Pharmacological Treatment for Cognitive Disorders of Neurovascular Origin

  • Steven Flanagan
  • Wayne A. Gordon


Neurovascular disease is the most common cause of adult disability, resulting in both physical and cognitive impairments as well as behavioral disturbances. Physical problems, such as hemiplegia have an obvious impact on mobility and ability to participate in activities of daily living. However, cognitive impairments, while often less obvious on superficial examination, have a tremendous impact on the same skills. In fact, in the absence of physical impairments, cognitive dysfunction often results in an inability to participate in desired roles. Traditional rehabilitation efforts to ameliorate these impairments are varied and often require prolonged periods of time to achieve desired outcomes. While rehabilitation interventions are widely used and are felt to be effective in restoring functional skills, individuals are often left with residual disability. Enhancing traditional rehabilitation techniques with pharmacological interventions has been an area of interest and...


Traumatic Brain Injury 5HT2A Receptor Cognitive Skill Vascular Cognitive Impairment COMT Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albert, M. L. (1998). Treatment of aphasia. Archives of Neurology, 55(11), 1417–1419.PubMedGoogle Scholar
  2. Albert, M. L., Bachman, D. L., Morgan, A., & Helm-Estabrooks, N. (1988). Pharmacotherapy for aphasia. Neurology, 38(6), 877–879.PubMedGoogle Scholar
  3. Andersen, G., Vestergaard, K., Riis, J. O., & Ingeman-Nielsen, M. (1996). Dementia of depression or depression of dementia in stroke? Acta Psychiatrica Scandinavica, 94(4), 272–278.PubMedGoogle Scholar
  4. Apud, J. A., Mattay, V., Chen, J., Kolachana, B. S., Callicott, J. H., Rasetti, R., et al. (2007). Tolcapone improves cognition and cortical information processing in normal human subjects. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 32(5), 1011–1020.Google Scholar
  5. Arnsten, A. F., Cai, J. X., & Goldman-Rakic, P. S. (1988). The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: Evidence for alpha-2 receptor subtypes. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 8(11), 4287–4298.Google Scholar
  6. Arnsten, A. F., Cai, J. X., Murphy, B. L., & Goldman-Rakic, P. S. (1994). Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology, 116(2), 143–151.PubMedGoogle Scholar
  7. Arnsten, A. F., & Goldman-Rakic, P. S. (1985). Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science (New York, N.Y.), 230(4731), 1273–1276.Google Scholar
  8. Artaloytia, J. F., Arango, C., Lahti, A., Sanz, J., Pascual, A., Cubero, P., et al. (2006). Negative signs and symptoms secondary to antipsychotics: A double-blind, randomized trial of a single dose of placebo, haloperidol, and risperidone in healthy volunteers. The American Journal of Psychiatry, 163(3), 488–493.PubMedGoogle Scholar
  9. Ashtary, F., Janghorbani, M., Chitsaz, A., Reisi, M., & Bahrami, A. (2006). A randomized, double-blind trial of bromocriptine efficacy in nonfluent aphasia after stroke. Neurology, 66(6), 914–916.PubMedGoogle Scholar
  10. Aston-Jones, G., Rajkowski, J., & Cohen, J. (2000). Locus coeruleus and regulation of behavioral flexibility and attention. Progress in Brain Research, 126, 165–182.PubMedGoogle Scholar
  11. Aston-Jones, G., Rajkowski, J., & Kubiak, P. (1997). Conditioned responses of monkey locus coeruleus neurons anticipate acquisition of discriminative behavior in a vigilance task. Neuroscience, 80(3), 697–715.PubMedGoogle Scholar
  12. Austin, M. P., Ross, M., Murray, C., O’Carroll, R. E., Ebmeier, K. P., & Goodwin, G. M. (1992). Cognitive function in major depression. Journal of Affective Disorders, 25(1), 21–29.PubMedGoogle Scholar
  13. Barrett, A. M., Crucian, G. P., Schwartz, R. L., & Heilman, K. M. (1999). Adverse effect of dopamine agonist therapy in a patient with motor-intentional neglect. Archives of Physical Medicine and Rehabilitation, 80(5), 600–603.PubMedGoogle Scholar
  14. Bartholomeusz, C. F., Box, G., Van Rooy, C., & Nathan, P. J. (2003). The modulatory effects of dopamine D1 and D2 receptor function on object working memory in humans. Journal of Psychopharmacology (Oxford, England), 17(1), 9–15.Google Scholar
  15. Bartus, R. T., Dean, R. L., III, Beer, B., & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science (New York, N.Y.), 217(4558), 408–414.Google Scholar
  16. Basso, A., Capitani, E., & Vignolo, L. A. (1979). Influence of rehabilitation on language skills in aphasic patients. A controlled study. Archives of Neurology, 36(4), 190–196.PubMedGoogle Scholar
  17. Bergles, D. E., Doze, V. A., Madison, D. V., & Smith, S. J. (1996). Excitatory actions of norepinephrine on multiple classes of hippocampal CA1 interneurons. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 16(2), 572–585.Google Scholar
  18. Berthier, M. L., Green, C., Higueras, C., Fernandez, I., Hinojosa, J., & Martin, M. C. (2006). A randomized, placebo-controlled study of donepezil in poststroke aphasia. Neurology, 67(9), 1687–1689.PubMedGoogle Scholar
  19. Berthier, M. L., Hinojosa, J., Martin Mdel, C., & Fernandez, I. (2003). Open-label study of donepezil in chronic poststroke aphasia. Neurology, 60(7), 1218–1219.PubMedGoogle Scholar
