Categories Extraction for Reuse in Semantic Applications and Profile Based Recommendation Service

  • Vytautas Taujanskas
  • Rimantas Butleris
Conference paper

Consequent formalization of requirements for intelligent web came after the chaos with static, then afterwards with dynamic web resources. The semantic web is an extension of the current web, where information has well-defined meaning, better enabling computers and people to work in cooperation [Hiba! A hivatkozási for rás nem található.]. Abstract requirements [Hiba! A hivatkozási forrás nem található.] for information formalization became specific technologies [Hiba! A hivatkozási forrás nem található., Hiba! A hivatkozási forrás nem található.] aimed to implement the vision of semantic web.


Recommendation System User Profile Collaborative Filter XPath Query Semantic Application 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adomavicius G, Tuzhilin A (2005) Toward the next generation of re- commender systems: a survey of the state-of-the-art and possible exten- sions. IEEE Transactions on Knowledge and Data Engineering, vol 17, issue 6, ISSN: 1041-4347, pp 734 - 749Google Scholar
  2. 2.
  3. 3.
    Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web. Scien- tificAmerican.
  4. 4.
    Boyd DM (2004) Friendster and publicly articulated social networking. In CHI '04 Extended Abstracts on Human Factors in Computing Systems, ACM Press, New York, NY, pp 1279-1282Google Scholar
  5. 5.
    Decker S, Melnik S, van Harmelen F, Fensel D, Klein M, Broekstra J, Erdmann M, Horrocks I (2000) The Semantic Web: the roles of XML and RDF. Internet Computing, IEEE, vol 4, no 5, ISSN: 1089-7801, pp 63-73Google Scholar
  6. 6.
    Fisher D (2003) Social Networks for End Users. Survey Paper for Ad- vancement to Candidacy. University of California, Irvine. http://www.bsos. /Fisher 2003 SocNtwks for End Users.pdf
  7. 7.
    Gupta KM, Aha DW, Marsh E, Maney T (2002) An architecture for en-gineering sublanguage WordNets. In Proceedings of the First Interna-tional Conference On Global WordNet, pp 207-215Google Scholar
  8. 8.
    Mika P (2005) Flink: Semantic Web Technology for the Extraction and Analysis of Social Networks. Journal of Web Semantics, vol 3, no 2, pp 211-223MathSciNetGoogle Scholar
  9. 9.
    Ohmukai I, Hamasaki M, Takeda H (2005) A Proposal of Community-based Folksonomy with RDF Metadata. In Proceedings of the ISWC 2005 Workshop on End User Semantic Web Interaction (2005), pub-lished on CEUR-WSGoogle Scholar
  10. 10.
    O'Reilly T (2005) What is Web 2.0.
  11. 11.
    Rimkute E, Grybinaite A (2004) The most frequent types of the morpho-logical ambiguity of the Lithuanian language and the automatical disam-biguation of them (in Lithuanian). Kalbu studijos, vol 5, pp 74-78Google Scholar
  12. 12.
    Sebastiani F (2002) Text categorization in general - a survey paper: Ma-chine Learning in Automated Text Categorization. ACM Computing Surveys, vol 34, no 1, pp 1-47CrossRefGoogle Scholar
  13. 13.
    Surowiecki J (2005) The Wisdom of Crowds. Anchor, ISBN :0385721706Google Scholar
  14. 14.
    Svatek V, Berka P, Kavalec M, Kosek J, Vavra V (2003) Discovering Company Descriptions on the Web by Multiway Analysis. Springer-Verlag, Advances in Soft Computing series, ISBN 3-540-00843-8, pp 111 - 118Google Scholar
  15. 15.
    Tepper M (2003) The rise of social software. netWorker, vol 7, no 3, ISSN:1091-3556, pp 18-23Google Scholar
  16. 16.
    Tutkutė L, Taujanskas V (2006) Forming recommendations in semantic web (in Lithuanian). Information technologies for business and study 2006. vol 1, pp 178-183Google Scholar
  17. 17.
    Ungar L, Foster D (1998) Clustering Methods for Collaborative Filtering. In Proceedings of the AAAI-98 Workshop on Recommender Systems, AAAI Press, pp 112 - 125Google Scholar
  18. 18.
    Uschold M (2003) Where are the semantics in the semantic web? AI Magazine, vol 24, issue 3, ISSN:0738-4602, pp 25 - 36Google Scholar
  19. 19.
    Wusteman J (2004) RSS: the latest feed. Library Hi Tech, vol 22, no 4, MCB University Press, ISSN 0737-8831, pp 404 - 413Google Scholar
  20. 20.
    W3C. Semantic web activity.
  21. 21.
    W3C. SPARQL Query Language for RDF.
  22. 22.
    Zinkevicius V (2000) Morphological analysis with Lemuoklis (in Lithua-nian). Darbai ir Dienos, vol 24, pp 245-273Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Vytautas Taujanskas
    • 1
  • Rimantas Butleris
    • 2
  1. 1.Department of Information SystemsKaunas University of TechnologyLithuania
  2. 2.Department of InformaticsVilnius University Kaunas Faculty of HumanitiesLithuania

Personalised recommendations