Diabetes and Hypertension

  • Lenore J. Launer
  • Clinton Wright


Cognitive impairment and dementia are very prevalent conditions in persons 60 years and older. Estimates of persons with a mild level of cognitive impairment (MCI) vary widely depending on the definition of MCI and the sample (Panza et al., 2005), but in community based studies, it is estimated to be at least twice the overall prevalence of dementia. Many persons with cognitive impairment go on to develop dementia, which doubles in prevalence and incidence every additional 5 years of age (Lobo et al., 2000). Between 65 years and 85 years and older, the prevalence of dementia increases from <1% to approximately 30% of the population, and number of new cases that develop increases from <1 to 80 per 1,000 person years of observation (Launer et al. 1999).

Vascular disease is also highly prevalent in older individuals. Hypertension represents a very large public health problem with a prevalence in 2000 estimated at 65 million in the US and almost a billion worldwide (Fields et...


Brain Atrophy Small Vessel Disease Cardiovascular Health Study Frontal Lobe Function Insulin Degrading Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amos, A. F., McCarty, D. J., & Zimmet, P. (1997). The rising global burden of diabetes and its complications: Estimates and projections to the year 2010. Diabetic Medicine, 14(Suppl 5), S1–S85.PubMedGoogle Scholar
  2. Arvanitakis, Z., Schneider, J. A., Wilson, R. S., Li, Y., Arnold, S. E., Wang, Z., et al. (2006). Diabetes is related to cerebral infarction but not to AD pathology in older persons. Neurology, 67(11), 1960–1965.PubMedCrossRefGoogle Scholar
  3. Arvanitakis, Z., Wilson, R. S., Bienias, J. L., Evans, D. A., & Bennett, D. A. (2004). Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Archives of Neurology, 61(5), 661–666.PubMedCrossRefGoogle Scholar
  4. Barber, R., Scheltens, P., Gholkar, A., Ballard, C., McKeith, I., Ince, P., et al. (1999). White matter lesions on magnetic resonance imaging in dementia with Lewy bodies, Alzheimer's disease, vascular dementia, and normal aging. Journal of Neurology, Neurosurgery, and Psychiatry, 67(1), 66–72.PubMedCrossRefGoogle Scholar
  5. Bertram, L., Blacker, D., Mullin, K., Keeney, D., Jones, J., Basu, S., et al. (2000). Evidence for genetic linkage of Alzheimer's disease to chromosome 10q. Science, 290(5500), 2302–2303.PubMedCrossRefGoogle Scholar
  6. Bonora, E., Willeit, J., Kiechl, S., Oberhollenzer, F., Egger, G., Bonadonna, R., et al. (1998). U-shaped and J-shaped relationships between serum insulin and coronary heart disease in the general population. The Bruneck Study. Diabetes Care, 21(2), 221–230.PubMedCrossRefGoogle Scholar
  7. Brands, A. M., Biessels, G. J., de Haan, E. H., Kappelle, L. J., & Kessels, R. P. (2005). The effects of type 1 diabetes on cognitive performance: A meta-analysis. Diabetes Care, 28(3), 726–735.PubMedCrossRefGoogle Scholar
  8. Brands, A. M., Kessels, R. P., Hoogma, R. P., Henselmans, J. M., van der Beek Boter, J. W., Kappelle, L. J., et al. (2006). Cognitive performance, psychological well-being, and brain magnetic resonance imaging in older patients with type 1 diabetes. Diabetes, 55(6), 1800–1806.PubMedCrossRefGoogle Scholar
  9. Coker, L. H., & Shumaker, S. A. (2003). Type 2 diabetes mellitus and cognition: An understudied issue in women's health. Journal of Psychosomatic Research, 54(2), 129–139.PubMedCrossRefGoogle Scholar
  10. Convit, A., Wolf, O. T., Tarshish, C., & de Leon, M. J. (2003). Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 2019–2022.Google Scholar
