lumsden A, Fortin G (2004) Induction of a parafacial rhythm generator by rhombomere 3 in the chick embryo. J Neurosci 24 : 9383-9390PubMedCrossRefGoogle Scholar
  27. 27.
    Denavit-Saubiè M, Champagnat J, Zieglgansbezrger W (1978) Effects of opiates and methionin-enkephalin on pontine and bulbar respiratory neurones of the cat. Brain Res 155: 55-67PubMedCrossRefGoogle Scholar
  28. 28.
    Di Pasquale E. Monteau R, Hilaire G (1992) In vitro study of central respiratory-like activity of the fetal rat. Exp Brain Res 89: 459-464.PubMedCrossRefGoogle Scholar
  29. 29.
    Domìnguez del Toro E, Borday V, Davenne M, Neun R, Rijli F M, Champagnat J (2001) Generation of a novel functional neuronal circuit in Hoxa1 mutant mice. J Neurosci 21: 5637-5642Google Scholar
  30. 30.
    Erickson JT, Conover J C, Borday V, Champagnat J, Katz D M (1996) Mice lacking BDNF exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing. J Neurosci 16: 5361-5371PubMedGoogle Scholar
  31. 31.
    Feldman JL, Del Negro CA (2006) Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci 3: 232-242CrossRefGoogle Scholar
  32. 32.
    Ferland RJ, Eyaid W, Collura RV, Tully LD, Hill RS, Al-Nouri D, Al-Rumayyan A, Topcu M, Gascon G, Bodell A, Shugart YY, Ruvolo M, Walsh CA (2004) Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat Genet 36: 1008-1013PubMedCrossRefGoogle Scholar
  33. 33.
    Fortin G, Champagnat J, Lumsden A (1994) Onset and maturation of branchiomotor activities in the chick hindbrain. Neuroreport 5: 1149-1152PubMedCrossRefGoogle Scholar
  34. 34.
    Fortin G, Kato F, Lumsden A, Champagnat J (1995) Rhythm generation in the segmented hindbrain of chick embryos. J Physiol 486: 735-744PubMedGoogle Scholar
  35. 35.
    Fortin G, Jungbluth S, Lumsden A, Champagnat J (1999) Segmental specification of GABAergic inhibition during development of hindbrain neural networks. Nat Neurosci 2: 873-877PubMedCrossRefGoogle Scholar
  36. 36.
    Galli L, Maffei L (1988) Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 242: 90-101PubMedCrossRefGoogle Scholar
  37. 37.
    Garaschuk O, Linn J, Eilers J, Konnerth A (2000) Large-scale oscillatory calcium waves in the immature cortex. Nat Neurosci 3: 452-459PubMedCrossRefGoogle Scholar
  38. 38.
    Gavalas A (2002) ArRAnging the hindbrain. Trends Neurosci 25: 61-64PubMedCrossRefGoogle Scholar
  39. 39.
    Giudicelli F, Taillebourg E, Charnay P, Gilardi-Hebenstreit P (2001) Krox-20 patterns the hindbrain through both cell-autonomous and non cell-autonomous mechanisms. Gene Dev 15: 567-580PubMedCrossRefGoogle Scholar
  40. 40.
    Glover JC (2001) Correlated patterns of neuron differentiation and Hox gene expression in the hindbrain: a comparative analysis. Brain Res Bull 55: 683-693PubMedCrossRefGoogle Scholar
  41. 41.
    Goridis C, Brunet JF (1999) Transcriptional control of neurotransmitter phenotype. Curr Opin Neurobiol 9: 47-53PubMedCrossRefGoogle Scholar
  42. 42.
    Goulding M, Pfaff SL (2005) Development of circuits that generate simple rhythmic behaviors in vertebrates. Curr Opin Neurobiol 15: 14-20PubMedCrossRefGoogle Scholar
  43. 43.
    Gourine AV, Llaudet E, Dale N, Spyer KM (2005) ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436: 108-111PubMedCrossRefGoogle Scholar
  44. 44.
    Gray PA, Rekling JC, Bocchiaro CM, Feldman JL (1999) Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the pre-Botzinger complex. Science 286: 1566-1568PubMedCrossRefGoogle Scholar
  45. 45.