  20. Bhogal, S. K., Teasell, R., & Speechley, M. (2003). Intensity of aphasia therapy, impact on recovery. Stroke; a Journal of Cerebral Circulation, 34(4), 987–993.PubMedGoogle Scholar
  21. Bhogal, S. K., Teasell, R. W., Foley, N. C., & Speechley, M. R. (2003). Rehabilitation of aphasia: More is better. Topics in Stroke Rehabilitation, 10(2), 66–76.PubMedGoogle Scholar
  22. Birks, J., & Flicker, L. (2007). Investigational treatment for vascular cognitive impairment. Expert Opinion on Investigational Drugs, 16(5), 647–658.PubMedGoogle Scholar
  23. Boonstra, A. M., Kooij, J. J., Oosterlaan, J., Sergeant, J. A., & Buitelaar, J. K. (2005). Does methylphenidate improve inhibition and other cognitive abilities in adults with childhood-onset ADHD? Journal of Clinical and Experimental Neuropsychology : Official Journal of the International Neuropsychological Society, 27(3), 278–298.Google Scholar
  24. Bottiggi, K. A., Salazar, J. C., Yu, L., Caban-Holt, A. M., Ryan, M., Mendiondo, M. S., et al. (2006). Long-term cognitive impact of anticholinergic medications in older adults. The American Journal of Geriatric Psychiatry : Official Journal of the American Association for Geriatric Psychiatry, 14(11), 980–984.Google Scholar
  25. Bragoni, M., Altieri, M., Di Piero, V., Padovani, A., Mostardini, C., & Lenzi, G. L. (2000). Bromocriptine and speech therapy in non-fluent chronic aphasia after stroke. Neurological Sciences : Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 21(1), 19–22.Google Scholar
  26. Cacabelos, R., Takeda, M., & Winblad, B. (1999). The glutamatergic system and neurodegeneration in dementia: Preventive strategies in Alzheimer’s disease. International Journal of Geriatric Psychiatry, 14(1), 3–47.PubMedGoogle Scholar
  27. Cahill, L., & McGaugh, J. L. (1996). Modulation of memory storage. Current Opinion in Neurobiology, 6(2), 237–242.PubMedGoogle Scholar
  28. Cai, J. X., & Arnsten, A. F. (1997). Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. The Journal of Pharmacology and Experimental Therapeutics, 283(1), 183–189.PubMedGoogle Scholar
  29. Cai, J. X., Ma, Y. Y., Xu, L., & Hu, X. T. (1993). Reserpine impairs spatial working memory performance in monkeys: Reversal by the alpha 2-adrenergic agonist clonidine. Brain Research, 614(1–2), 191–196.PubMedGoogle Scholar
  30. Caine, E. D. (1981). Pseudodementia. current concepts and future directions. Archives of General Psychiatry, 38(12), 1359–1364.PubMedGoogle Scholar
  31. Censori, B., Manara, O., Agostinis, C., Camerlingo, M., Casto, L., Galavotti, B., et al. (1996). Dementia after first stroke. Stroke; a Journal of Cerebral Circulation, 27(7), 1205–1210.PubMedGoogle Scholar
  32. Chaulk, P. C., & Harley, C. W. (1998). Intracerebroventricular norepinephrine potentiation of the perforant path-evoked potential in dentate gyrus of anesthetized and awake rats: A role for both alpha- and beta-adrenoceptor activation. Brain Research, 787(1), 59–70.PubMedGoogle Scholar
  33. Ciliax, B. J., Drash, G. W., Staley, J. K., Haber, S., Mobley, C. J., Miller, G. W., et al. (1999). Immunocytochemical localization of the dopamine transporter in human brain. The Journal of Comparative Neurology, 409(1), 38–56.PubMedGoogle Scholar
  34. Collins, P., Roberts, A. C., Dias, R., Everitt, B. J., & Robbins, T. W. (1998). Perseveration and strategy in a novel spatial self-ordered sequencing task for nonhuman primates: Effects of excitotoxic lesions and dopamine depletions of the prefrontal cortex. Journal of Cognitive Neuroscience, 10(3), 332–354.PubMedGoogle Scholar
  35. Coq, J. O., & Xerri, C. (1999). Acute reorganization of the forepaw representation in the rat SI cortex after focal cortical injury: Neuroprotective effects of piracetam treatment. The European Journal of Neuroscience, 11(8), 2597–2608.PubMedGoogle Scholar
  36. Coull, J. T. (1998). Neural correlates of attention and arousal: Insights from electrophysiology, functional neuroimaging and psychopharmacology. Progress in Neurobiology, 55(4), 343–361.PubMedGoogle Scholar
  37. Craig, D., & Birks, J. (2006). Galantamine for vascular cognitive impairment. Cochrane Database of Systematic Reviews (Online), (1) (1), CD004746.Google Scholar
  38. David, R., Enderby, P., & Bainton, D. (1982). Treatment of acquired aphasia: Speech therapists and volunteers compared. Journal of Neurology, Neurosurgery, and Psychiatry, 45(11), 957–961.PubMedGoogle Scholar
  39. de Boissezon, X., Peran, P., de Boysson, C., & Demonet, J. F. (2007). Pharmacotherapy of aphasia: Myth or reality Brain and Language, 102(1), 114–125.PubMedGoogle Scholar
  40. de Saint Hilaire, Z., Orosco, M., Rouch, C., Blanc, G., & Nicolaidis, S. (2001). Variations in extracellular monoamines in the prefrontal cortex and medial hypothalamus after modafinil administration: A microdialysis study in rats. Neuroreport, 12(16), 3533–3537.PubMedGoogle Scholar
  41. Desmond, D. W., Moroney, J. T., Paik, M. C., Sano, M., Mohr, J. P., Aboumatar, S., et al. (2000). Frequency and clinical determinants of dementia after ischemic stroke. Neurology, 54(5), 1124–1131.PubMedGoogle Scholar
  42. Devauges, V., & Sara, S. J. (1991). Memory retrieval enhancement by locus coeruleus stimulation: Evidence for mediation by beta-receptors. Behavioural Brain Research, 43(1), 93–97.PubMedGoogle Scholar
