Advertisement

Cognition After Cardiac Surgery

  • Ola A. Selnes
  • Rebecca F. Gottesman
Chapter

Introduction

Cardiopulmonary bypass (CPB) was introduced more than five decades ago, and although there has been a dramatic reduction in both morbidity and mortality associated with this procedure, both short- and long-term cognitive impairment after coronary artery bypass grafting (CABG) continue to be significant concerns. The search for the etiology of these adverse neurocognitive outcomes has focused mainly on procedure-related factors such as embolic injury and hypoperfusion, but more recent studies have also considered patient-related factors, in particular the overall vascular burden of the patient’s brain before surgery.

Progress in our understanding of the cognitive consequences of the use of CPB has been slow for several reasons. First, the technology of CPB has been continuously evolving since its introduction, and results of studies published more than 10 years ago are therefore less applicable to the way in which CABG is being performed today. Second, the patient...

Keywords

Coronary Artery Bypass Grafting Cognitive Decline Coronary Artery Bypass Grafting Patient Postoperative Atrial Fibrillation Coronary Artery Bypass Grafting Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported by grant 35610 from the National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD and by the Dana Foundation, New York, NY, and the Johns Hopkins Medical Institutions GCRC grant RR 00052.

We also thank the staff and participants in our study and Dr. Talalay for her editorial assistance. We are also grateful for the ongoing collaboration with Dr. W. Baumgartner as well as other participating cardiac surgeons and cardiologists.

