Advertisement

Cardiac Arrest

  • Chun Lim
  • Michael Alexander
Chapter

Introduction

The human brain is dependent upon the delivery of oxygen and glucose and the removal of waste products for normal activity with interruption of this cycle resulting in tissue injury. A reduction of oxygen content within the brain parenchyma is the state of anoxia, while the cessation of blood flow is ischemia. There are many different etiologies of anoxia including a reduction in blood flow—stagnant anoxia; lack of oxygenation—hypoxic anoxia; insufficient oxygen transport—anemic anoxia; and a disturbance in the intracellular oxygen transport—histotoxic anoxia. In adults the most common cause is a combined hypoxic and ischemic injury caused by cardiac arrest.

For a neurological disease state with such high prevalence, surprisingly little is understood about precise patterns of impairment or about the natural history of recovery. `There are robust early predictors of outcome of anoxic-ischemic coma (Wijdicks, Hijdra, Young, Bassetti, & Wiebe, 2006), but outcome has rarely...

Keywords

Cardiac Arrest Positive Predictive Value Confusional State Cardiac Arrest Patient Executive Deficit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alexander, M. P. (1997). Specific semantic memory loss after hypoxic-ischemic injury. Neurology, 48, 165–173.PubMedGoogle Scholar
  2. Allen, J. S., Tranel, D., Bruss, J., & Damasio, H. (2006). Correlations between regional brain volumes and memory performance in anoxia. Journal of Clinical and Experimental Neuropsychology, 28, 457–476.PubMedGoogle Scholar
  3. Allison, R. S., Bedford, P. D., & Meyer, A. (1956). Discussion on the clinical consequence of cerebral anoxia. Proceedings of the Royal Society of Medicine, 49, 609–619.Google Scholar
  4. Armengol, C. G. (2000). Acute oxygen deprivation: Neuropsychological profiles and implications for rehabilitation. Brain Injury, 14, 237–250.PubMedGoogle Scholar
  5. Arnoldus, E. P., & Lammers, G. J. (1995). Postanoxic coma: Good recovery despite myoclonus status. Annals of Neurology, 38, 697–698.PubMedGoogle Scholar
  6. Auer, R. N., & Benveniste, H. (1994). Hypoxia and related conditions. In S. Greenfield (Ed.), Neuropathology (pp. 263–314). London: Arnold.Google Scholar
  7. Bass, E. (1985). Cardiopulmonary arrest. Annals of Internal Medicine, 103, 920–927.PubMedGoogle Scholar
  8. Bassetti, C., Bomio, F., Mathis, J., & Hess, C. W. (1996). Early prognosis in coma after cardiac arrest: A prospective clinical, electrophysiological, and biochemical study of 60 patients. Journal of Neurology, Neurosurgery and Psychiatry, 61, 610–615.Google Scholar
  9. Becker, L. B., Ostrander, M. P., Barrett, J., & Kondos, G. T. (1991). Outcome of CPR in a large metropolitan area – Where are the survivors. Annals of Emergency Medicine, 20, 355–361.PubMedGoogle Scholar
  10. Berek, K., Lechleitner, P., Luef, G., Felber, S., Saltuari, L., Schinnerl, A., et al. (1995). Early determination of neurological outcome after prehospital cardiopulmonary resuscitation. Stroke, 26, 543–549.PubMedGoogle Scholar
  11. Bergner, L., Bergner, M., Hallstrom, A. P., Eisenberg, M. S., & Cobb, L. A. (1984). Health status of survivors of out-of-hospital cardiac arrest six months later. American Journal of Public Health, 74, 508–510.PubMedGoogle Scholar
  12. Bergner, L., Hallstrom, A. P., Bergner, M., Eisenberg, M. S., & Cobb, L. A. (1985). Health status of survivors of cardiac arrest and of myocardial infarction controls. American Journal of Public Health, 75, 1321–1323.PubMedGoogle Scholar
