Functional Imaging in Stroke Recovery

  • R.S. Marshall


Functional neuroimaging is a general term for techniques that image brain activity, above and beyond the structural anatomy information that is derived from standard imaging. The functional imaging techniques, which include positron emission tomography (PET), magnetic encephalography (MEG), single photon emission computed tomography (SPECT), and functional magnetic imaging (fMRI) have contributed greatly to our understanding of the mechanisms of recovery. The techniques generally work by having the patient perform a physical or mental task during scanning and then deriving a statistical map of the regional activation that correlates with that task.

The most commonly used signal to demonstrate task-related, focal neuronal activity with fMRI is the blood oxygen level dependent (BOLD) signal, which is generated by the paramagnetic characteristics of increased oxygenated blood flow that follows the increase in local neuronal metabolic activity (Logothetis, 2002). The BOLD...


Transcranial Magnetic Stimulation Blood Oxygen Level Dependent Supplementary Motor Area Blood Oxygen Level Dependent Signal Stroke Recovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alkadhi, H., Crelier, G. R., Boendermaker, S. H., Golay, X., Hepp-Reymond, M. C., & Kollias, S. S. (2002). Reproducibility of primary motor cortex somatotopy under controlled conditions. AJNR American Journal of Neuroradiology, 23(9), 1524–1532.PubMedGoogle Scholar
  2. Attig, E., Capon, A., Demeurisse, G., & Verhas, M. (1990). Remote effect of deep-seated vascular brain lesions on cerebral blood flow. Stroke, 21(11), 1555–1561.PubMedCrossRefGoogle Scholar
  3. Bilecen, D., Radu, E. W., Schulte, A. C., Hennig, J., Scheffler, K., & Seifritz, E. (2002). fMRI of the auditory cortex in patients with unilateral carotid artery steno-occlusive disease. Journal of Magnetic Resonance Imaging, 15(6), 621–627.PubMedCrossRefGoogle Scholar
  4. Binkofski, F., Fink, G. R., Geyer, S., Buccino, G., Gruber, O., Shah, N. J., et al. (2002). Neural activity in human primary motor cortex areas 4a and 4p is modulated differentially by attention to action. Journal of Neurophysiology, 88(1), 514–519.PubMedGoogle Scholar
  5. Brasil-Neto, J. P., Valls-Sole, J., Pascual-Leone, A., Cammarota, A., Amassian, V. E., Cracco, R., et al. (1993). Rapid modulation of human cortical motor outputs following ischaemic nerve block. Brain, 116 (Pt 3), 511–525.PubMedCrossRefGoogle Scholar
  6. Buchkremer-Ratzmann, I., August, M., Hagemann, G., & Witte, O. W. (1996). Electrophysiological transcortical diaschisis after cortical photothrombosis in rat brain. Stroke, 27(6), 1105–1109; discussion 1109–1111.PubMedCrossRefGoogle Scholar
  7. Byrnes, M. L., Thickbroom, G. W., Wilson, S. A., Sacco, P., Shipman, J. M., Stell, R., et al. (1998). The corticomotor representation of upper limb muscles in writer's cramp and changes following botulinum toxin injection. Brain, 121 (Pt 5), 977–988.PubMedCrossRefGoogle Scholar
  8. Calvert, G. A., Brammer, M. J., Morris, R. G., Williams, S. C., King, N., & Matthews, P. M. (2000). Using fMRI to study recovery from acquired dysphasia. Brain Language, 71(3), 391–399.CrossRefGoogle Scholar
  9. Cao, Y., D'Olhaberriague, L., Vikingstad, E. M., Levine, S. R., & Welch, K. M. (1998). Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke, 29(1), 112–122.PubMedCrossRefGoogle Scholar
  10. Cao, Y., Vikingstad, E. M., George, K. P., Johnson, A. F., & Welch, K. M. (1999). Cortical language activation in stroke patients recovering from aphasia with functional MRI. Stroke, 30(11), 2331–2340.PubMedCrossRefGoogle Scholar
  11. Cappa, S. F., Perani, D., Grassi, F., Bressi, S., Alberoni, M., Franceschi, M., et al. (1997). A PET follow-up study of recovery after stroke in acute aphasics. Brain Lang, 56(1), 55–67.PubMedCrossRefGoogle Scholar
  12. Chen, R., Cohen, L. G., & Hallett, M. (2002). Nervous system reorganization following injury. Neuroscience, 111(4), 761–773.PubMedCrossRefGoogle Scholar