References

  1. Abildstrom, H., Hogh, P., Sperling, B., Moller, J. T., Yndgaard, S., & Rasmussen, L. S. (2002). Cerebral blood flow and cognitive dysfunction after coronary surgery. Annals of Thoracic Surgery, 73, 1174–1178.PubMedCrossRefGoogle Scholar
  2. Abu-Omar, Y., Balacumaraswami, L., Pigott, D. W., Matthews, P. M., & Taggart, D. P. (2004). Solid and gaseous cerebral microembolization during off-pump, on-pump, and open cardiac surgery procedures. Journal of Thoracic and Cardiovascular Surgery, 127, 1759–1765.PubMedCrossRefGoogle Scholar
  3. Aleman, A., Muller, M., De Haan, E. H., & van der Schouw, Y. T. (2005). Vascular risk factors and cognitive function in a sample of independently living men. Neurobiology of Aging, 26, 485–490.PubMedCrossRefGoogle Scholar
  4. Andrell, P., Jensen, C., Norrsell, H., Ekre, O., Ekholm, S., Norrsell, U., et al. (2005). White matter disease in magnetic resonance imaging predicts cerebral complications after coronary artery bypass grafting. Annals of Thoracic Surgery, 79, 74–79.PubMedCrossRefGoogle Scholar
  5. Andrew, M. J., Baker, R. A., Kneebone, A. C., & Knight, J. L. (2000). Mood state as a predictor of neuropsychological deficits following cardiac surgery. Journal of Psychosomatic Research, 48, 537–546.PubMedCrossRefGoogle Scholar
  6. Bendszus, M., Reents, W., Franke, D., Mullges, W., Babin-Ebell, J., Koltzenburg, M., et al. (2002). Brain damage after coronary artery bypass grafting. Archives of Neurology, 59, 1090–1095.PubMedCrossRefGoogle Scholar
  7. Bennett, H. P., Piguet, O., Grayson, D. A., Creasey, H., Waite, L. M., Broe, G. A., et al. (2003). A 6-year study of cognition and spatial function in the demented and non-demented elderly: The Sydney Older Persons Study. Dementia and Geriatric Cognitive Disorders, 16, 181–186.PubMedCrossRefGoogle Scholar
  8. Bennett, D. A., Schneider, J. A., Arvanitakis, Z., Kelly, J. F., Aggarwal, N. T., Shah, R. C., et al. (2006). Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology, 66, 1837–1844.PubMedCrossRefGoogle Scholar
  9. Bergh, C., Backstrom, M., Jonsson, H., Havinder, L., & Johnsson, P. (2002). In the eye of both patient and spouse: memory is poor 1 to 2 years after coronary bypass and angioplasty. Annals of Thoracic Surgery, 74, 689–693.PubMedCrossRefGoogle Scholar
  10. Braekken, S. K., Reinvang, I., Russell, D., Brucher, R., & Svennevig, J. L. (1998). Association between intraoperative cerebral microembolic signals and postoperative neuropsychological deficit: Comparison between patients with cardiac valve replacement and patients with coronary artery bypass grafting. Journal of Neurology, Neurosurgery, and Psychiatry, 65, 573–576.PubMedCrossRefGoogle Scholar
  11. Brown, W. R., Moody, D. M., & Challa, V. R. (1999). Cerebral fat embolism from cardiopulmonary bypass. Journal of Neuropathology and Experimental Neurology, 58, 109–119.PubMedCrossRefGoogle Scholar
  12. Browndyke, J. N., Moser, D. J., Cohen, R. A., O'Brien, D. J., Algina, J. J., Haynes, W. G., et al. (2002). Acute neuropsychological functioning following cardiosurgical interventions associated with the production of intraoperative cerebral microemboli. Clinical Neuropsychologist, 16, 463–471.PubMedCrossRefGoogle Scholar
  13. Caplan, L. R., & Hennerici, M. (1998). Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Archives of Neurology, 55, 1475–1482.PubMedCrossRefGoogle Scholar
  14. Clark, R. E., Brillman, J., Davis, D. A., Lovell, M. R., Price, T. R., & Magovern, G. J. (1995). Microemboli during coronary artery bypass grafting. Genesis and effect on outcome. Journal of Thoracic and Cardiovascular Surgery, 109, 249–257; discussion 257–258.PubMedCrossRefGoogle Scholar
  15. Crystal, E., & Connolly, S. J. (2004). Atrial fibrillation: Guiding lessons from epidemiology. Cardiology Clinics, 22, 1–8.PubMedCrossRefGoogle Scholar