  13. Bernard, S. A., Gray, T. W., Buist, M. D., Jones, B. M., Silvester, W., Gutteridge, G., et al. (2002). Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. New England Journal of Medicine, 346, 557–563.PubMedGoogle Scholar
  14. Carbonnel, S., Charnallet, A., David, D., & Pellat, J. (1997). One of several semantic systems(s)? Maybe none: Evidence form a case study of modality and category-specific "semantic" impairement. Cortex, 33, 391–417.PubMedGoogle Scholar
  15. Caronna, J. J., & Finklestein, S. (1978). Neurologiclal syndromes after cardiac arrest. Stroke, 9, 517–520.PubMedGoogle Scholar
  16. Chalela, J. A., Wolf, R. L., Maldjian, J. A., & Kasner, S. E. (2001). MRI identification of early white matter injury in anoxic-ischemic encephalopathy. Neurology, 56, 481–485.PubMedGoogle Scholar
  17. Chen, R., Bolton, C. F., & Young, G. B. (1996). Prediction of outcome in patients with anoxic coma: A clinical and electrophysiologic study. Critical Care Medicine, 24, 672–678.PubMedGoogle Scholar
  18. Cummings, R. O., Chamberlain, D. A., Abramson, N. S., Allen, M., Baskett, P., Becker, L., et al. (1991). Recommended guidlines for uniform reporting of data from out-of-hospital cardiac arrest: The Utstein style. Annal of Emergency Medicine, 20, 861–874.Google Scholar
  19. Cummins, R. O., Ornato, J. P., Thies, W. H., & Pepe, P. E. (1991). Improving survival from sudden cardiac arrest: The “chain of survival” concept. Circulation, 83, 1832–1847.PubMedGoogle Scholar
  20. De Renzi, E., & Lucchelli, F. (1993). Dense retrograde amnesia, intact learning capability and abnormal forgetting rate: A consolidation deficit? Cortex, 29, 449–466.PubMedGoogle Scholar
  21. de Vos, R., de Haes, H., Koster, R. W., & de Haan, R. J. (1999). Quality of life after cardiopulmonary rescuscitation. Archives of Internal Medicine, 159, 249–254.PubMedGoogle Scholar
  22. DeVolder, A. G., Goffinet, A. M., Bol, A., Michel, C., de Barsy, T., & Laterre, C. (1990). Brain glucose metabolism in postanoxic syndrome. Archives of Neurology, 47, 197–204.PubMedGoogle Scholar
  23. Drysdale, E. E., Grubb, N. R., Fox, K. A. A., & O'Carroll, R. E. (2000). Chronicity of memory impairment in long-term out-of-hospital cardiac arrest survivors. Resuscitation, 47, 27–32.PubMedGoogle Scholar
  24. Earnest, M. P., Breckinridge, J. C., Yarnell, P. Y., & Oliva, P. B. (1979). Quality of survival after out-of-hospital cardiac arrest: Predictive value of early neurologic evaluation. Neurology, 29, 56–60.PubMedGoogle Scholar
  25. Earnest, M. P., Yarnell, P. Y., Merrill, S. L., & Knapp, G. L. (1980). Long-term survival and neurologic status after resuscitation from out-of-hospital cardiac arrest. Neurology, 30, 1298–1302.PubMedGoogle Scholar
  26. Edgren, E., Enblad, P., Grenvik, A., & Langstrom, B. (2003). Cerebral blood flow and metabolism after cardiopulmonary resuscitation. A pathophysiologic and prognostic positron emission tomography pilot study. Resuscitation, 57, 161–170.PubMedGoogle Scholar
  27. Edgren, E., Hedstrand, U., Kelsey, S., Sutton-Tyrrell, K., & Safar, P. (1994). Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I Study Group. Lancet, 343, 1055–1059.PubMedGoogle Scholar
  28. Edgren, E., Hedstrand, U., Nordin, M., Rydin, E., & Ronquist, G. (1987). Prediction of outcome after cardiac arrest. Critical Care Medicine, 15, 820–825.PubMedGoogle Scholar
  29. Eisenburger, P., List, M., Schorkhuber, W., Walker, R., Sterz, F., & Laggner, A. N. (1998). Long-term cardiac arrest survivors of the Vienna emergency medical service. Resuscitation, 38, 137–143.PubMedGoogle Scholar
  30. Fatovich, D. M., Prentice, D. A., & Dobb, G. J. (1997). Magnesium in cardiac arrest (the magic trial). Resuscitation, 35, 237–241.PubMedGoogle Scholar