  43. Duman, R. S., & Dalley, J. W. (2000). Signal transduction patways for catecholamine receptors. In F. E. Bloom, & D. L. Hupfer (Eds.), Psychopharmacology: The fourth generaion of progress (pp. 303–320). New York: Raven Press.Google Scholar
  44. Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., et al. (2001). Effect of COMT Val108/158 met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 6917–6922.PubMedGoogle Scholar
  45. Elliott, R., Sahakian, B. J., Matthews, K., Bannerjea, A., Rimmer, J., & Robbins, T. W. (1997). Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology, 131(2), 196–206.PubMedGoogle Scholar
  46. Enderby, P., Broeckx, J., Hospers, W., Schildermans, F., & Deberdt, W. (1994). Effect of piracetam on recovery and rehabilitation after stroke: A double-blind, placebo-controlled study. Clinical Neuropharmacology, 17(4), 320–331.PubMedGoogle Scholar
  47. Ferry, B., & McGaugh, J. L. (1999). Clenbuterol administration into the basolateral amygdala post-training enhances retention in an inhibitory avoidance task. Neurobiology of Learning and Memory, 72(1), 8–12.PubMedGoogle Scholar
  48. Ferry, B., Roozendaal, B., & McGaugh, J. L. (1999). Basolateral amygdala noradrenergic influences on memory storage are mediated by an interaction between beta- and alpha1-adrenoceptors. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 19(12), 5119–5123.Google Scholar
  49. Fleet, W. S., Valenstein, E., Watson, R. T., & Heilman, K. M. (1987). Dopamine agonist therapy for neglect in humans. Neurology, 37(11), 1765–1770.PubMedGoogle Scholar
  50. Floresco, S. B., & Magyar, O. (2006). Mesocortical dopamine modulation of executive functions: Beyond working memory. Psychopharmacology, 188(4), 567–585.PubMedGoogle Scholar
  51. Floresco, S. B., & Phillips, A. G. (2001). Delay-dependent modulation of memory retrieval by infusion of a dopamine D1 agonist into the rat medial prefrontal cortex. Behavioral Neuroscience, 115(4), 934–939.PubMedGoogle Scholar
  52. Fournet, N., Moreaud, O., Roulin, J. L., Naegele, B., & Pellat, J. (2000). Working memory functioning in medicated parkinson’s disease patients and the effect of withdrawal of dopaminergic medication. Neuropsychology, 14(2), 247–253.PubMedGoogle Scholar
  53. Gasparini, M., Fabrizio, E., Bonifati, V., & Meco, G. (1997). Cognitive improvement during tolcapone treatment in parkinson’s disease. Journal of Neural Transmission (Vienna, Austria : 1996), 104(8–9), 887–894.Google Scholar
  54. Giovannini, M. G., Rakovska, A., Della Corte, L., Bianchi, L., & Pepeu, G. (1998). Activation of non-NMDA receptors stimulates acetylcholine and GABA release from dorsal hippocampus: A microdialysis study in the rat. Neuroscience Letters, 243(1–3), 152–156.PubMedGoogle Scholar
  55. Gliebus, G., & Lippa, C. F. (2007). The influence of beta-blockers on delayed memory function in people with cognitive impairment. American Journal of Alzheimer’s Disease and Other Dementias, 22(1), 57–61.PubMedGoogle Scholar
  56. Gogos, J. A., Morgan, M., Luine, V., Santha, M., Ogawa, S., Pfaff, D., et al. (1998). Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proceedings of the National Academy of Sciences of the United States of America, 95(17), 9991–9996.PubMedGoogle Scholar
  57. Gold, M., VanDam, D., & Silliman, E. R. (2000). An open-label trial of bromocriptine in nonfluent aphasia: A qualitative analysis of word storage and retrieval. Brain and Language, 74(2), 141–156.PubMedGoogle Scholar
  58. Goldberg, T. E., Egan, M. F., Gscheidle, T., Coppola, R., Weickert, T., Kolachana, B. S., et al. (2003). Executive subprocesses in working memory: Relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Archives of General Psychiatry, 60(9), 889–896.PubMedGoogle Scholar
  59. Goldstein, L. B. (1995a). Common drugs may influence motor recovery after stroke. the sygen in acute stroke study investigators. Neurology, 45(5), 865–871.Google Scholar
  60. Goldstein, L. B. (1995b). Prescribing of potentially harmful drugs to patients admitted to hospital after head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 58(6), 753–755.Google Scholar
  61. Goldstein, L. B., & Davis, J. N. (1988). Physician prescribing patterns following hospital admission for ischemic cerebrovascular disease. Neurology, 38(11), 1806–1809.PubMedGoogle Scholar
  62. Granon, S., Passetti, F., Thomas, K. L., Dalley, J. W., Everitt, B. J., & Robbins, T. W. (2000). Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 20(3), 1208–1215.Google Scholar
  63. Greener, J., Enderby, P., & Whurr, R. (2000). Speech and language therapy for aphasia following stroke. Cochrane Database of Systematic Reviews (Online), (2)(2), CD000425.Google Scholar
  64. Greener, J., Enderby, P., & Whurr, R. (2001). Pharmacological treatment for aphasia following stroke. Cochrane Database of Systematic Reviews (Online), (4)(4), CD000424.Google Scholar
  65. Gualtieri, C. T., & Evans, R. W. (1988). Stimulant treatment for the neurobehavioural sequelae of traumatic brain injury. Brain Injury : [BI], 2(4), 273–290.Google Scholar
  66. Gupta, S. R., Mlcoch, A. G., Scolaro, C., & Moritz, T. (1995). Bromocriptine treatment of nonfluent aphasia. Neurology, 45(12), 2170–2173.PubMedGoogle Scholar
  67. Hagan, J. J., Alpert, J. E., Morris, R. G., & Iversen, S. D. (1983). The effects of central catecholamine depletions on spatial learning in rats. Behavioural Brain Research, 9(1), 83–104.PubMedGoogle Scholar