  16. Elwood, P. C., Pickering, J., Bayer, A., & Gallacher, J. E. (2002). Vascular disease and cognitive function in older men in the Caerphilly cohort. Age Ageing, 31, 43–48.PubMedCrossRefGoogle Scholar
  17. Emmrich, P., Hahn, J., Ogunlade, V., Geiger, K., Schober, R., & Mohr, F. W. (2003). Neuropathological findings after cardiac surgery-retrospective study over 6 years. Zeitschrift für Kardiologie, 92, 925–937.PubMedCrossRefGoogle Scholar
  18. Fearn, S. J., Pole, R., Wesnes, K., Faragher, E. B., Hooper, T. L., & McCollum, C. N. (2001). Cerebral injury during cardiopulmonary bypass: Emboli impair memory. Journal of Thoracic and Cardiovascular Surgery, 121, 1150–1160.PubMedCrossRefGoogle Scholar
  19. Floyd, T. F., Shah, P. N., Price, C. C., Harris, F., Ratcliffe, S. J., Acker, M. A., et al. (2006). Clinically silent cerebral ischemic events after cardiac surgery: Their incidence, regional vascular occurrence, and procedural dependence. Annals of Thoracic Surgery, 81, 2160–2166.PubMedCrossRefGoogle Scholar
  20. Fontbonne, A., Berr, C., Ducimetiere, P., & Alperovitch, A. (2001). Changes in cognitive abilities over a 4-year period are unfavorably affected in elderly diabetic subjects: Results of the Epidemiology of Vascular Aging Study. Diabetes Care, 24, 366–370.PubMedCrossRefGoogle Scholar
  21. Friday, G., Sutter, F., Curtin, A., Kenton, E., Caplan, B., Nocera, R., et al. (2005). Brain magnetic resonance imaging abnormalities following off-pump cardiac surgery. Heart Surgery Forum, 8, E105–E109.PubMedCrossRefGoogle Scholar
  22. Goto, T., Baba, T., Honma, K., Shibata, Y., Arai, Y., Uozumi, H., et al. (2001a). Magnetic resonance imaging findings and postoperative neurologic dysfunction in elderly patients undergoing coronary artery bypass grafting. Annals of Thoracic Surgery, 72, 137–142.Google Scholar
  23. Goto, T., Baba, T., Honma, K., Shibata, Y., Arai, Y., Uozumi, H., et al. (2001b). Magnetic resonance imaging findings and postoperative neurologic dysfunction in elderly patients undergoing coronary artery bypass grafting. Annals of Thoracic Surgery, 72, 137–142.Google Scholar
  24. Hassing, L. B., Hofer, S. M., Nilsson, S. E., Berg, S., Pedersen, N. L., McClearn, G., et al. (2004). Comorbid type 2 diabetes mellitus and hypertension exacerbates cognitive decline: Evidence from a longitudinal study. Age Ageing, 33, 355–361.PubMedCrossRefGoogle Scholar
  25. Hebert, L. E., Scherr, P. A., Bennett, D. A., Bienias, J. L., Wilson, R. S., Morris, M. C., et al. (2004). Blood pressure and late-life cognitive function change: A biracial longitudinal population study. Neurology, 62, 2021–2024.PubMedGoogle Scholar
  26. Hlatky, M. A., Bacon, C., Boothroyd, D., Mahanna, E., Reves, J. G., Newman, M. F., et al. (1999). Cognitive function 5 years after randomization to coronary angioplasty or coronary artery bypass graft surgery. Circulation, 96(Suppl. II), 11–15.Google Scholar
  27. Ho, P. M., Arciniegas, D. B., Grigsby, J., McCarthy, M., Jr., McDonald, G. O., Moritz, T. E., et al. (2004). Predictors of cognitive decline following coronary artery bypass graft surgery. Annals of Thoracic Surgery, 77, 597–603.Google Scholar
  28. Jensen, B. O., Hughes, P., Rasmussen, L. S., Pedersen, P. U., & Steinbruchel, D. A. (2006). Cognitive outcomes in elderly high-risk patients after off-pump versus conventional coronary artery bypass grafting: A randomized trial. Circulation, 113, 2790–2795.PubMedCrossRefGoogle Scholar
  29. Johnson, R. G. (2000). Abnormal neuropsychometrics early after coronary artery bypass grafting. Critical Care Medicine, 28, 2142–2143.PubMedCrossRefGoogle Scholar