  31. Fertl, E., Vass, K., Sterz, F., Gabriel, H., & Auff, E. (2000) Neurological rehabilitation of severely disabled cardiac arrest survivors. Part I. Course of post-acute treatment. Resuscitation, 47, 231–239.PubMedGoogle Scholar
  32. Finklestein, S., & Caronna, J. J. (1978). Amnestic syndrome following cardiac arrest. Neurology, 28, 389.Google Scholar
  33. Fischer, M., Fisher, N. J., & Schuttler, J. (1997). One-year survival after out-of-hospital cardiac arrest in Bonn city: Outcome report according to the 'Utstein style'. Resuscitation, 33, 233–243.PubMedGoogle Scholar
  34. Fujioka, M., Okuchi, K., Sakaki, T., Hiramatsu, K. -I., & Iwasaki, S. (1994). Specific changes in human brain following reperfusion after cardiac arrest. Stroke, 25, 2091–2095.PubMedGoogle Scholar
  35. Gendo, A., Kramer, L., Hafner, M., Funk, G. C., Zauner, C., Sterz, F., et al. (2001). Time-dependency of sensory evoked potentials in comatose cardiac arrest survivors. Intensive Care Medicine, 27, 1305–1311.PubMedGoogle Scholar
  36. Geocadin, R. G., Buitrago, M. M., Torbey, M. T., Chandra-Strobos, N., Williams, M. A., & Kaplan, P. W. (2006). Neurologic prognosis and withdrawal of life support after resuscitation from cardiac arrest. Neurology, 67, 105–108.PubMedGoogle Scholar
  37. Goh, W. C., Heath, P. D., Ellis, S. J., & Oakley, P. A. (2002). Neurological outcome prediction in a cardiorespiratory arrest survivor. British Journal of Anaesthesia, 88, 719–722.PubMedGoogle Scholar
  38. Graves, J. R., Herlitz, J., Bang, A., Axelsson, A., Ekstrom, L., Holmberg, M., et al. (1997). Survivors of out of hospital cardiac arrest: The prognosis, longevity and functional status. Resuscitation, 35, 117–121.PubMedGoogle Scholar
  39. Groswasser, Z., Cohen, M., & Cosfeff, H. (1989). Rehabilitation outcome after anoxic brain damage. Archives of Physical Medicine and Rehabilitation, 70, 186–188.PubMedGoogle Scholar
  40. Group, B. R. C. T. I. S. (1986). Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. Brain Resuscitation Clinical Trial I Study Group. New England Journal of Medicine, 314, 397–403.Google Scholar
  41. Grubb, N. R., Fox, K. A. A., Smith, K., Best, J., Blane, A., Ebmeier, K. P., et al. (2000). Memory impairment in out-of-hospital cardiac arrest survivors is associated with global reduction in brain volume, not focal hippocampal injury. Stroke, 31, 1509–1513.PubMedGoogle Scholar
  42. Hawker, K., & Lang, A. E. (1990). Hypoxic-ischemic damage of the basal ganglia. Movement Disorders, 5, 219–224.PubMedGoogle Scholar
  43. Hlatky, M. A., Saynina, O., McDonald, K. M., Garber, A. M., & McClellan, M. B. (2002). Utilization and outcomes of the implantable cardioverter defibrillator, 1987 to 1995. American Heart Journal, 144, 397–403.PubMedGoogle Scholar
  44. Hopkins, R. O., Gale, S. D., Johnson, S. C., Anderson, C. V., Bigler, E. D., Blatter, D. D., et al. (1995). Severe anoxia with and without concomitant brain atrophy and neuropsychological impairments. Journal of the International Neuropsychological Society, 1, 501–509.PubMedGoogle Scholar
  45. Hopkins, R. O., & Kesner, R. P. (1995). Item and order recognition memory in subjects with hypoxic brain injury. Brain and Cognition, 27, 180–201.PubMedGoogle Scholar
  46. Hopkins, R. O., Kesner, R. P., & Goldstein, M. (1995). Memory for novel and familiar spatial and linguistic temporal distance information in hypoxic subject. Journal of the International Neuropsychological Society, 1, 454–468.PubMedGoogle Scholar
  47. Horn, M., & Schlote, W. (1992). Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathologica (Berlin), 85, 79–87.Google Scholar