  11. Cook, D. G., Leverenz, J. B., McMillan, P. J., Kulstad, J. J., Ericksen, S., Roth, R. A., et al. (2003). Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-epsilon4 allele. The American Journal of Pathology, 162(1), 313–319.PubMedCrossRefGoogle Scholar
  12. Craft, S., & Watson, G. S. (2004). Insulin and neurodegenerative disease: Shared and specific mechanisms. Lancet Neurology, 3(3), 169–178.PubMedCrossRefGoogle Scholar
  13. Cukierman, T., Gerstein, H. C., & Williamson, J. D. (2005). Cognitive decline and dementia in diabetes – systematic overview of prospective observational studies. Diabetologia, 48(12), 2460–2469.PubMedCrossRefGoogle Scholar
  14. Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50(8), 873–880.PubMedCrossRefGoogle Scholar
  15. Curb, J. D., Rodriguez, B. L., Abbott, R. D., Petrovitch, H., Ross, G. W., Masaki, K. H., et al. (1999). Longitudinal association of vascular and Alzheimer's dementias, diabetes, and glucose tolerance. Neurology, 52(5), 971–975.PubMedGoogle Scholar
  16. DCCT. (1996). Effects of intensive diabetes therapy on neuropsychological function in adults in the diabetes control and complications trial. Annals of Internal Medicine, 124(4), 379–388.Google Scholar
  17. DeCarli, C., Fletcher, E., Ramey, V., Harvey, D., & Jagust, W. J. (2005). Anatomical mapping of white matter hyperintensities (WMH): Exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke, 36(1), 50–55.PubMedCrossRefGoogle Scholar
  18. den Heijer, T., Vermeer, S. E., van Dijk, E. J., Prins, N. D., Koudstaal, P. J., Hofman, A., et al. (2003). Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia, 46(12), 1604–1610.CrossRefGoogle Scholar
  19. Donnan, G. A. (2002). Subcortical stroke. Oxford; New York, Oxford University Press.Google Scholar
  20. Edbauer, D., Willem, M., Lammich, S., Steiner, H., & Haass, C. (2002). Insulin-degrading enzyme rapidly removes the beta-amyloid precursor protein intracellular domain (AICD). The Journal of Biological Chemistry, 277(16), 13389–13393.PubMedCrossRefGoogle Scholar
  21. Elias, M. F., Wolf, P. A., D’Agostino, R. B., Cobb, J., & White, L. R. (1993). Untreated blood pressure level is inversely related to cognitive functioning: The Framingham Study. American Journal of Epidemiology, 138(6), 353–364.PubMedGoogle Scholar
  22. Elias, P. K., Elias, M. F., D’Agostino, R. B., Cupples, L. A., Wilson, P. W., Silbershatz, H., et al. (1997). NIDDM and blood pressure as risk factors for poor cognitive performance. The Framingham Study. Diabetes Care, 20(9), 1388–1395.PubMedCrossRefGoogle Scholar
  23. Elmquist, J. K., & Marcus, J. N. (2003). Rethinking the central causes of diabetes. Nature Medicine, 9(6), 645–647.PubMedCrossRefGoogle Scholar
  24. Fazekas, F., Kleinert, R., Offenbacher, H., Schmidt, R., Kleinert, G., Payer, F., et al. (1993). Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology, 43(9), 1683–1689.PubMedGoogle Scholar
  25. Fields, L. E., Burt, V. L., Cutler, J. A., Hughes, J., Roccella, E. J., & Sorlie, P. (2004). The burden of adult hypertension in the United States 1999 to 2000: A rising tide. Hypertension, 44(4), 398–404.PubMedCrossRefGoogle Scholar
  26. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.PubMedCrossRefGoogle Scholar
  27. Fontbonne, A., Berr, C., Ducimetiere, P., & Alperovitch, A. (2001). Changes in cognitive abilities over a 4-year period are unfavorably affected in elderly diabetic subjects: Results of the Epidemiology of Vascular Aging Study. Diabetes Care, 24(2), 366–370.PubMedCrossRefGoogle Scholar