  30. Johnson, T., Monk, T., Rasmussen, L. S., Abildstrom, H., Houx, P., Korttila, K., et al. (2002). Postoperative cognitive dysfunction in middle-aged patients. Anesthesiology, 96, 1351–1357.PubMedCrossRefGoogle Scholar
  31. Keith, J. R., Puente, A. E., Malcolmson, K. L., Tartt, S., Coleman, A. E., & Marks, H. F., Jr. (2002). Assessing postoperative cognitive change after cardiopulmonary bypass surgery. Neuropsychology, 16, 411–421.PubMedCrossRefGoogle Scholar
  32. Keizer, A. M., Hijman, R., Kalkman, C. J., Kahn, R. S., & Van, D. D. (2005). The incidence of cognitive decline after (not) undergoing coronary artery bypass grafting: The impact of a controlled definition. Acta Anaesthesiologica Scandinavica, 49, 1232–1235.PubMedCrossRefGoogle Scholar
  33. Kneebone, A. C., Luszcz, M. A., Baker, R. A., & Knight, J. L. (2005). A syndromal analysis of neuropsychological outcome following coronary artery bypass graft surgery. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 1121–1127.PubMedCrossRefGoogle Scholar
  34. Knipp, S. C., Matatko, N., Schlamann, M., Wilhelm, H., Thielmann, M., Forsting, M., et al. (2005). Small ischemic brain lesions after cardiac valve replacement detected by diffusion-weighted magnetic resonance imaging: Relation to neurocognitive function. European Journal of Cardio-Thoracic Surgery, 28, 88–96.PubMedCrossRefGoogle Scholar
  35. Knopman, D., Boland, L. L., Mosley, T., Howard, G., Liao, D., Szklo, M., et al. (2001). Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology, 56, 42–48.PubMedGoogle Scholar
  36. Knopman, D. S., Petersen, R. C., Cha, R. H., Edland, S. D., & Rocca, W. A. (2005). Coronary artery bypass grafting is not a risk factor for dementia or Alzheimer disease. Neurology, 65(7), 986–990.PubMedCrossRefGoogle Scholar
  37. Kuller, L. H., Lopez, O. L., Jagust, W. J., Becker, J. T., Dekosky, S. T., Lyketsos, C., et al. (2005). Determinants of vascular dementia in the Cardiovascular Health Cognition Study. Neurology, 64, 1548–1552.PubMedCrossRefGoogle Scholar
  38. Lahtinen, J., Biancari, F., Salmela, E., Mosorin, M., Satta, J., Rainio, P., et al. (2004). Postoperative atrial fibrillation is a major cause of stroke after on-pump coronary artery bypass surgery. Annals of Thoracic Surgery, 77, 1241–1244.PubMedCrossRefGoogle Scholar
  39. Lee, T. A., Wolozin, B., Weiss, K. B., & Bednar, M. M. (2005). Assessment of the emergence of Alzheimer's disease following coronary artery bypass graft surgery or percutaneous transluminal coronary angioplasty. Journal of Alzheimer's Disease, 7, 319–324.PubMedGoogle Scholar
  40. Logroscino, G., Kang, J. H., & Grodstein, F. (2004). Prospective study of type 2 diabetes and cognitive decline in women aged 70–81 years. British Medical Journal, 328, 548.PubMedCrossRefGoogle Scholar
  41. Mahanna, E. P., Blumenthal, J. A., White, W. D., Croughwell, N. D., Clancy, C. P., Smith, L. R., et al. (1996). Defining neuropsychological dysfunction after coronary artery bypass grafting. Annals of Thoracic Surgery, 61, 1342–1347.PubMedCrossRefGoogle Scholar
  42. Mathew, J. P., Fontes, M. L., Tudor, I. C., Ramsay, J., Duke, P., Mazer, C. D., et al. (2004). A multicenter risk index for atrial fibrillation after cardiac surgery. Journal of the American Medical Association, 291, 1720–1729.PubMedCrossRefGoogle Scholar
  43. Millar, K., Asbury, A. J., & Murray, G. D. (2001). Pre-existing cognitive impairment as a factor influencing outcome after cardiac surgery. British Journal of Anaesthesia, 86, 63–67.PubMedCrossRefGoogle Scholar
  44. Mullges, W., Babin-Ebell, J., Reents, W., & Toyka, K. V. (2002). Cognitive performance after coronary artery bypass grafting: A follow-up study. Neurology, 59, 741–743.PubMedGoogle Scholar