  48. Howard, R., Trend, P., & Ross Russell, R. W. (1987). Clinicial features of ischemia in cerebral arterial border zones after periods of reduced cerebral blood flow. Archives of Neurology, 44, 934–940.PubMedGoogle Scholar
  49. Kam, C. A., Yoong, F. F. Y., & Ganendran, A. (1978). Cortical blindness following hypoxia during cardiac arrest. Anaesthesia and Intensive Care, 6, 143–145.PubMedGoogle Scholar
  50. Kaplan, C. P. (1999). Anoxic-hypotensive brain injury: Neuropsychological performance at 1 month as an indicator of recovery. Brain Injury, 13, 305–310.PubMedGoogle Scholar
  51. Karkela, J., Bock, E., & Kaukinen, S. (1993). CSF and serum brain-specific creatine kinase isoenzymes (CK-BB), neuron-specific enolase (NSE), and neural cell adhesion molecule (NCAM) as prognostic makers for hypoxic brain injury after cardiac arrest in man. Journal of Neurological Sciences, 116, 100–109.Google Scholar
  52. Karkela, J., Pasanen, M., Kaukinen, S., Morsky, P., & Harmoinen, A. (1992). Evaluation of hypoxic brain injury with spinal fluid enzymes, lactate, and pyruvate. Critical Care Medicine, 20, 378–386.PubMedGoogle Scholar
  53. Kase, C. S., Troncoso, J. F., Court, J. E., Tapia, J. E., & Mohr, J. P. (1977). Global spatial disorientation. Journal of the Neurological Sciences, 34, 267–278.PubMedGoogle Scholar
  54. Kjos, B. O., Brant-Zawadzki, M., & Young, R. G. (1983). Early CT findings of global central nervous system hypoperfusion. American Journal of Neuroradiology, 4, 1043–1048.Google Scholar
  55. Kotila, M., & Kajaste, S. (1984). Neurological and neuropsychological symptoms after cardiac arrest. Acta Neurologica Scandinavica, 69(Suppl. 98), 337.Google Scholar
  56. Kuilman, M., Bleeker, J. K., Hartman, J. A. M., & Simoons, M. L. (1999). Long-term survival after out-of-hospital cardiac arrest: An 8-year follow-up. Resuscitation, 41, 25–31.PubMedGoogle Scholar
  57. Kuisma, M., & Maata, T. (1996). Out-of-hospital cardiac arrest in Helsinki: Utstein style reporting. Heart, 76, 18–23.PubMedGoogle Scholar
  58. Kuroiwa, T., & Okeda, R. (1994). Neuropathology of cerebral ischemia and hypoxia: Recent advances in experimental studies on its pathogenesis. Pathology International, 44, 171–181.PubMedGoogle Scholar
  59. Ladwig, K. -H., Schoefinius, A., Danner, R., Rolf, G., Herman, R., Koeppel, A., et al. (1997). Effects of early defibrillation by ambulance personnel on short- and long-term outcomes of cardiac arrest survival: The Munich experiment. Chest, 112, 1584–1591.PubMedGoogle Scholar
  60. Lance, J. W., & Adams, R. D. (1963). The syndrome of intention or action myoclonus as a sequel to hypoxic encephalopathy. Brain, 86, 111–136.PubMedGoogle Scholar
  61. Levy, D. E., Caronna, J. J., Singer, B. H., Lapinski, R. H., Frydman, H., & Plum, F. (1985). Predicting outcome from hypoxic-ischemic coma. Journal of the American Medical Association, 253, 1420–1426.PubMedGoogle Scholar
  62. Lim, C., Alexander, M. P., LaFleche, G., Schnyer, D. M., & Verfaellie, M. (2004). The neurological and cognitive sequelae of cardiac arrest. Neurology, 63, 1774–1778.PubMedGoogle Scholar
  63. Logi, F., Fischer, C., Murri, L., & Mauguiere, F. (2003). The prognostic value of evoked responses from primary somatosensory and auditory cortex in comatose patients. Clinical Neurophysiology, 114, 1615–1627.PubMedGoogle Scholar
  64. Lombardi, G., Gallagher, E. J., & Gennis, P. (1994). Outcome of out-of-hospital cardiac arrest in New York City. Journal of the American Medical Association, 271, 678–683.PubMedGoogle Scholar
  65. Longstreth, W. T., Jr., Fahrenbruch, C. E., Olsufka, M., Walsh, T. R., Copass, M. K., & Cobb, L. A. (2002). Randomized clinical trial of magnesium, diazepam, or both after out-of-hospital cardiac arrest. Neurology, 59, 506–514.PubMedGoogle Scholar