  13. Chollet, F., DiPiero, V., Wise, R. J., Brooks, D. J., Dolan, R. J., & Frackowiak, R. S. (1991). The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Annals of Neurology, 29(1), 63–71.PubMedCrossRefGoogle Scholar
  14. Cramer, S. C., Nelles, G., Benson, R. R., Kaplan, J. D., Parker, R. A., Kwong, K. K., et al. (1997). A functional MRI study of subjects recovered from hemiparetic stroke. Stroke, 28(12), 2518–2527.PubMedCrossRefGoogle Scholar
  15. Dancause, N., Barbay, S., Frost, S. B., Plautz, E. J., Chen, D., Zoubina, E. V., et al. (2005). Extensive cortical rewiring after brain injury. Journal of Neuroscience, 25(44), 10167–10179.PubMedCrossRefGoogle Scholar
  16. Dawson, S. L., Blake, M. J., Panerai, R. B., & Potter, J. F. (2000). Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke. Cerebrovascular Diseases, 10(2), 126–132.PubMedCrossRefGoogle Scholar
  17. Deblaere, K., Backes, W. H., Hofman, P., Vandemaele, P., Boon, P. A., Vonck, K., et al. (2002). Developing a comprehensive presurgical functional MRI protocol for patients with intractable temporal lobe epilepsy: a pilot study. Neuroradiology, 44(8), 667–673.PubMedCrossRefGoogle Scholar
  18. Dijkhuizen, R. M., Ren, J., Mandeville, J. B., Wu, O., Ozdag, F. M., Moskowitz, M. A., et al. (2001). Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proceedings of the National Academy of Sciences of the United States of America, 98(22), 12766–12771.Google Scholar
  19. Dijkhuizen, R. M., Singhal, A. B., Mandeville, J. B., Wu, O., Halpern, E. F., Finklestein, S. P., et al. (2003). Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. Journal of Neuroscience, 23(2), 510–517.PubMedGoogle Scholar
  20. Duffau, H. (2001). Acute functional reorganisation of the human motor cortex during resection of central lesions: a study using intraoperative brain mapping.Journal of Neurology, Neurosurgery, and Psychiatry, 70(4), 506–513.PubMedCrossRefGoogle Scholar
  21. Duncan, P. W., Goldstein, L. B., Matchar, D., Divine, G. W., & Feussner, J. (1992). Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke, 23(8), 1084–1089.PubMedCrossRefGoogle Scholar
  22. Eames, P. J., Blake, M. J., Dawson, S. L., Panerai, R. B., & Potter, J. F. (2002). Dynamic cerebral autoregulation and beat to beat blood pressure control are impaired in acute ischaemic stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 72(4), 467–472.PubMedGoogle Scholar
  23. Feeney, D. M., & Baron, J. C. (1986). Diaschisis. Stroke, 17(5), 817–830.PubMedCrossRefGoogle Scholar
  24. Feydy, A., Carlier, R., Roby-Brami, A., Bussel, B., Cazalis, F., Pierot, L., et al. (2002). Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke, 33(6), 1610–1617.PubMedCrossRefGoogle Scholar
  25. Feys, H., De Weerdt, W., Nuyens, G., van de Winckel, A., Selz, B., & Kiekens, C. (2000). Predicting motor recovery of the upper limb after stroke rehabilitation: value of a clinical examination. Physiotherapy Research International, 5(1), 1–18.PubMedCrossRefGoogle Scholar
  26. Foltys, H., Krings, T., Meister, I. G., Sparing, R., Boroojerdi, B., Thron, A., et al. (2003). Motor representation in patients rapidly recovering after stroke: a functional magnetic resonance imaging and transcranial magnetic stimulation study. Clinical Neurophysiology, 114(12), 2404–2415.PubMedCrossRefGoogle Scholar
  27. Fugl-Meyer, A. R. (1980). Post-stroke hemiplegia assessment of physical properties. Scandinavian Journal of Rehabilitation Medicine. Supplement, 7, 85–93.PubMedGoogle Scholar
  28. Heiss, W. D., Kessler, J., Thiel, A., Ghaemi, M., & Karbe, H. (1999). Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Annals of Neurology, 45(4), 430–438.PubMedCrossRefGoogle Scholar
  29. Hernandez, T. D., & Schallert, T. (1988). Seizures and recovery from experimental brain damage. Experimental Neurology, 102(3), 318–324.PubMedCrossRefGoogle Scholar
  30. Johansen-Berg, H., Rushworth, M. F., Bogdanovic, M. D., Kischka, U., Wimalaratna, S., & Matthews, P. M. (2002). The role of ipsilateral premotor cortex in hand movement after stroke. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14518–14523.Google Scholar
