Topic Identification by the Combination of Fuzzy Thesaurus and Complexity Pursuit

  • Sándor Szaszkó
  • László T. Kóczy
Conference paper

An information retrieval system allows users to efficiently retrieve documents that are relevant to their current interests. The collection of documents from which the selected ones have to be retrieved might be extremely large and the use of terminology might be inconsistent.


Independent Component Analysis Independent Component Analysis Maximal Clique Stop Word Topic Identification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Bingham, A. Kabán, M. Girolami, (2003) Topic Identification in Dynamical Text by Complexity Pursuit. Neural Networks Research Centre, Helsinki University of TechnologyGoogle Scholar
  2. 2.
    K. Chakrabarty, L. T. Kóczy, T. D. Gedeon (1999) Analysis of fuzzy rela-tional charts in information retrieval IETR99-01, School of Computer Science and Engineering, University of New South Wales, SydneyGoogle Scholar
  3. 3.
    A. Hyvarinen (1999) Fast and robust fixed-point algorithms for inde-pendent component analysis, EEE Tr. on Neural Nw., 10(3),626-634CrossRefGoogle Scholar
  4. 4.
    G. Klir, T. Folger (1998) Fuzzy Sets. Uncertainty and Information, Prentice-Hall, Englewood Cliofs, NJGoogle Scholar
  5. 5.
    L. T. Kóczy, T. D. Gedeon and J. A. Kóczy (2002) Fuzzy tolerance rela-tions and relational maps applied to information retrieval Fuzzy Sets and Systems 126 49-61MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    S. Miyamoto (1990) Fuzzy Sets in Information Retrieval and Cluster Analysis Kluwer, Dordrecht, 259pGoogle Scholar
  7. 7.
    Y. Qiu, H. Frei (1993) Comcept Based Query Expansion” SIGIR conf.Google Scholar
  8. 8.
    G Salton, C. Buckley (1990) Improving Retrieval performance by Relevance Feedback Jurnal of A. S. for Information Science, 288-297Google Scholar
  9. 9.
    H. Schütze, J. O. Pedersen (1997) A Cooccurrence-based Thesaurus and Two Application to Information Retrieval. Information Retrieval and Management, Vol. 33, 307-318Google Scholar
  10. 10.
    S. Szaszkó, L. T. Kóczy (2004) Identifying Concept in Folcloristic Cor-pus by Fuzzy Pseudo-thesaurus Eurofuse 2004, Warsaw, 522-532Google Scholar
  11. 11.
    S. Szaszkó, L. T. Kóczy (2004) What Lectures Note About, Identifying Concepts by Fuzzy Pseudo-thesaurus EESTEC-IEEE Conference, ItalyGoogle Scholar
  12. 12.
    V. Voigt, M. Preminger, L. Ládi, S Darányi (1999) Automated motif identification in folklore text corpora. Folklore. Electronic Journal of Folklore  Vol. 12., Tartu, 1999 126-141 pp. Also available at:

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sándor Szaszkó
    • 1
  • László T. Kóczy
    • 2
  1. 1.Budapest Uni versity of Technology and EconomicsHungary
  2. 2.Széchenyi István UniversityHungary

Personalised recommendations