  28. Forrester, J. S. (2004). Common ancestors: Chronic progressive diseases have the same pathogenesis. Clinical Cardiology, 27(4), 186–190.PubMedCrossRefGoogle Scholar
  29. Gianaros, P. J., Greer, P. J., Ryan, C. M., & Jennings, J. R. (2006). Higher blood pressure predicts lower regional grey matter volume: Consequences on short-term information processing. Neuroimage, 31(2), 754–765.PubMedCrossRefGoogle Scholar
  30. Gispen, W. H., & Biessels, G. J. (2000). Cognition and synaptic plasticity in diabetes mellitus. Trends in Neurosciences, 23(11), 542–549.PubMedCrossRefGoogle Scholar
  31. Goldstein, I. B., Bartzokis, G., Guthrie, D., & Shapiro, D. (2005). Ambulatory blood pressure and the brain: A 5-year follow-up. [see comment]. Neurology, 64(11), 1846–1852.PubMedCrossRefGoogle Scholar
  32. Gregg, E. W., Yaffe, K., Cauley, J. A., Rolka, D. B., Blackwell, T. L., Narayan, K. M., et al. (2000). Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of Osteoporotic Fractures Research Group. Archives of Internal Medicine, 160(2), 174–180.PubMedCrossRefGoogle Scholar
  33. Grodstein, F., Chen, J., Wilson, R. S., Manson, J. E., & Nurses’ Health, S. (2001). Type 2 diabetes and cognitive function in community-dwelling elderly women. Diabetes Care, 24(6), 1060–1065.PubMedCrossRefGoogle Scholar
  34. Grossman, H. (2003). Does diabetes protect or provoke Alzheimer's disease? Insights into the pathobiology and future treatment of Alzheimer's disease. CNS Spectrums, 8(11), 815–823.PubMedGoogle Scholar
  35. Guo, Z., Fratiglioni, L., Winblad, B., & Viitanen, M. (1997). Blood pressure and performance on the Mini-Mental State Examination in the very old. Cross-sectional and longitudinal data from the Kungsholmen Project. American Journal of Epidemiology, 145(12), 1106–1113.PubMedGoogle Scholar
  36. Haan, M. N., Shemanski, L., Jagust, W. J., Manolio, T. A., & Kuller, L. (1999). The role of APOE epsilon4 in modulating effects of other risk factors for cognitive decline in elderly persons. JAMA, 282(1), 40–46.PubMedCrossRefGoogle Scholar
  37. Hachinski, V. C., Potter, P., & Merskey, H. (1987). Leuko-araiosis. Archives of Neurology, 44(1), 21–23.PubMedCrossRefGoogle Scholar
  38. Halter, J. B. (1996). Alzheimer's disease and non-insulin-dependent diabetes mellitus: Common features do not make common bedfellows. Journal of the American Geriatrics Society, 44(8), 992–993.PubMedGoogle Scholar
  39. Harris, M. I., Flegal, K. M., Cowie, C. C., Eberhardt, M. S., Goldstein, D. E., Little, R. R., et al. (1998). (1998). Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care, 21(4), 518–524.PubMedCrossRefGoogle Scholar
  40. Hofman, A., Ott, A., Breteler, M. M., Bots, M. L., Slooter, A. J., van Harskamp, F., et al. (1997). Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam Study.[comment]. Lancet, 349(9046), 151–154.PubMedCrossRefGoogle Scholar
  41. Hong, M., & Lee, V. M. (1997). Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. The Journal of Biological Chemistry, 272(31), 19547–19553.PubMedCrossRefGoogle Scholar
  42. Hoyer, S. (1998). Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. Journal of Neural Transmission, 105(4–5), 415–422.PubMedCrossRefGoogle Scholar
  43. Irie, F., Fitzpatrick, A. L., Lopez, O. L., Kuller, L. H., Peila, R., Newman, A. B., Launer, L. J. (2008). Enhanced risk for Alzheimer disease in persons with type 2 diabetes and APOE epsilon4: the Cardiovascular Health Study Cognition Study. Arch Neurol, 65, 89–93.Google Scholar