  68. Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., et al. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(17), 6690–6694.Google Scholar
  69. Huber, W., Willmes, K., Poeck, K., Van Vleymen, B., & Deberdt, W. (1997). Piracetam as an adjuvant to language therapy for aphasia: A randomized double-blind placebo-controlled pilot study. Archives of Physical Medicine and Rehabilitation, 78(3), 245–250.PubMedGoogle Scholar
  70. Hughes, J. D., Jacobs, D. H., & Heilman, K. M. (2000). Neuropharmacology and linguistic neuroplasticity. Brain and Language, 71(1), 96–101.PubMedGoogle Scholar
  71. Huotari, M., Gogos, J. A., Karayiorgou, M., Koponen, O., Forsberg, M., Raasmaja, A., et al. (2002). Brain catecholamine metabolism in catechol-O-methyltransferase (COMT)-deficient mice. The European Journal of Neuroscience, 15(2), 246–256.PubMedGoogle Scholar
  72. Hurford, P., Stringer, A. Y., & Jann, B. (1998). Neuropharmacologic treatment of hemineglect: A case report comparing bromocriptine and methylphenidate. Archives of Physical Medicine and Rehabilitation, 79(3), 346–349.PubMedGoogle Scholar
  73. Introini-Collison, I. B., Miyazaki, B., & McGaugh, J. L. (1991). Involvement of the amygdala in the memory-enhancing effects of clenbuterol. Psychopharmacology, 104(4), 541–544.PubMedGoogle Scholar
  74. Inzitari, D., Di Carlo, A., Pracucci, G., Lamassa, M., Vanni, P., Romanelli, M., et al. (1998). Incidence and determinants of poststroke dementia as defined by an informant interview method in a hospital-based stroke registry. Stroke; a Journal of Cerebral Circulation, 29(10), 2087–2093.PubMedGoogle Scholar
  75. Jakala, P., Sirvio, J., Riekkinen, M., Koivisto, E., Kejonen, K., Vanhanen, M., et al. (1999). Guanfacine and clonidine, alpha 2-agonists, improve paired associates learning, but not delayed matching to sample, in humans. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 20(2), 119–130.Google Scholar
  76. Kauhanen, M. L., Korpelainen, J. T., Hiltunen, P., Maatta, R., Mononen, H., Brusin, E., et al. (2000). Aphasia, depression, and non-verbal cognitive impairment in ischaemic stroke. Cerebrovascular Diseases (Basel, Switzerland), 10(6), 455–461.Google Scholar
  77. Kessler, J., Thiel, A., Karbe, H., & Heiss, W. D. (2000). Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients. Stroke; a Journal of Cerebral Circulation, 31(9), 2112–2116.PubMedGoogle Scholar
  78. Khateb, A., Ammann, J., Annoni, J. M., & Diserens, K. (2005). Cognition-enhancing effects of donepezil in traumatic brain injury. European Neurology, 54(1), 39–45.PubMedGoogle Scholar
  79. KILOH, L. G. (1961). Pseudo-dementia. Acta Psychiatrica Scandinavica, 37, 336–351.PubMedGoogle Scholar
  80. Kim, Y. H., Ko, M. H., Na, S. Y., Park, S. H., & Kim, K. W. (2006). Effects of single-dose methylphenidate on cognitive performance in patients with traumatic brain injury: A double-blind placebo-controlled study. Clinical Rehabilitation, 20(1), 24–30.PubMedGoogle Scholar
  81. Kimberg, D. Y., & D’Esposito, M. (2003). Cognitive effects of the dopamine receptor agonist pergolide. Neuropsychologia, 41(8), 1020–1027.PubMedGoogle Scholar
  82. Kimberg, D. Y., D’Esposito, M., & Farah, M. J. (1997). Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport, 8(16), 3581–3585.PubMedGoogle Scholar
  83. Kimura, M., Robinson, R. G., & Kosier, J. T. (2000). Treatment of cognitive impairment after poststroke depression : A double-blind treatment trial. Stroke; a Journal of Cerebral Circulation, 31(7), 1482–1486.PubMedGoogle Scholar
  84. Lacaille, J. C., & Harley, C. W. (1985). The action of norepinephrine in the dentate gyrus: Beta-mediated facilitation of evoked potentials in vitro. Brain Research, 358(1–2), 210–220.PubMedGoogle Scholar
  85. Lancelot, E., & Beal, M. F. (1998). Glutamate toxicity in chronic neurodegenerative disease. Progress in Brain Research, 116, 331–347.PubMedGoogle Scholar
  86. Laska, A. C., Hellblom, A., Murray, V., Kahan, T., & Von Arbin, M. (2001). Aphasia in acute stroke and relation to outcome. Journal of Internal Medicine, 249(5), 413–422.PubMedGoogle Scholar
  87. Lauterborn, J. C., Truong, G. S., Baudry, M., Bi, X., Lynch, G., & Gall, C. M. (2003). Chronic elevation of brain-derived neurotrophic factor by ampakines. The Journal of Pharmacology and Experimental Therapeutics, 307(1), 297–305.PubMedGoogle Scholar
  88. Laviolette, S. R., Lipski, W. J., & Grace, A. A. (2005). A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4 receptor-dependent basolateral amygdala input. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 25(26), 6066–6075.Google Scholar
  89. Levin, H. S., Peters, B. H., Kalisky, Z., High, W. M.,Jr, von Laufen, A., Eisenberg, H. M., et al. (1986). Effects of oral physostigmine and lecithin on memory and attention in closed head-injured patients. Central Nervous System Trauma : Journal of the American Paralysis Association, 3(4), 333–342.Google Scholar
  90. Lipsey, J. R., Robinson, R. G., Pearlson, G. D., Rao, K., & Price, T. R. (1984). Nortriptyline treatment of post-stroke depression: A double-blind study. Lancet, 1(8372), 297–300.PubMedGoogle Scholar
  91. Lipsky, R. H., Sparling, M. B., Ryan, L. M., Xu, K., Salazar, A. M., Goldman, D., et al. (2005). Association of COMT Val158Met genotype with executive functioning following traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 17(4), 465–471.PubMedGoogle Scholar