    Gray PA, Janczewski WA, Mellen N, McCrimmon DR, Feldman JL (2001) Normal breathing requires pre-Bötzinger complex neurokinin-1 receptor-expressing neurons. Nat Neurosci 4: 927-930PubMedCrossRefGoogle Scholar
  46. 46.
    Greer JJ, Smith JC, Feldman J (1992) Respiratory and locomotor patterns generated in the fetal rat brainstem-spinal cord in vitro. J Neurophysiol 67: 996-999PubMedGoogle Scholar
  47. 47.
    Gust J, Wright JJ, Pratt EB, Bosma MM (2003) Development of synchronized activity of cranial motor neurons in the segmented embryonic mouse hindbrain. J Physiol 550: 123-133PubMedCrossRefGoogle Scholar
  48. 48.
    Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88: 49-92CrossRefGoogle Scholar
  49. 49.
    Hanson MG, Landmesser LT (2003) Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord. J Neurosci 23: 587-600PubMedGoogle Scholar
  50. 50.
    Hunt PN, McCabe AK, Gust J, Bosma M (2006a) Spatial restriction of spontaneous activity towards the rostral primary initiating zone during development of the embryonic mouse hindbrain. J Neurobiol 66: 1225-1238CrossRefGoogle Scholar
  51. 51.
    Hunt PN, McCabe AK, Gust J, Bosma M (2006b) Primary role of the serotonergic midline system in synchronized spontaneous activity during development of the embryonic mouse hindbrain. J Neurobiol 66: 1239-1252CrossRefGoogle Scholar
  52. 52.
    Jacquin TD, Borday V, Schneider-Maunoury S, Topilko P, Ghilini G, Kato F, Charnay P, Champagnat J (1996) Reorganization of pontine rhythmogenic neuronal networks in Krox-20 knockout mice. Neuron 17: 747-758PubMedCrossRefGoogle Scholar
  53. 53.
    Janczewski WA, Onimaru H, Homma I, Feldman JL (2002) Opioid-resistant respiratory pathway from the preinspiratory neurons to abdominal muscles: in vivo and in vitro study in newborn rat. J Physiol 545: 1017-1026PubMedCrossRefGoogle Scholar
  54. 54.
    Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1: 20-29PubMedCrossRefGoogle Scholar
  55. 55.
    Johnson SM, Smith JC, Funk GD, Feldman JL (1994) Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. J Neurophysiol 72: 2598-2608.PubMedGoogle Scholar
  56. 56.
    Jungbluth S, Koentges G, Lumsden A (1997) Coordination of early neural tube development by BDNF/trkB. Development 124: 1877-1885PubMedGoogle Scholar
  57. 57.
    Katz LC, Shatz C.J (1996) Synaptic activity and the construction of cortical circuits. Science 274: 1133-1138PubMedCrossRefGoogle Scholar
  58. 58.
    Kobayashi K, Lemke RP, Greer JJ (2001) Ultrasound measurements of the fetal breathing movements in the rat. J Appl Physiol 91: 316-320PubMedGoogle Scholar
  59. 59.
    Kobayashi S, Onimaru H, Inoue M, Inoue T, Sasa R (2005) Localization and properties of respiratory neurons in the rostral pons of the newborn rat. Neuroscience 134: 317-25.PubMedCrossRefGoogle Scholar
  60. 60.
    Koshiya N, Guyenet PG (1996) Tonic sympathetic chemoreflex after blockade of respiratory rhythmogenesis in the rat. J Physiol 491: 859-869PubMedGoogle Scholar
  61. 61.
    Koshiya N, Smith JC (1999) Neuronal pacemaker for breathing visualized in vitro. Nature 400: 360-363PubMedCrossRefGoogle Scholar
  62. 62.
    Kovalchuk Y, Hanse E, Kafitz KW, Konnerth A (2002) Postsynaptic induction of BDNF-mediated long-term potentiation. Science 295: 1729-1734.PubMedCrossRefGoogle Scholar
  63. 63.
    Kullander K, Butt SJ, Lebret JM, Lundfald L, Restrepo CE, Rydstrom A, Klein R, Kiehn O (2003) Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 299: 1889-1892PubMedCrossRefGoogle Scholar
  64. 64.
    Lagier-Tourenne C, Boltshauser E, Breivik N, Gribaa M, Betard C, Barbot C, Koenig M (2004) Homozygosity mapping of a third Joubert syndrome locus to 6q23. J Med Genet 41: 273-277PubMedCrossRefGoogle Scholar
  65. 65.