  44. Isaka, Y., Okamoto, M., Ashida, K., & Imaizumi, M. (1994). Decreased cerebrovascular dilatory capacity in subjects with asymptomatic periventricular hyperintensities. Stroke, 25(2), 375–381.PubMedCrossRefGoogle Scholar
  45. Kalmijn, S., Feskens, E. J., Launer, L. J., & Kromhout, D. (1996). Cerebrovascular disease, the apolipoprotein e4 allele, and cognitive decline in a community-based study of elderly men. Stroke, 27(12), 2230–235.PubMedCrossRefGoogle Scholar
  46. Kalmijn, S., Feskens, E. J., Launer, L. J., Stijnen, T., & Kromhout, D. (1995). Glucose intolerance, hyperinsulinaemia and cognitive function in a general population of elderly men. Diabetologia, 38(9), 1096–1102.PubMedCrossRefGoogle Scholar
  47. Kanaya, A. M., Barrett-Connor, E., Gildengorin, G., & Yaffe, K. (2004). Change in cognitive function by glucose tolerance status in older adults: A 4-year prospective study of the Rancho Bernardo study cohort. Archives of Internal Medicine, 164(12), 1327–1333.PubMedCrossRefGoogle Scholar
  48. Kato, H., Sugawara, Y., Ito, H., & Kogure, K. (1990). White matter lucencies in multi-infarct dementia: A somatosensory evoked potentials and CT study. Acta Neurologica Scandinavica, 81(2), 181–183.PubMedCrossRefGoogle Scholar
  49. Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J. (2005). Global burden of hypertension: Analysis of worldwide data. The Lancet, 365(9455), 217–223.Google Scholar
  50. Kilander, L., Nyman, H., Boberg, M., Hansson, L., & Lithell, H. (1998). Hypertension is related to cognitive impairment: A 20-year follow-up of 999 men. Hypertension, 31(3), 780–786.PubMedGoogle Scholar
  51. Kivipelto, M., Helkala, E. L., Laakso, M. P., Hänninen, T., Hallikainen, M., Alhainen, K., et al. (2001). Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ. 322,1447?51.Google Scholar
  52. Klein, J. P., & Waxman, S. G. (2003). The brain in diabetes: Molecular changes in neurons and their implications for end-organ damage. Lancet Neurology, 2(9), 548–554.PubMedCrossRefGoogle Scholar
  53. Knopman, D. S., Mosley, T. H., Catellier, D. J., & Sharrett, A. R. (2005). Cardiovascular risk factors and cerebral atrophy in a middle-aged cohort. Neurology, 65(6), 876–881.PubMedCrossRefGoogle Scholar
  54. Korf, E. S., White, L. R., Scheltens, P., & Launer, L. J. (2006). Brain aging in very old men with type 2 diabetes: The Honolulu-Asia Aging Study. Diabetes Care, 29(10), 2268–2274.PubMedCrossRefGoogle Scholar
  55. Langan, S. J., Deary, I. J., Hepburn, D. A., & Frier, B. M. (1991). Cumulative cognitive impairment following recurrent severe hypoglycaemia in adult patients with insulin-treated diabetes mellitus. Diabetologia, 34(5), 337–344.PubMedCrossRefGoogle Scholar
  56. Launer, L. J., Andersen, K., Dewey, M. E., Letenneur, L., Ott, A., Amaducci, L. A., et al. (1999). Rates and risk factors for dementia and Alzheimer's disease: Results from EURODEM pooled analyses. EURODEM Incidence Research Group and Work Groups. European Studies of Dementia. Neurology, 52(1), 78–84.PubMedGoogle Scholar
  57. Launer, L. J., Ross, G. W., Petrovitch, H., Masaki, K., Foley, D., White, L. R., et al. (2000). Midlife blood pressure and dementia: The Honolulu-Asia Aging Study. Neurobiology of Aging, 21(1), 49–55.PubMedCrossRefGoogle Scholar
  58. Leibson, C. L., Rocca, W. A., Hanson, V. A., Cha, R., Kokmen, E., O’Brien, P. C., et al. (1997). Risk of dementia among persons with diabetes mellitus: A population-based cohort study. American Journal of Epidemiology, 145(4), 301–308.PubMedGoogle Scholar