  92. Lockhart, B., Iop, F., Closier, M., & Lestage, P. (2000). (S)-2,3-dihydro-[3,4]cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide: (S18986-1) a positive modulator of AMPA receptors enhances (S)-AMPA-mediated [3H]noradrenaline release from rat hippocampal and frontal cortex slices. European Journal of Pharmacology, 401(2), 145–153.PubMedGoogle Scholar
  93. Lu, C. J., & Tune, L. E. (2003). Chronic exposure to anticholinergic medications adversely affects the course of alzheimer disease. The American Journal of Geriatric Psychiatry : Official Journal of the American Association for Geriatric Psychiatry, 11(4), 458–461.Google Scholar
  94. Luciana, M., & Collins, P. F. (1997). Dopaminergic modulation of working memory for spatial but not object cues in normal volunteers. J.Cogn.Neurosci., 4, 330–347.Google Scholar
  95. Luciana, M., Depue, R. A., Arbisi, P., & Leon, A. (1992). Facilitation of working memory in humans by a D2 dopamine receptor. Journal of Cognitive Neuroscience, 4, 58–67.Google Scholar
  96. Mackowiak, M., O’Neill, M. J., Hicks, C. A., Bleakman, D., & Skolnick, P. (2002). An AMPA receptor potentiator modulates hippocampal expression of BDNF: An in vivo study. Neuropharmacology, 43(1), 1–10.PubMedGoogle Scholar
  97. Madras, B. K., Xie, Z., Lin, Z., Jassen, A., Panas, H., Lynch, L., et al. (2006). Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro. The Journal of Pharmacology and Experimental Therapeutics, 319(2), 561–569.PubMedGoogle Scholar
  98. Mahalick, D. M., Carmel, P. W., Greenberg, J. P., Molofsky, W., Brown, J. A., Heary, R. F., et al. (1998). Psychopharmacologic treatment of acquired attention disorders in children with brain injury. Pediatric Neurosurgery, 29(3), 121–126.PubMedGoogle Scholar
  99. Maione, S., Biggs, C. S., Rossi, F., Fowler, L. J., & Whitton, P. S. (1995). Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors modulate dopamine release in rat hippocampus and striatum. Neuroscience Letters, 193(3), 181–184.PubMedGoogle Scholar
  100. Malapani, C., Pillon, B., Dubois, B., & Agid, Y. (1994). Impaired simultaneous cognitive task performance in parkinson’s disease: A dopamine-related dysfunction. Neurology, 44(2), 319–326.PubMedGoogle Scholar
  101. Malhotra, A. K., Kestler, L. J., Mazzanti, C., Bates, J. A., Goldberg, T., & Goldman, D. (2002). A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. The American Journal of Psychiatry, 159(4), 652–654.PubMedGoogle Scholar
  102. Malouf, R., & Birks, J. (2004). Donepezil for vascular cognitive impairment. Cochrane Database of Systematic Reviews (Online), (1)(1), CD004395.Google Scholar
  103. Mattay, V. S., Callicott, J. H., Bertolino, A., Heaton, I., Frank, J. A., Coppola, R., et al. (2000). Effects of dextroamphetamine on cognitive performance and cortical activation. NeuroImage, 12(3), 268–275.PubMedGoogle Scholar
  104. McAllister, T. W., McDonald, B. C., Flashman, L. A., Rhodes, C. H., Shaw, P. K., Ferrell, R., et al. (2004). Differential effect of COMT allele status on frontal activation associated with a dopaminergic agonist. The Journal of Neuropsychiatry and Clinical Neurosciences, 16(2), 240.Google Scholar
  105. McDowell, S., Whyte, J., & D’Esposito, M. (1998). Differential effect of a dopaminergic agonist on prefrontal function in traumatic brain injury patients. Brain : A Journal of Neurology, 121 (Pt 6)(Pt 6), 1155–1164.Google Scholar
  106. Mehta, M. A., Owen, A. M., Sahakian, B. J., Mavaddat, N., Pickard, J. D., & Robbins, T. W. (2000). Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 20(6), RC65.Google Scholar
  107. Mehta, M. A., Swainson, R., Ogilvie, A. D., Sahakian, J., & Robbins, T. W. (2001). Improved short-term spatial memory but impaired reversal learning following the dopamine D(2) agonist bromocriptine in human volunteers. Psychopharmacology, 159(1), 10–20.PubMedGoogle Scholar
  108. Mesulam, M., Siddique, T., & Cohen, B. (2003). Cholinergic denervation in a pure multi-infarct state: Observations on CADASIL. Neurology, 60(7), 1183–1185.PubMedGoogle Scholar
  109. Mintzer, M. Z., & Griffiths, R. R. (2003). Triazolam-amphetamine interaction: Dissociation of effects on memory versus arousal. Journal of Psychopharmacology (Oxford, England), 17(1), 17–29.Google Scholar
  110. Moore, J. L., McAuley, J. W., Long, L., & Bornstein, R. (2002). An evaluation of the effects of methylphenidate on outcomes in adult epilepsy patients. Epilepsy & Behavior : E&B, 3(1), 92–95.Google Scholar
  111. Mukand, J. A., Guilmette, T. J., Allen, D. G., Brown, L. K., Brown, S. L., Tober, K. L., et al. (2001). Dopaminergic therapy with carbidopa L-dopa for left neglect after stroke: A case series. Archives of Physical Medicine and Rehabilitation, 82(9), 1279–1282.PubMedGoogle Scholar
  112. Muller, W. E., Hartman, H., Koch, S., Scheuer, K., & Stoll, S. (1994). Neurotransmission in aging: Therapeutic aspects. In N. Racagni, N. Brunello & S. Langer (Eds.), Recent advances in the treatment of neurodegenerative disorders and cognitive dysfunction (pp. 166–173). Basel, Switzerland: Karger.Google Scholar
  113. Muller, U., Steffenhagen, N., Regenthal, R., & Bublak, P. (2004). Effects of modafinil on working memory processes in humans. Psychopharmacology, 177(1–2), 161–169.PubMedGoogle Scholar