  66. Longstreth, W. T., Inui, T. S., Cobb, L. A., & Copass, M. K. (1983). Neurologic recovery after out-of-hospital cardiac arrest. Annals of Internal Medicine, 98, 588–592.PubMedGoogle Scholar
  67. Madison, D., & Niedermeyer, E. (1970). Epileptic seizures resulting from acute cerebral anoxia. Journal of Neurology, Neurosurgery and Psychiatry, 33, 381–386.Google Scholar
  68. Madl, C., Kramer, L., Domanovits, H., Woolard, R. H., Gervais, H., Gendo, A., et al. (2000). Improved outcome prediction in unconscious cardiac arrest survivors with sensory evoked potentials compared with clinical assessment. Critical Care Medicine, 28, 721–726.PubMedGoogle Scholar
  69. Minino, A. M., & Smith, B. L. (2001). Deaths: Preliminary data for 2000. National vital statistics report. National Vital Statistics Reports, 49, 1–40.Google Scholar
  70. Morimoto, Y., Kemmotsu, O., Kitami, K., Matsubara, I., & Tedo, I. (1993). Acute brain swelling after out-of-hsopital cardiac arrest: Pathogenesis and outcome. Critical Care Medicine, 21, 104–110.PubMedGoogle Scholar
  71. Murayama, S., Bouldin, T. W., & Suzuki, K. (1990). Selectve sparing of Betz cells in primary motor area in hypoxia-ischemic encephalopathy. Acta Neuropathologica (Berlin), 80, 560–562.Google Scholar
  72. National Multiple Sclerosis Society. (2005). Just the Facts 2005–2006, Brochure.Google Scholar
  73. Parkin, A. J., Miller, J., & Vincent, R. (1987). Multiple neuropsychological deficits due to anoxic encephalopathy: A case study. Cortex, 1987, 655–665.Google Scholar
  74. Petito, C. K., Feldmann, E., Pulsinelli, W., & Plum, F. (1987). Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology, 37, 1281–1286.PubMedGoogle Scholar
  75. Pfeifer, R., Borner, A., Krack, A., Sigusch, H. H., Surber, R., & Figulla, H. R. (2005). Outcome after cardiac arrest: Predictive values and limitations of the neuroproteins neuron-specific enolase and protein S-100 and the Glasgow Coma Scale. Resuscitation, 65, 49–55.PubMedGoogle Scholar
  76. Pusswald, G., Fertl, E., Faltl, M., & Auff, E. (2000). Neurological rehabilitation of severely disabled cardiac arest survivors. Part II. Life situation of patients and families after treatment. Resuscitation, 47, 241–248.PubMedGoogle Scholar
  77. Reich, P., Regestein, Q. R., Murawski, B. L., DeSilva, R. A., & Lown, B. (1983). Unrecognized organic mental disorders in survivors of cardiac arrest. American Journal of Psychiatry, 140, 1194–1197.PubMedGoogle Scholar
  78. Roine, R. O., Kajaste, S., & Kaste, M. (1993). Neuropsychological sequelae of cardiac arrest. Journal of the American Medical Association, 269, 237–242.PubMedGoogle Scholar
  79. Roine, R. O., Launes, J., Nikkinen, P., Phil, L., Lindroth, L., & Kaste, M. (1991). Regional cerebral blood flow after human cardiac arrest. Archives of Neurology, 48, 625–629.PubMedGoogle Scholar
  80. Rothstein, T. L., Thomas, E. M., & Sumi, S. M. (1991). Predicting outcome in hypoxic-ischemic coma. A prospective clinical and electrophysiological study. Electroencephalography and Clinical Neurophysiology, 79, 101–107.PubMedGoogle Scholar
  81. Rupright, J., Woods, E. A., & Singh, A. (1996). Hypoxic brain injury: Evaluation by single photon emission computed tomography. Archives of Physical Medicine and Rehabilitation, 77, 1205–1208.PubMedGoogle Scholar
  82. Sabah, A. H. (1969). Blindness after cardiac arrest. Postgraduate Medical Journal, 44, 513–516.Google Scholar
  83. Sauve, M. J. (1995). Long-term physical functioning and psychosocial adjustment in survivors of sudden cardiac death. Heart and Lung, 24, 1–20.Google Scholar