  31. Karbe, H., Thiel, A., Weber-Luxenburger, G., Herholz, K., Kessler, J., & Heiss, W. D. (1998). Brain plasticity in poststroke aphasia: what is the contribution of the right hemisphere? Brain Language, 64(2), 215–230.CrossRefGoogle Scholar
  32. Krakauer, J. W. (2007). Avoiding performance and task confounds: multimodal investigation of brain reorganization after stroke rehabilitation. Experimental Neurology, 204(2), 491–495.PubMedCrossRefGoogle Scholar
  33. Krakauer, J. W., Radoeva, P. D., Zarahn, E., Wydra, J., Lazar, R. M., Hirsch, J., et al. (2004). Hypoperfusion without stroke alters motor activation in the opposite hemisphere. Annals of Neurology, 56(6), 796–802.PubMedCrossRefGoogle Scholar
  34. Krakauer, J. W., Zarahn E, Lazar RM, & Marshall RS. (2007). Imaging “Likelihood to Recover” in Acute Stroke. Stroke 38, 520 (abs).Google Scholar
  35. Lee, L., Siebner, H. R., Rowe, J. B., Rizzo, V., Rothwell, J. C., Frackowiak, R. S., et al. (2003). Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. Journal of Neuroscience, 23(12), 5308–5318.PubMedGoogle Scholar
  36. Liepert, J., Hamzei, F., & Weiller, C. (2000). Motor cortex disinhibition of the unaffected hemisphere after acute stroke. Muscle Nerve, 23(11), 1761–1763.PubMedCrossRefGoogle Scholar
  37. Logothetis, N. K. (2002). The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357(1424), 1003–1037.PubMedCrossRefGoogle Scholar
  38. Logothetis, N. K., & Wandell, B. A. (2004). Interpreting the BOLD signal. Annual Review of Physiology, 66, 735–769.PubMedCrossRefGoogle Scholar
  39. Lyden, P. D., Lu, M., Levine, S. R., Brott, T. G., & Broderick, J. (2001). A modified National Institutes of Health Stroke Scale for use in stroke clinical trials: preliminary reliability and validity. Stroke, 32(6), 1310–1317.PubMedCrossRefGoogle Scholar
  40. Marshall, R. S., Krakauer, J. W., Radoeva, P. D., Wydra, J., Lazar, R. M., & Hirsch, J. (2004). Hemispheric hemodynamic impairment in the absence of stroke induces fMRI activation in the opposite hemisphere. Neurology, 62(7), A541.Google Scholar
  41. Marshall, R. S., Perera, G. M., Lazar, R. M., Krakauer, J. W., Constantine, R. C., & DeLaPaz, R. L. (2000). Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke, 31(3), 656–661.PubMedCrossRefGoogle Scholar
  42. Metter, E. J., Hanson, W. R., Jackson, C. A., Kempler, D., van Lancker, D., Mazziotta, J. C., et al. (1990). Temporoparietal cortex in aphasia. Evidence from positron emission tomography. Archives of Neurology, 47(11), 1235–1238.PubMedCrossRefGoogle Scholar
  43. Meyer, B. U., Roricht, S., Grafin von Einsiedel, H., Kruggel, F., & Weindl, A. (1995). Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain, 118 (Pt 2), 429–440.PubMedCrossRefGoogle Scholar
  44. Neumann-Haefelin, T., Staiger, J. F., Redecker, C., Zilles, K., Fritschy, J. M., Mohler, H., et al. (1998). Immunohistochemical evidence for dysregulation of the GABAergic system ipsilateral to photochemically induced cortical infarcts in rats. Neuroscience, 87(4), 871–879.PubMedCrossRefGoogle Scholar
  45. Nudo, R. J., & Milliken, G. W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. Journal of Neurophysiology, 75(5), 2144–2149.PubMedGoogle Scholar
  46. Ogawa, S., Menon, R. S., Tank, D. W., Kim, S. G., Merkle, H., Ellermann, J. M., et al. (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J, 64(3), 803–812.PubMedCrossRefGoogle Scholar
  47. Ohyama, M., Senda, M., Kitamura, S., Ishii, K., Mishina, M., & Terashi, A. (1996). Role of the nondominant hemisphere and undamaged area during word repetition in poststroke aphasics. A PET activation study. Stroke, 27(5), 897–903.PubMedCrossRefGoogle Scholar
  48. Pineiro, R., Pendlebury, S., Johansen-Berg, H., & Matthews, P. M. (2002). Altered hemodynamic responses in patients after subcortical stroke measured by functional MRI. Stroke, 33(1), 103–109.PubMedCrossRefGoogle Scholar