  114. Muller, U., von Cramon, D. Y., & Pollmann, S. (1998). D1- versus D2-receptor modulation of visuospatial working memory in humans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 18(7), 2720–2728.Google Scholar
  115. Murchison, C. F., Zhang, X. Y., Zhang, W. P., Ouyang, M., Lee, A., & Thomas, S. A. (2004). A distinct role for norepinephrine in memory retrieval. Cell, 117(1), 131–143.PubMedGoogle Scholar
  116. Mysiw, W. J., Bogner, J. A., Corrigan, J. D., Fugate, L. P., Clinchot, D. M., & Kadyan, V. (2006). The impact of acute care medications on rehabilitation outcome after traumatic brain injury. Brain Injury : [BI], 20(9), 905–911.Google Scholar
  117. Narushima, K., Chan, K. L., Kosier, J. T., & Robinson, R. G. (2003). Does cognitive recovery after treatment of poststroke depression last? A 2-year follow-up of cognitive function associated with poststroke depression. The American Journal of Psychiatry, 160(6), 1157–1162.PubMedGoogle Scholar
  118. Narushima, K., Paradiso, S., Moser, D. J., Jorge, R., & Robinson, R. G. (2007). Effect of antidepressant therapy on executive function after stroke. British Journal of Psychiatry, 190, 260–265.PubMedGoogle Scholar
  119. Neurobehavioral Guidelines Working Group, Warden, D. L., Gordon, B., McAllister, T. W., Silver, J. M., Barth, J. T., et al. (2006). Guidelines for the pharmacologic treatment of neurobehavioral sequelae of traumatic brain injury. Journal of Neurotrauma, 23(10), 1468–1501.PubMedGoogle Scholar
  120. O’Brien, J. T., Erkinjuntti, T., Reisberg, B., Roman, G., Sawada, T., Pantoni, L., et al. (2003). Vascular cognitive impairment. Lancet Neurology, 2(2), 89–98.PubMedGoogle Scholar
  121. Orgogozo, J. M. (1999). Piracetam in the treatment of acute stroke. Pharmacopsychiatry, 32 Suppl 1, 25–32.PubMedGoogle Scholar
  122. Orgogozo, J. M., Rigaud, A. S., Stoffler, A., Mobius, H. J., & Forette, F. (2002). Efficacy and safety of memantine in patients with mild to moderate vascular dementia: A randomized, placebo-controlled trial (MMM 300). Stroke; a Journal of Cerebral Circulation, 33(7), 1834–1839.PubMedGoogle Scholar
  123. Owen, A. M., Iddon, J. L., Hodges, J. R., Summers, B. A., & Robbins, T. W. (1997). Spatial and non-spatial working memory at different stages of parkinson’s disease. Neuropsychologia, 35(4), 519–532.PubMedGoogle Scholar
  124. Oyaizu, M., & Narahashi, T. (1999). Modulation of the neuronal nicotinic acetylcholine receptor-channel by the nootropic drug nefiracetam. Brain Research, 822(1–2), 72–79.PubMedGoogle Scholar
  125. Ozeren, A., Sarica, Y., Mavi, H., & Demirkiran, M. (1995). Bromocriptine is ineffective in the treatment of chronic nonfluent aphasia. Acta Neurologica Belgica, 95(4), 235–238.PubMedGoogle Scholar
  126. Pedersen, P. M., Jorgensen, H. S., Nakayama, H., Raaschou, H. O., & Olsen, T. S. (1995). Aphasia in acute stroke: Incidence, determinants, and recovery. Annals of Neurology, 38(4), 659–666.PubMedGoogle Scholar
  127. Pedersen, P. M., Vinter, K., & Olsen, T. S. (2004). Aphasia after stroke: Type, severity and prognosis. the copenhagen aphasia study. Cerebrovascular Diseases (Basel, Switzerland), 17(1), 35–43.Google Scholar
  128. Pepeu, G., & Spignoli, G. (1989). Nootropic drugs and brain cholinergic mechanisms. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 13 Suppl, S77–S88.Google Scholar
  129. Perez-Stable, E. J., Halliday, R., Gardiner, P. S., Baron, R. B., Hauck, W. W., Acree, M., et al. (2000). The effects of propranolol on cognitive function and quality of life: A randomized trial among patients with diastolic hypertension. The American Journal of Medicine, 108(5), 359–365.PubMedGoogle Scholar
  130. Pittaluga, A., Pattarini, R., Andrioli, G. C., Viola, C., Munari, C., & Raiteri, M. (1999). Activity of putative cognition enhancers in kynurenate test performed with human neocortex slices. The Journal of Pharmacology and Experimental Therapeutics, 290(1), 423–428.PubMedGoogle Scholar
  131. Plenger, P. M., Dixon, C. E., Castillo, R. M., Frankowski, R. F., Yablon, S. A., & Levin, H. S. (1996). Subacute methylphenidate treatment for moderate to moderately severe traumatic brain injury: A preliminary double-blind placebo-controlled study. Archives of Physical Medicine and Rehabilitation, 77(6), 536–540.PubMedGoogle Scholar
  132. Pohjasvaara, T., Erkinjuntti, T., Ylikoski, R., Hietanen, M., Vataja, R., & Kaste, M. (1998). Clinical determinants of poststroke dementia. Stroke; a Journal of Cerebral Circulation, 29(1), 75–81.PubMedGoogle Scholar
  133. Rabins, P. V. (1981). The prevalence of reversible dementia in a psychiatric hospital. Hospital & Community Psychiatry, 32(7), 490–492.Google Scholar
  134. Rabins, P. V., Merchant, A., & Nestadt, G. (1984). Criteria for diagnosing reversible dementia caused by depression: Validation by 2-year follow-up. The British Journal of Psychiatry : The Journal of Mental Science, 144, 488–492.Google Scholar
  135. Rama, P., Linnankoski, I., Tanila, H., Pertovaara, A., & Carlson, S. (1996). Medetomidine, atipamezole, and guanfacine in delayed response performance of aged monkeys. Pharmacology, Biochemistry, and Behavior, 55(3), 415–422.PubMedGoogle Scholar