  59. Lobo, A., Launer, L. J., Fratiglioni, L., Andersen, K., Di Carlo, A., Breteler, M. M., et al. (2000). Prevalence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology, 54(11 Suppl 5), S4–S9.PubMedGoogle Scholar
  60. Logroscino, G., Kang, J. H., & Grodstein, F. (2004). Prospective study of type 2 diabetes and cognitive decline in women aged 70–81 years. BMJ, 328(7439), 6.CrossRefGoogle Scholar
  61. Longstreth, W. T., Jr., Arnold, A. M., Manolio, T. A., Burke, G. L., Bryan, N., Jungreis, C. A., et al. (2000). Clinical correlates of ventricular and sulcal size on cranial magnetic resonance imaging of 3,301 elderly people. The Cardiovascular Health Study. Collaborative Research Group. Neuroepidemiology, 19(1), 30–42.PubMedCrossRefGoogle Scholar
  62. Luchsinger, J. A., Tang, M. X., Stern, Y., Shea, S., & Mayeux, R. (2001). Diabetes mellitus and risk of Alzheimer's disease and dementia with stroke in a multiethnic cohort. American Journal of Epidemiology, 154(7), 635–641.PubMedCrossRefGoogle Scholar
  63. MacMahon, S., Peto, R., Cutler, J., Collins, R., Sorlie, P., Neaton, J., et al. (1990). Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: Prospective observational studies corrected for the regression dilution bias. Lancet, 335(8692), 765–774.PubMedCrossRefGoogle Scholar
  64. Magarinos, A. M., & McEwen, B. S. (2000). Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11056–11061.Google Scholar
  65. McEwen, B. S., Magarinos, A. M., & Reagan, L. P. (2002). Studies of hormone action in the hippocampal formation: Possible relevance to depression and diabetes. Journal of Psychosomatic Research, 53(4), 883–890.PubMedCrossRefGoogle Scholar
  66. McGuinness, B., Todd, S., Passmore, P., & Bullock, R. (2006). Blood pressure lowering on development of cognitive impairment and dementia in patients without apparent prior cardiovascular disease. Cochrane Database Syst Rev, 19(2), CD004034.Google Scholar
  67. Moore, T. L., Killiany, R. J., Rosene, D. L., Prusty, S., Hollander, W., & Moss, M. B. (2002). Impairment of executive function induced by hypertension in the rhesus monkey (Macaca mulatta). Behavioral Neuroscience, 116(3), 387–396.PubMedCrossRefGoogle Scholar
  68. Morris, M. C., Scherr, P. A., Hebert, L. E., Glynn, R. J., Bennett, D. A., & Evans, D. A. (2001). Association of incident Alzheimer disease and blood pressure measured from 13 years before to 2 years after diagnosis in a large community study. Archives of Neurology, 58(10), 1640–1646.PubMedCrossRefGoogle Scholar
  69. Murray, M. D., Lane, K. A., Gao, S., Evans, R. M., Unverzagt, F. W., Hall, K. S., et al. (2002). Preservation of cognitive function With antihypertensive medications: A longitudinal analysis of a community-based sample of African Americans. Archives Of Internal Medicine, 162(18), 2090–2096.PubMedCrossRefGoogle Scholar
  70. Musselman, D. L., Betan, E., Larsen, H., & Phillips, L. S. (2003). Relationship of depression to diabetes types 1 and 2: epidemiology, biology, and treatment. Biological Psychiatry, 54(3), 317–329.PubMedCrossRefGoogle Scholar
  71. Ott, A., Stolk, R. P., van Harskamp, F., Pols, H. A., Hofman, A., & Breteler, M. M. (1999). Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology, 53(9), 1937–1942.PubMedGoogle Scholar
  72. Panza, F., D’Introno, A., Colacicco, A. M., Capurso, C., Del Parigi, A., Caselli, R. J., et al. (2005). Current epidemiology of mild cognitive impairment and other predementia syndromes. The American Journal of Geriatric Psychiatry, 13(8), 633–644.PubMedGoogle Scholar