  45. Mullges, W., Berg, D., Schmidtke, A., Weinacker, B., & Toyka, K. V. (2000). Early natural course of transient encephalopathy after coronary artery bypass grafting. Critical Care Medicine, 28, 1808–1811.PubMedCrossRefGoogle Scholar
  46. Mullges, W., Franke, D., Reents, W., & Babin-Ebell, J. (2001). Brain microembolic counts during extracorporeal circulation depend on aortic cannula position. Ultrasound in Medicine and Biology, 27, 933–936.PubMedCrossRefGoogle Scholar
  47. Murkin, J. M., Newman, S. P., Stump, D. A., & Blumenthal, J. A. (1995). Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery. Annals of Thoracic Surgery, 59, 1289–1295.PubMedCrossRefGoogle Scholar
  48. Nakamura, Y., Kawachi, K., Imagawa, H., Hamada, Y., Takano, S., Tsunooka, N., et al. (2004). The prevalence and severity of cerebrovascular disease in patients undergoing cardiovascular surgery. Annals of Thoracic and Cardiovascular Surgery, 10, 81–84.PubMedGoogle Scholar
  49. Neville, M. J., Butterworth, J., James, R. L., Hammon, J. W., & Stump, D. A. (2001). Similar neurobehavioral outcome after valve or coronary artery operations despite differing carotid embolic counts. Journal of Thoracic and Cardiovascular Surgery, 121, 125–136.PubMedCrossRefGoogle Scholar
  50. Newman, M. F., Kirchner, J. L., Phillips-Bute, B., Gaver, V., Grocott, H., Jones, R. H., et al. (2001). Longitudinal assessment of neurocognitive function after coronary artery bypass surgery. New England Journal of Medicine, 344, 395–402.PubMedCrossRefGoogle Scholar
  51. Piguet, O., Grayson, D. A., Creasey, H., Bennett, H. P., Brooks, W. S., Waite, L. M., et al. (2003). Vascular risk factors, cognition and dementia incidence over 6 years in the Sydney Older Persons Study. Neuroepidemiology, 22, 165–171.PubMedCrossRefGoogle Scholar
  52. Potter, G. G., Plassman, B. L., Helms, M. J., Steffens, D. C., & Welsh-Bohmer, K. A. (2004). Age effects of coronary artery bypass graft on cognitive status change among elderly male twins. Neurology, 63, 2245–2249.PubMedGoogle Scholar
  53. Rankin, K. P., Kochamba, G. S., Boone, K. B., Petitti, D. B., & Buckwalter, J. G. (2003). Presurgical cognitive deficits in patients receiving coronary artery bypass graft surgery. Journal of the International Neuropsychological Society, 9, 913–924.PubMedCrossRefGoogle Scholar
  54. Rasmussen, L. S., Johnson, T., Kuipers, H. M., Kristensen, D., Siersma, V. D., Vila, P., et al. (2003). Does anaesthesia cause postoperative cognitive dysfunction? A randomised study of regional versus general anaesthesia in 438 elderly patients. Acta Anaesthesiologica Scandinavica, 47, 260–266.PubMedCrossRefGoogle Scholar
  55. Ratcliff, G., Dodge, H., Birzescu, M., & Ganguli, M. (2003). Tracking cognitive functioning over time: Ten-year longitudinal data from a community-based study. Applied Neuropsychology, 10, 76–88.PubMedCrossRefGoogle Scholar
  56. Rosengart, T. K., Sweet, J., Finnin, E. B., Wolfe, P., Cashy, J., Hahn, E., et al. (2005). Neurocognitive functioning in patients undergoing coronary artery bypass graft surgery or percutaneous coronary intervention: Evidence of impairment before intervention compared with normal controls. Annals of Thoracic Surgery, 80, 1327–1334.PubMedCrossRefGoogle Scholar
  57. Saxton, J., Ratcliff, G., Newman, A., Belle, S., Fried, L., Yee, J., et al. (2000). Cognitive test performance and presence of subclinical cardiovascular disease in the cardiovascular health study. Neuroepidemiology, 19, 312–319.PubMedCrossRefGoogle Scholar
  58. Selnes, O. A., Goldsborough, M. A., Borowicz, L. M., Enger, C., Quaskey, S. A., & McKhann, G. M. (1999). Determinants of cognitive change after coronary artery bypass surgery: A multifactorial problem. Annals of Thoracic Surgery, 67, 1669–1676.PubMedCrossRefGoogle Scholar