    Li JY, Joyner AL (2001) Otx2 and Gbx2 are required for refinement and not induction of mid-hindbrain gene expression. Development 128: 4979-4991PubMedGoogle Scholar
  66. 66.
    Lieske SP, Thoby-Brisson M, Telgkamp P, Ramirez JM (2000) Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps. Nat Neurosci 3: 600-607PubMedCrossRefGoogle Scholar
  67. 67.
    Liu X, Ernfors P, Wu H, Jaenisch R (1995) Sensory but not motor neuron deficits in mice lacking NT4 and BDNF. Nature 375: 238-241PubMedCrossRefGoogle Scholar
  68. 68.
    Lu B (2003) BDNF and activity-dependent synaptic modulation. Learn Memory 10: 86-98CrossRefGoogle Scholar
  69. 69.
    Lumsden A, Keynes R (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337: 424-428PubMedCrossRefGoogle Scholar
  70. 70.
    Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274: 1109-1115PubMedCrossRefGoogle Scholar
  71. 71.
    Maden M (2002) Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci 3: 843-853PubMedCrossRefGoogle Scholar
  72. 72.
    Manzke T, Guenther U, Ponimaskin EG, Haller M, Dutschmann M, Schwarzacher S, Richter DW (2003) 5-HT4 (a) receptors avert opioid-induced breathing depression without loss of analgesia. Science 301: 226-229PubMedCrossRefGoogle Scholar
  73. 73.
    McCrimmon DR, Milsom WK, Alheid GF (2004) The rhombencephalon and breathing: a view from the pons. Respir Physiol Neurobiol 143:103-337PubMedCrossRefGoogle Scholar
  74. 74.
    McKay LC, Janczewski WA, Feldman JL (2005) Sleep-disordered breathing after targeted ablation of preBötzinger complex neurons. Nat Neurosci 8: 1142-1144PubMedCrossRefGoogle Scholar
  75. 75.
    Mellen N M, Janczewski W A, Bocchiaro C M, Feldman J L (2003) Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation. Neuron 37: 821-826PubMedCrossRefGoogle Scholar
  76. 76.
    Morin-Surun M-P, Boudinot E, Gacel G, Champagnat J, Roques B P, Denavit-Saubie M (1984) Different effects of mu and delta opiate agonists on respiration. Eur J Pharmacol 98: 235-240PubMedCrossRefGoogle Scholar
  77. 77.
    Morin-Surun, MP, Boudinot E, Dubois C, Matthes HW, Kieffer BL, Denavit-Saubie M, Champagnat J, Foutz AS (2001). Respiratory function in adult mice lacking the mu-opioid receptor: role of delta-receptors. Eur J Neurosci 13: 1703-1710PubMedCrossRefGoogle Scholar
  78. 78.
    Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG (2004) Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7: 1360-1369PubMedCrossRefGoogle Scholar
  79. 79.
    O’Donovan MJ, Landmesser L (1987) The development of hindlimb motor activity studied in the isolated spinal cord of the chick embryo. J Neurosci 7: 3256-3264PubMedGoogle Scholar
  80. 80.
    O’Donovan MJ (1999) The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr Opin Neurobiol 9: 94-104PubMedCrossRefGoogle Scholar
  81. 81.
    Onimaru H, Homma I (2003) A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23: 1478-1486PubMedGoogle Scholar
  82. 82.
    Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14: 453-501PubMedCrossRefGoogle Scholar
  83. 83.
    Oppenheim RW, Yin QW, Prevette D, Yan Q (1992) Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 360: 755-757PubMedCrossRefGoogle Scholar
  84. 84.
    Oyelese AA, Rizzo MA, Waxman SG, Kocsis JD (1997) Differential effects of NGF and BDNF on axotomy-induced changes in GABAA-receptor mediated conductance and sodium currents in cutaneous afferent neurons. J Neurophysiol 78: 31-42PubMedCrossRefGoogle Scholar
  85. 85.
    Pagliardini S, Ren J, Greer JJ (2003) Ontogeny of the pre-Botzinger complex in perinatal rats. J Neurosci 23: 9575-9584PubMedGoogle Scholar
  86. 86.