  73. Peila, R., Rodriguez, B. L., & Launer, L. J. (2002). Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes, 51(4), 1256–1262.PubMedCrossRefGoogle Scholar
  74. Perez, A., Morelli, L., Cresto, J. C., & Castano, E. M. (2000). Degradation of soluble amyloid beta-peptides 1–40, 1–42, and the Dutch variant 1–40Q by insulin degrading enzyme from Alzheimer disease and control brains. Neurochemical Research, 25(2), 247–255.PubMedCrossRefGoogle Scholar
  75. Perros, P., Deary, I. J., Sellar, R. J., Best, J. J., & Frier, B. M. (1997). Brain abnormalities demonstrated by magnetic resonance imaging in adult IDDM patients with and without a history of recurrent severe hypoglycemia. Diabetes Care, 20(6), 1013–1018.PubMedCrossRefGoogle Scholar
  76. Petrovitch, H., White, L. R., Izmirilian, G., Ross, G. W., Havlik, R. J., Markesbery, W., et al. (2000). Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: The HAAS. Honolulu-Asia Aging Study. Neurobiology of Aging, 21(1), 57–62.PubMedCrossRefGoogle Scholar
  77. Philippe, P. (2002). Diabetes trends in Europe. Diabetes/Metabolism Research and Reviews, 18(S3), S3-S8.CrossRefGoogle Scholar
  78. Poirier, J., & Derouesne, C. (1984). Cerebral lacunae. A proposed new classification. Clinical Neuropathology, 3(6), 266.PubMedGoogle Scholar
  79. Posner, H. B., Tang, M. X., Luchsinger, J., Lantigua, R., Stern, Y., & Mayeux, R. (2002). The relationship of hypertension in the elderly to AD, vascular dementia, and cognitive function. Neurology, 58(8), 1175–1181.PubMedGoogle Scholar
  80. Prins, N. D., van Dijk, E. J., den Heijer, T., Vermeer, S. E., Jolles, J., Koudstaal, P. J., et al. (2005). Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain, 128(9), 2034–2041.PubMedCrossRefGoogle Scholar
  81. Qiu, W. Q., Walsh, D. M., Ye, Z., Vekrellis, K., Zhang, J., Podlisny, M. B., et al. (1998). Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. The Journal Of Biological Chemistry, 273(49), 32730–32738.PubMedCrossRefGoogle Scholar
  82. Resnick, H. E., Harris, M. I., Brock, D. B., & Harris, T. B. (2000). American Diabetes Association diabetes diagnostic criteria, advancing age, and cardiovascular disease risk profiles: Results from the Third National Health and Nutrition Examination Survey. Diabetes Care, 23(2), 176–180.PubMedCrossRefGoogle Scholar
  83. Sacco, R. L., Anand, K., Lee, H. S., Boden-Albala, B., Stabler, S., Allen, R., et al. (2004). Homocysteine and the risk of ischemic stroke in a triethnic cohort: The Northern Manhattan Study. Stroke, 35(10), 2263–2269.PubMedCrossRefGoogle Scholar
  84. Sachdev, P. S., Wen, W., Christensen, H., & Jorm, A. F. (2005). White matter hyperintensities are related to physical disability and poor motor function. Journal of Neurology, Neurosurgery, and Psychiatry, 76(3),. 362–367.PubMedCrossRefGoogle Scholar
  85. Schmidt, R., Launer, L. J., Nilsson, L.-G., Pajak, A., Sans, S., Berger, K., et al. (2004).. Magnetic resonance imaging of the brain in diabetes: The Cardiovascular Determinants of Dementia (CASCADE) Study. Diabetes, 53(3), 687–692.PubMedCrossRefGoogle Scholar
  86. Schwartz, M. W., Bergman, R. N., Kahn, S. E., Taborsky, G. J., Jr., Fisher, L. D., Sipols, A. J., et al. (1991). Evidence for entry of plasma insulin into cerebrospinal fluid through an intermediate compartment in dogs. Quantitative aspects and implications for transport. The Journal of Clinical Investigation, 88(4), 1272–1281.PubMedCrossRefGoogle Scholar
  87. Schwartz, M. W., Figlewicz, D. P., Baskin, D. G., Woods, S. C., & Porte, D., Jr. (1992). Insulin in the brain: A hormonal regulator of energy balance. Endocrine Reviews, 13(3), 387–414.PubMedGoogle Scholar