  136. Rammsayer, T. H., Rodewald, S., & Groh, D. (2000). Dopamine-antagonistic, anticholinergic, and GABAergic effects on declarative and procedural memory functions. Brain Research.Cognitive Brain Research, 9(1), 61–71.PubMedGoogle Scholar
  137. Ramos, B. P., Colgan, L., Nou, E., Ovadia, S., Wilson, S. R., & Arnsten, A. F. (2005). The beta-1 adrenergic antagonist, betaxolol, improves working memory performance in rats and monkeys. Biological Psychiatry, 58(11), 894–900.PubMedGoogle Scholar
  138. Ramos, B. P., Colgan, L. A., Nou, E., & Arnsten, A. F. (2007). Beta2 adrenergic agonist, clenbuterol, enhances working memory performance in aging animals. Neurobiology of Aging,Google Scholar
  139. Randall, D. C., Viswanath, A., Bharania, P., Elsabagh, S. M., Hartley, D. E., Shneerson, J. M., et al. (2005). Does modafinil enhance cognitive performance in young volunteers who are not sleep-deprived? Journal of Clinical Psychopharmacology, 25(2), 175–179.PubMedGoogle Scholar
  140. Rao, S. G., Williams, G. V., & Goldman-Rakic, P. S. (2000). Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 20(1), 485–494.Google Scholar
  141. Raymer, A. M. (2003). Treatment of adynamia in aphasia. Frontiers in Bioscience : A Journal and Virtual Library, 8, s845–s51.Google Scholar
  142. Reeves, S., Bench, C., & Howard, R. (2002). Ageing and the nigrostriatal dopaminergic system. International Journal of Geriatric Psychiatry, 17(4), 359–370.PubMedGoogle Scholar
  143. Relkin, N. R. (2007). Beyond symptomatic therapy: A re-examination of acetylcholinesterase inhibitors in Alzheimer’s disease. Expert Review of Neurotherapeutics, 7(6), 735–748.PubMedGoogle Scholar
  144. Robey, R. R. (1994). The efficacy of treatment for aphasic persons: A meta-analysis. Brain and Language, 47(4), 582–608.PubMedGoogle Scholar
  145. Robey, R. R. (1998). A meta-analysis of clinical outcomes in the treatment of aphasia. Journal of Speech, Language, and Hearing Research : JSLHR, 41(1), 172–187.PubMedGoogle Scholar
  146. Robinson, R. G., Schultz, S. K., Castillo, C., Kopel, T., Kosier, J. T., Newman, R. M., et al. (2000). Nortriptyline versus fluoxetine in the treatment of depression and in short-term recovery after stroke: A placebo-controlled, double-blind study. The American Journal of Psychiatry, 157(3), 351–359.PubMedGoogle Scholar
  147. Roesch-Ely, D., Scheffel, H., Weiland, S., Schwaninger, M., Hundemer, H. P., Kolter, T., et al. (2005). Differential dopaminergic modulation of executive control in healthy subjects. Psychopharmacology, 178(4), 420–430.PubMedGoogle Scholar
  148. Roullet, P., & Sara, S. (1998). Consolidation of memory after its reactivation: Involvement of beta noradrenergic receptors in the late phase. Neural Plasticity, 6(3), 63–68.PubMedGoogle Scholar
  149. Roussos, P., Giakoumaki, S. G., Pavlakis, S., & Bitsios, P. (2008). Planning, decision-making and the COMT rs4818 polymorphism in healthy males. Neuropsychologia, 46(2), 757–763.PubMedGoogle Scholar
  150. Runyan, J. D., Moore, A. N., & Dash, P. K. (2005). A role for prefrontal calcium-sensitive protein phosphatase and kinase activities in working memory. Learning & Memory (Cold Spring Harbor, N.Y.), 12(2), 103–110.Google Scholar
  151. Sabe, L., Salvarezza, F., Garcia Cuerva, A., Leiguarda, R., & Starkstein, S. (1995). A randomized, double-blind, placebo-controlled study of bromocriptine in nonfluent aphasia. Neurology, 45(12), 2272–2274.PubMedGoogle Scholar
  152. Saeedi, H., Remington, G., & Christensen, B. K. (2006). Impact of haloperidol, a dopamine D2 antagonist, on cognition and mood. Schizophrenia Research, 85(1–3), 222–231.PubMedGoogle Scholar
  153. Seamans, J. K., & Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology, 74(1), 1–58.PubMedGoogle Scholar
  154. Selden, N. R., Gitelman, D. R., Salamon-Murayama, N., Parrish, T. B., & Mesulam, M. M. (1998). Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain : A Journal of Neurology, 121 (Pt 12) (Pt 12), 2249–2257.Google Scholar
  155. Simis, S., & Nitrini, R. (2006). Cognitive improvement after treatment of depressive symptoms in the acute phase of stroke. Arquivos De Neuro-Psiquiatria, 64(2B), 412–417.PubMedGoogle Scholar
  156. Simon, H. (1981). Dopaminergic A10 neurons and frontal system (author’s transl). [Neurones dopaminergiques A10 et systeme frontal] Journal De Physiologie, 77(1), 81–95.PubMedGoogle Scholar
  157. Small, S. L. (1994). Pharmacotherapy of aphasia. A critical review. Stroke; a Journal of Cerebral Circulation, 25(6), 1282–1289.PubMedGoogle Scholar
  158. Speech, T. J., Rao, S. M., Osmon, D. C., & Sperry, L. T. (1993). A double-blind controlled study of methylphenidate treatment in closed head injury. Brain Injury : [BI], 7(4), 333–338.Google Scholar
  159. Spence, S. A., Green, R. D., Wilkinson, I. D., & Hunter, M. D. (2005). Modafinil modulates anterior cingulate function in chronic schizophrenia. The British Journal of Psychiatry : The Journal of Mental Science, 187, 55–61.Google Scholar
  160. Stanislav, S. W. (1997). Cognitive effects of antipsychotic agents in persons with traumatic brain injury. Brain Injury : [BI], 11(5), 335–341.Google Scholar
  161. Szelies, B., Mielke, R., Kessler, J., & Heiss, W. D. (2001). Restitution of alpha-topography by piracetam in post-stroke aphasia. International Journal of Clinical Pharmacology and Therapeutics, 39(4), 152–157.PubMedGoogle Scholar