    Pascual O, Denavit-Saubie M, Dumas S, Kietzmann T, Ghilini G, Mallet J, Pequignot JM (2001) Selective cardiorespiratory and catecholaminergic areas express the hypoxia-inducible factor-1alpha (HIF-1alpha) under in vivo hypoxia in rat brainstem. Eur J Neurosci 14: 1981-1991PubMedCrossRefGoogle Scholar
  87. 87.
    Pattyn A, Vallstedt A, Dias JM, Samad OA, Krumlauf R, Rijli FM, Brunet JF, Ericson J (2003) Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Gene Dev 17: 729-737PubMedCrossRefGoogle Scholar
  88. 88.
    Pattyn A, Simplicio N, van Doorninck JH, Goridis C, Guillemot F, Brunet JF (2004) Ascl1/Mash1 is required for the development of central serotonergic neurons. Nat Neurosci 7: 589-595PubMedCrossRefGoogle Scholar
  89. 89.
    Peinado A (2000) Traveling slow waves of neural activity: a novel form of network activity in developing neocortex. J Neurosci 20: RC54PubMedGoogle Scholar
  90. 90.
    Pena F, Parkis MA, Tryba AK, Ramirez JM (2004) Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43: 105-117PubMedCrossRefGoogle Scholar
  91. 91.
    Potts JT, Rybak IA, Paton JF (2005) Respiratory rhythm entrainment by somatic afferent stimulation. J Neurosci 25: 1965-1978PubMedCrossRefGoogle Scholar
  92. 92.
    Powell FL, Scheid P (1986) Physiology of gas exchange in the avian respiratory system. In: Form and Function in Birds, Volume 4, AS King and J. McLellan eds, Academic Press, London, San Diego, Berkeley, Boston, Sydney, Tokyo, Toronto, pp. 393-437Google Scholar
  93. 93.
    Ramirez JM, Schwarzacher SW, Pierrefiche O, Olivera BM, Richter DW (1998) Selective lesioning of the cat pre-Bötzinger complex in vivo eliminates breathing but not gasping. J Physiol 507: 895-907PubMedCrossRefGoogle Scholar
  94. 94.
    Rekling JC, Champagnat J, Denavit-Saubie M (1996) Electroresponsive properties and membrane potential trajectories of three types of inspiratory neurons in the newborn mouse brainstem in vitro. J Neurophysiol 75: 795-810PubMedGoogle Scholar
  95. 95.
    Ren J, Greer JJ (2003) Ontogeny of rhythmic motor patterns generated in the embryonic rat spinal cord. J Neurophysiol 89: 1187-1195PubMedCrossRefGoogle Scholar
  96. 96.
    Rogalski SL, Appleyard SM, Pattillo A, Terman GW, Chavkin C (2000) TrkB activation by brain-derived neurotrophic factor inhibits the G-protein-gated inward rectifier Kir3 by tyrosine phosphorylation of the channel. J Biol Chem 18: 25082-25088CrossRefGoogle Scholar
  97. 97.
    Schneider-Maunoury S, Topilko P, Seitandou T, Levi G, Cohen-Tannoudji M, Pournin S, Babinet C, Charnay P (1993) Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 17: 1199-1214CrossRefGoogle Scholar
  98. 98.
    Sendtner M, Holtmann B, Kolbeck R, Thoenen H, Barde YA (1992) Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 360: 757-759PubMedCrossRefGoogle Scholar
  99. 99.
    Severson CA, Wang W, Pieribone VA, Dohle CI, Richerson GB (2003) Midbrain serotonergic neurons are central pH chemoreceptors. Nat Neurosci 6: 1139-1140PubMedCrossRefGoogle Scholar
  100. 100.
    Sherwood NT, Lesser SS, Lo DC (1997) Neurotrophin regulation of ionic currents and cell size depends on cell context. Proc Natl Acad Sci USA 94: 5917-5922PubMedCrossRefGoogle Scholar
  101. 101.
    Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Bötzinger complex: a region that may generate respiratory rhythm in mammals. Science 254: 726-729PubMedCrossRefGoogle Scholar
  102. 102.
    Stornetta RL, Rosin DL, Wang H, Sevigny CP, Weston MC, Guyenet PG (2003) A group of glutamatergic interneurons expressing high levels of both neurokinin1 receptors and somatostatin identifies the region of the pre-Botzinger complex. J Comp Neurol 455: 499-512PubMedCrossRefGoogle Scholar
  103. 103.