  49. Pizzamiglio, L., Galati, G., & Committeri, G. (2001). The contribution of functional neuroimaging to recovery after brain damage: a review. Cortex, 37(1), 11–31.PubMedCrossRefGoogle Scholar
  50. Powers, W. J., Fox, P. T., & Raichle, M. E. (1988). The effect of carotid artery disease on the cerebrovascular response to physiologic stimulation. Neurology, 38(9), 1475–1478.PubMedGoogle Scholar
  51. Remy, P., Zilbovicius, M., Leroy-Willig, A., Syrota, A., & Samson, Y. (1994). Movement- and task-related activations of motor cortical areas: a positron emission tomographic study. Annals of Neurology, 36(1), 19–26.PubMedCrossRefGoogle Scholar
  52. Rijntjes, M., & Weiller, C. (2002). Recovery of motor and language abilities after stroke: the contribution of functional imaging. Prog Neurobiol, 66(2), 109–122.PubMedCrossRefGoogle Scholar
  53. Rossini, P. M., Altamura, C., Ferretti, A., Vernieri, F., Zappasodi, F., Caulo, M., et al. (2004). Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain, 127(Pt 1), 99–110.PubMedCrossRefGoogle Scholar
  54. Rutten, G. J., Ramsey, N. F., van Rijen, P. C., Franssen, H., & van Veelen, C. W. (2002). Interhemispheric reorganization of motor hand function to the primary motor cortex predicted with functional magnetic resonance imaging and transcranial magnetic stimulation. Journal of Child Neurology, 17(4), 292–297.PubMedCrossRefGoogle Scholar
  55. Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M., et al. (2006). Dynamics of language reorganization after stroke. Brain, 129(Pt 6), 1371–1384.PubMedCrossRefGoogle Scholar
  56. Schallert, T., Hernandez, T. D., & Barth, T. M. (1986). Recovery of function after brain damage: severe and chronic disruption by diazepam. Brain Research, 379(1), 104–111.PubMedCrossRefGoogle Scholar
  57. Shimizu, T., Hosaki, A., Hino, T., Sato, M., Komori, T., Hirai, S., et al. (2002). Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain, 125(Pt 8), 1896–1907.PubMedCrossRefGoogle Scholar
  58. Small, S. L., Hlustik, P., Noll, D. C., Genovese, C., & Solodkin, A. (2002). Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain, 125(Pt 7), 1544–1557.PubMedCrossRefGoogle Scholar
  59. Smith, C. D., Andersen, A. H., Chen, Q., Blonder, L. X., Kirsch, J. E., & Avison, M. J. (1996). Cortical activation in confrontation naming. Neuroreport, 7(3), 781–785.PubMedCrossRefGoogle Scholar
  60. Strens, L. H., Fogelson, N., Shanahan, P., Rothwell, J. C., & Brown, P. (2003). The ipsilateral human motor cortex can functionally compensate for acute contralateral motor cortex dysfunction. Current Biology, 13(14), 1201–1205.PubMedCrossRefGoogle Scholar
  61. Thulborn, K. R., Carpenter, P. A., & Just, M. A. (1999). Plasticity of language-related brain function during recovery from stroke. Stroke, 30(4), 749–754.PubMedCrossRefGoogle Scholar
  62. Villemure, J. G., & Rasmussen, T. (1993). Functional hemispherectomy in children. Neuropediatrics, 24(1), 53–55.PubMedCrossRefGoogle Scholar
  63. Warburton, E., Price, C. J., Swinburn, K., & Wise, R. J. (1999). Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. Journal of Neurology, Neurosurgery, and Psychiatry, 66(2), 155–161.PubMedCrossRefGoogle Scholar
  64. Ward, N. S., Brown, M. M., Thompson, A. J., & Frackowiak, R. S. (2003a). Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain, 126(Pt 11), 2476–2496.Google Scholar
  65. Ward, N. S., Brown, M. M., Thompson, A. J., & Frackowiak, R. S. (2003b). Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain, 126(Pt 6), 1430–1448.Google Scholar
  66. Weiller, C. (1998). Imaging recovery from stroke. Experimental Brain Research, 123(1–2), 13–17.CrossRefGoogle Scholar
  67. Weiller, C., Chollet, F., Friston, K. J., Wise, R. J., & Frackowiak, R. S. (1992). Functional reorganization of the brain in recovery from striatocapsular infarction in man. Annals of Neurology, 31(5), 463–472.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Stroke Division, Department of Neurology, Neurological Institute, New York Presbyterian HospitalColumbia University, College of Physicians & SurgeonsNew YorkUSA

Personalised recommendations