  59. Selnes, O. A., Grega, M. A., Borowicz, L. M., Jr., Royall, R. M., McKhann, G. M., & Baumgartner, W. A. (2003). Cognitive changes with coronary artery disease: A prospective study of coronary artery bypass graft patients and nonsurgical controls. Annals of Thoracic Surgery, 75, 1377–1384.Google Scholar
  60. Selnes, O. A., Royall, R. M., Grega, M. A., Borowicz, L. M., Jr., Quaskey, S., & McKhann, G. M. (2001). Cognitive changes 5 years after coronary artery bypass grafting: Is there evidence of late decline? Archives of Neurology, 58, 598–604.Google Scholar
  61. Soneira, C. F., & Scott, T. M. (1996). Severe cardiovascular disease and Alzheimer's disease: senile plaque formation in cortical areas. Clinical Anatomy, 9, 118–127.PubMedCrossRefGoogle Scholar
  62. Sparks, D. L., Hunsaker, J. C., Scheff, S. W., Kryscio, R. J., Henson, J. L., & Markesberry, W. R. (1990). Cortical senile plaques in coronary artery disease, aging and Alzheimer's disease. Neurobiology of Aging, 11, 601–607.PubMedCrossRefGoogle Scholar
  63. Stanley, T. O., Mackensen, G. B., Grocott, H. P., White, W. D., Blumenthal, J. A., Laskowitz, D. T., et al. (2002). The impact of postoperative atrial fibrillation on neurocognitive outcome after coronary artery bypass graft surgery. Anesthesia and Analgesia, 94, 290–295.PubMedGoogle Scholar
  64. Stolz, E., Gerriets, T., Kluge, A., Klovekorn, W. P., Kaps, M., & Bachmann, G. (2004). Diffusion-weighted magnetic resonance imaging and neurobiochemical markers after aortic valve replacement: Implications for future neuroprotective trials? Stroke, 35, 888–892.PubMedCrossRefGoogle Scholar
  65. Stygall, J., Newman, S. P., Fitzgerald, G., Steed, L., Mulligan, K., Arrowsmith, J. E., et al. (2003). Cognitive change 5 years after coronary artery bypass surgery. Health Psychology, 22, 579–586.PubMedCrossRefGoogle Scholar
  66. van Dijk, D., Jansen, E. W., Hijman, R., Nierich, A. P., Diephuis, J. C., Moons, K. G., et al. (2002). Cognitive outcome after off-pump and on-pump coronary artery bypass graft surgery: A randomized trial. Journal of the American Medical Association, 287, 1405–1412.PubMedCrossRefGoogle Scholar
  67. Vingerhoets, G., Van Nooten, G., & Jannes, C. (1997). Neuropsychological impairment in candidates for cardiac surgery. Journal of the International Neuropsychological Society, 3, 480–484.PubMedGoogle Scholar
  68. Vinkers, D. J., Gussekloo, J., Stek, M. L., Westendorp, R. G., & van der Mast, R. C. (2004). Temporal relation between depression and cognitive impairment in old age: Prospective population based study. British Medical Journal, 329, 881.PubMedCrossRefGoogle Scholar
  69. Zamvar, V., Williams, D., Hall, J., Payne, N., Cann, C., Young, K., et al. (2002). Assessment of neurocognitive impairment after off-pump and on-pump techniques for coronary artery bypass graft surgery: Prospective randomised controlled trial. British Medical Journal, 325, 1268–1271.PubMedCrossRefGoogle Scholar
  70. Zangrillo, A., Landoni, G., Sparicio, D., Benussi, S., Aletti, G., Pappalardo, F., et al. (2004). Predictors of atrial fibrillation after off-pump coronary artery bypass graft surgery. Journal of Cardiothoracic and Vascular Anesthesia, 18, 704–708.PubMedCrossRefGoogle Scholar
  71. Zimpfer, D., Czerny, M., Schuch, P., Fakin, R., Madl, C., Wolner, E., et al. (2006). Long-term neurocognitive function after mechanical aortic valve replacement. Annals of Thoracic Surgery, 81, 29–33.PubMedCrossRefGoogle Scholar
  72. Zimpfer, D., Kilo, J., Czerny, M., Kasimir, M. T., Madl, C., Bauer, E., et al. (2003). Neurocognitive deficit following aortic valve replacement with biological/mechanical prosthesis. European Journal of Cardio-Thoracic Surgery, 23, 544–551.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.NeurologyDivision of Cognitive NeuroscienceBaltimoreUSA

Personalised recommendations