  162. Tanaka, Y., Miyazaki, M., & Albert, M. L. (1997). Effects of increased cholinergic activity on naming in aphasia. Lancet, 350(9071), 116–117.PubMedGoogle Scholar
  163. Tao, R., Ma, Z., & Auerbach, S. B. (1997). Influence of AMPA/kainate receptors on extracellular 5-hydroxytryptamine in rat midbrain raphe and forebrain. British Journal of Pharmacology, 121(8), 1707–1715.PubMedGoogle Scholar
  164. Tatemichi, T. K., Desmond, D. W., Mayeux, R., Paik, M., Stern, Y., Sano, M., et al. (1992). Dementia after stroke: Baseline frequency, risks, and clinical features in a hospitalized cohort. Neurology, 42(6), 1185–1193.PubMedGoogle Scholar
  165. Tatemichi, T. K., Desmond, D. W., Stern, Y., Paik, M., Sano, M., & Bagiella, E. (1994). Cognitive impairment after stroke: Frequency, patterns, and relationship to functional abilities. Journal of Neurology, Neurosurgery, and Psychiatry, 57(2), 202–207.PubMedGoogle Scholar
  166. Taylor Sarno, M. (1998). Recovery and rehabilitation in aphasia. In M. Taylor Sarno (Ed.), Acquired aphsia (3rd ed., pp. 595–631). San Diego: Academic Press.Google Scholar
  167. Tenovuo, O. (2005). Central acetylcholinesterase inhibitors in the treatment of chronic traumatic brain injury-clinical experience in 111 patients. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29(1), 61–67.Google Scholar
  168. Tunbridge, E. M., Bannerman, D. M., Sharp, T., & Harrison, P. J. (2004). Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(23), 5331–5335.Google Scholar
  169. Turner, D. C., Blackwell, A. D., Dowson, J. H., McLean, A., & Sahakian, B. J. (2005). Neurocognitive effects of methylphenidate in adult attention-deficit/hyperactivity disorder. Psychopharmacology, 178(2–3), 286–295.PubMedGoogle Scholar
  170. Turner, D. C., Clark, L., Pomarol-Clotet, E., McKenna, P., Robbins, T. W., & Sahakian, B. J. (2004). Modafinil improves cognition and attentional set shifting in patients with chronic schizophrenia. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 29(7), 1363–1373.Google Scholar
  171. Turner, D. C., Robbins, T. W., Clark, L., Aron, A. R., Dowson, J., & Sahakian, B. J. (2003). Cognitive enhancing effects of modafinil in healthy volunteers. Psychopharmacology, 165(3), 260–269.PubMedGoogle Scholar
  172. van Gaalen, M. M., van Koten, R., Schoffelmeer, A. N., & Vanderschuren, L. J. (2006). Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biological Psychiatry, 60(1), 66–73.PubMedGoogle Scholar
  173. Vernon, M. W., & Sorkin, E. M. (1991). Piracetam. an overview of its pharmacological properties and a review of its therapeutic use in senile cognitive disorders. Drugs & Aging, 1(1), 17–35.Google Scholar
  174. Wade, D. T., Hewer, R. L., David, R. M., & Enderby, P. M. (1986). Aphasia after stroke: Natural history and associated deficits. Journal of Neurology, Neurosurgery, and Psychiatry, 49(1), 11–16.PubMedGoogle Scholar
  175. Wertz, R. T., Weiss, D. G., Aten, J. L., Brookshire, R. H., Garcia-Bunuel, L., Holland, A. L., et al. (1986). Comparison of clinic, home, and deferred language treatment for aphasia. A veterans administration cooperative study. Archives of Neurology, 43(7), 653–658.PubMedGoogle Scholar
  176. Wesnes, K. A., McKeith, I., Edgar, C., Emre, M., & Lane, R. (2005). Benefits of rivastigmine on attention in dementia associated with parkinson disease. Neurology, 65(10), 1654–1656.PubMedGoogle Scholar
  177. Whyte, J., Hart, T., Schuster, K., Fleming, M., Polansky, M., & Coslett, H. B. (1997). Effects of methylphenidate on attentional function after traumatic brain injury. A randomized, placebo-controlled trial. American Journal of Physical Medicine & Rehabilitation / Association of Academic Physiatrists, 76(6), 440–450.Google Scholar
  178. Whyte, J., Hart, T., Vaccaro, M., Grieb-Neff, P., Risser, A., Polansky, M., et al. (2004). Effects of methylphenidate on attention deficits after traumatic brain injury: A multidimensional, randomized, controlled trial. American Journal of Physical Medicine & Rehabilitation/Association of Academic Physiatrists, 83(6), 401–420.Google Scholar
  179. Wilcock, G., Mobius, H. J., Stoffler, A., & MMM 500 group. (2002). A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500). International Clinical Psychopharmacology, 17(6), 297–305.Google Scholar
  180. Williams, G. V., & Goldman-Rakic, P. S. (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376(6541), 572–575.PubMedGoogle Scholar
  181. Zafonte, R. D., Elovic, E., Mysiw, W. J., O’Dell, M., & Watanabe, T. (1999). Pharmacology in traumatic brain injury: Fundamentals and treatment strategies. In M. Rosenthal, J. S. Kreutzer, E. R. Griffith & B. Pentland (Eds.), Rehabilitation of the adult and child with traumatic brain injury (3rd ed., pp. 536–555). Philadelphia: FA Davis.Google Scholar
  182. Zahrt, J., Taylor, J. R., Mathew, R. G., & Arnsten, A. F. (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 17(21), 8528–8535.Google Scholar
  183. Zhang, L., Plotkin, R. C., Wang, G., Sandel, M. E., & Lee, S. (2004). Cholinergic augmentation with donepezil enhances recovery in short-term memory and sustained attention after traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 85(7), 1050–1055.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.New York University School of MedicineRusk Institute of Rehabilitation Medicine, NYU-Langone Medical CenterNew YorkUSA

Personalised recommendations