    Stornetta RL, Moreira TS, Takakura AC, Kanq BJ, Chang DA, West GH, Brunet JF, Mulkey DK, Bayliss DA, Guyenet PG (2006) Expression of Phox2b by brain-stem neurons involved in chemosensory integration in the adult rat. J Neurosci 26: 10305-10314PubMedCrossRefGoogle Scholar
  104. 104.
    Sturdy CB, Wild JM, Mooney R (2003) Respiratory and telencephalic modulation of vocal motor neurons in the zebra finch. J Neurosci 23: 1072-1086PubMedGoogle Scholar
  105. 105.
    Suzue T (1984) Respiratory rhythm generation in the in vitro brain stem-spinal cord preparation of the neonatal rat. J Physiol 354: 173-183PubMedGoogle Scholar
  106. 106.
    Tanabe Y, Jessell TM (1996) Diversity and pattern in the developing spinal cord. Science 274: 1115-1123.PubMedCrossRefGoogle Scholar
  107. 107.
    Thoby-Brisson M, Ramirez JM (2001) Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice. J Neurophysiol 86: 104-112PubMedGoogle Scholar
  108. 108.
    Thoby-Brisson M, Telgkamp P, Ramirez JM (2000) The role of the hyperpolarization-activated current in modulating rhythmic activity in the isolated respiratory network of mice. J Neurosci 20: 2994-3005PubMedGoogle Scholar
  109. 109.
    Thoby-Brisson M, Cauli B, Champagnat J, Fortin F, Katz DM (2003) Expression of functional TrkB receptors by rhythmically active respiratory neurons in the pre-Bötzinger complex of neonatal mice. J Neurosci 23: 7685-7689PubMedGoogle Scholar
  110. 110.
    Thoby-Brisson M, Trinh JB, Champagnat J, Fortin G (2005) Emergence of the pre-Bötzinger respiratory rhythm generator in the mouse embryo. J Neurosci 25: 4307-4318.PubMedCrossRefGoogle Scholar
  111. 111.
    Viemari JC, Burnet H, Bevengut M, Hilaire G (2003) Perinatal maturation of the mouse respiratory rhythm-generator: in vivo and in vitro studies. Eur J Neurosci 17: 1233-1244.PubMedCrossRefGoogle Scholar
  112. 112.
    Voituron N, Frugiere A, Champagnat J, Bodineau L (2006) Hypoxia-sensing properties of the newborn rat ventral medullary surface in vitro. J Physiol 577: 55-68PubMedCrossRefGoogle Scholar
  113. 113.
    Wallèn-Mackenzie A, Gezelius H, Thoby-Brisson M, Nygard A, Enjin A, Fujiyama F, Fortin G, Kullander K (2006) Vesicular glutamate transporter 2 is required for central respiratory rhythm generator but not for locomotor pattern generation. J Neurosci 26: 12294-12307PubMedCrossRefGoogle Scholar
  114. 114.
    Wang WG, Stornetta RL, Rosin DL, Guyenet PG (2001) Neurokinin-1 receptor-immunoreactive neurons of the ventral respiratory group in the rat. J Comp Neurol 434: 128-146PubMedCrossRefGoogle Scholar
  115. 115.
    Wilson RJ, Vasilakos K, Harris MB, Straus C, Remmers JE (2002) Evidence that ventilatory rhythmogenesis in the frog involves two distinct neuronal oscillators. J Physiol 540: 557-570PubMedCrossRefGoogle Scholar
  116. 116.
    Weese-Mayer DE, Bolk S, Silvestri JM, Chakravarti A (2002) Idiopathic congenital central hypoventilation syndrome: evaluation of brain-derived neurotrophic factor genomic DNA sequence variation. Am J Med Genet 107: 306-310PubMedCrossRefGoogle Scholar
  117. 117.
    Yvert B, Branchereau P, Meyrand P (2004) Multiple spontaneous rhythmic activity patterns generated by the embryonic mouse spinal cord occur within a specific developmental time window. J Neurophysiol 91: 2101-2109PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jean Champagnat
    • 1
  • Gilles Fortin
    • 1
  • Muriel Thoby-Brisson
    • 1
  1. 1.UPR 2216 Neurobiologie Gènètique et Intègrative, Institut de Neurobiologie Alfred-Fessard, C.N.R.SFrance

Personalised recommendations