  88. Shibata, K., Osawa, M., & Iwata, M. (2000). Visual evoked potentials in cerebral white matter hyperintensity on MRI. Acta Neurologica Scandinavica, 102(4), 230–235.PubMedCrossRefGoogle Scholar
  89. Sinclair, A. J., Girling, A. J., & Bayer, A. J. (2000). Cognitive dysfunction in older subjects with diabetes mellitus: Impact on diabetes self-management and use of care services. All Wales Research into Elderly (AWARE) Study. Diabetes Research and Clinical Practice, 50(3), 203–212.PubMedCrossRefGoogle Scholar
  90. Singh, P., Heera, P. K., & Kaur, G. (2003). Expression of neuronal plasticity markers in hypoglycemia induced brain injury. Molecular And Cellular Biochemistry, 247(1–2), 69–74.PubMedCrossRefGoogle Scholar
  91. Singh, R., Barden, A., Mori, T., & Beilin, L. (2001). Advanced glycation end-products: A review. Diabetologia, 44(2), 129–146.PubMedCrossRefGoogle Scholar
  92. Skoog, I., Lernfelt, B., Landahl, S., Palmertz, B., Andreasson, L. A., Nilsson, L., et al. (1996). 15-year longitudinal study of blood pressure and dementia. Lancet, 347(9009), 1141–1145.PubMedCrossRefGoogle Scholar
  93. Stewart, R., & Liolitsa, D. (1999). Type 2 diabetes mellitus, cognitive impairment and dementia. Diabetic Medicine, 16(2), 93–112.PubMedCrossRefGoogle Scholar
  94. Strachan, M. W., Deary, I. J., Ewing, F. M., & Frier, B. M. (1997). Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care, 20(3), 438–445.PubMedCrossRefGoogle Scholar
  95. Tanzi, R. E., Moir, R. D., & Wagner, S. L. (2004). Clearance of Alzheimer's Abeta peptide: The many roads to perdition. Neuron, 43(5), 605–608.PubMedGoogle Scholar
  96. Teng, E. L., & Chui, H. C. (1987). The modified mini-mental state (3MS) examination. Journal of Clinical Psychiatry, 48(8), 314–318.PubMedGoogle Scholar
  97. Tullberg, M., Fletcher, E., DeCarli, C., Mungas, D., Reed, B. R., Harvey, D. J., et al. (2004).. White matter lesions impair frontal lobe function regardless of their location. Neurology, 246–53, 2004 Jul 27.Google Scholar
  98. Vanhanen, M., Koivisto, K., Kuusisto, J., Mykkanen, L., Helkala, E. L., Hanninen, T., et al. (1998). Cognitive function in an elderly population with persistent impaired glucose tolerance. Diabetes Care, 21(3), 398–402.PubMedCrossRefGoogle Scholar
  99. Vermeer, S. E., Prins, N. D., den Heijer, T., Hofman, A., Koudstaal, P. J., & Breteler, M. M. (2003). Silent brain infarcts and the risk of dementia and cognitive decline. New England Journal of Medicine, 348(13), 1215–1222.PubMedCrossRefGoogle Scholar
  100. Wiseman, R. M., Saxby, B. K., Burton, E. J., Barber, R., Ford, G. A., & O'Brien, J. T. (2004). Hippocampal atrophy, whole brain volume, and white matter lesions in older hypertensive subjects. Neurology, 63(10), 1892–1897.PubMedGoogle Scholar
  101. Wu, J. H., Haan, M. N., Liang, J., Ghosh, D., Gonzalez, H. M., & Herman, W. H. (2003). Impact of antidiabetic medications on physical and cognitive functioning of older Mexican Americans with diabetes mellitus: A population-based cohort study. Annals of Epidemiology, 13(5), 369–376.PubMedCrossRefGoogle Scholar
  102. Yaffe, K., Blackwell, T., Kanaya, A. M., Davidowitz, N., Barrett-Connor, E., & Krueger, K. (2004). Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology, 63(4), 658–663.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Neuroepidemiology SectionLaboratory of Epidemiology, Demography and Biometry, National Institute on AgingBethesdaUSA

Personalised recommendations