  84. Sauve, M. J., Walker, J. A., Massa, S. M., Winkle, R. A., & Scheinman, M. (1996). Patterns of cognitive recovery in sudden cardiac arrest survivors: The pilot study. Heart and Lung, 25, 172–181.PubMedGoogle Scholar
  85. Sawada, H., Udaka, F., Seriu, N., Shindou, K., Kameyama, M., & Tsujimura, M. (1990). MRI demonstration of cortical laminar necrosis and delayed white matter injury in anoxic encephalopathy. Neuroradiology, 32, 319–321.PubMedGoogle Scholar
  86. Sazbon, L., Zabreba, F., Ronen, J., Solzi, P., & Costeff, H. (1993). Course and outcome of patients in vegetative state of nontraumatic aetiology. Journal of Neurology, Neurosurgery and Psychiatry, 56, 407–409.Google Scholar
  87. Schoerkhuber, W., Kittler, H., Sterz, F., Behringer, W., Holzer, M., Frossard, M., et al. (1999). Time course of serum neuron-specific enolase. Stroke, 30, 1598–1603.PubMedGoogle Scholar
  88. Scollo-Lavizzari, G., & Bassetti, C. (1987). Prognostic value of EEG in post-anoxic coma after cardiac arrest. European Neurology, 26, 161–170.PubMedGoogle Scholar
  89. Sedgwick, M. L., Dalzeil, K., Watson, J., Carrington, D. J., & Cobbe, S. M. (1993). Performance of an established system of first responder out-of-hospital defibrillation. The results of the second year of the Heartstart Scotland Project in the 'Utstein style'. Resuscitation, 26, 75–88.PubMedGoogle Scholar
  90. Silver, J. R., & Buxton, P. H. (1974). Spinal stroke. Brain, 97, 539–550.PubMedGoogle Scholar
  91. Snyder, B. D., Loewenson, R. B., Gumnit, R. J., Hauser, W. A., Leppik, I. E., & Ramirez-Lassepas, M. (1980). Neurologic prognosis after cardiopulmonary arrest: II. Level of consciousness. Neurology, 30, 52–58.Google Scholar
  92. Speach, D. P., Wong, T. M., Cattarin, J. A., & Livecchi, M. A. (1998). Hypoxic brain injury with motor apraxia following an anaphylactic reaction to hymenoptera venom. Brain Injury, 12, 239–244.PubMedGoogle Scholar
  93. Sunnerhagen, K. S., Johansson, O., Herlitz, J., & Grimby, G. (1996). Life after cardiac arrest; a retrospective study. Resuscitation, 31, 135–140.PubMedGoogle Scholar
  94. The Hypothermia after Cardiac Arrest Study Group. (2002). Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrrest. New England Journal of Medicine, 346, 549–556.Google Scholar
  95. Volpe, B. T., & Hirst, W. (1983). The characterization of an amnesic syndrome following hypoxic ischemic injury. Archives of Neurology, 40, 436–440.PubMedGoogle Scholar
  96. Volpe, B. T., Holtzman, J. D., & Hirst, W. (1986). Further characterization of patients with amnesia after cardiac arrest: Preserved recognition memory. Neurology, 36, 408–411.PubMedGoogle Scholar
  97. Vukmir, R. B., & Katz, L. (2006). Sodium bicarbonate improves outcome in prolonged prehospital cardiac arrest. American Journal of Emergency Medicine, 24, 156–161.PubMedGoogle Scholar
  98. Waalewijn, R. A., de Vos, R., & Koster, R. W. (1988). Out-of-hospital cardiac arrests in Amsterdam and its surrounding areas: Results from the Amsterdam resuscitation study (ARREST) in Utstein style. Resuscitation, 38, 157–167.Google Scholar
  99. Wijdicks, E. F. M., Campeau, N. G., & Miller, G. M. (2001). MR Imaging in comatose survivors of cardiac arrest. American Journal of Neuroradiology, 22, 1561–1565.PubMedGoogle Scholar
  100. Wijdicks, E. F., Hijdra, A., Young, G. B., Bassetti, C. L., & Wiebe, S. (2006). Practice parameter: Prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 67, 203–210.PubMedGoogle Scholar
  101. Wijdicks, E. F., Parisi, J. E., & Sharbrough, F. W. (1994). Prognostic value of myoclonus status in comatose survivors of cardiac arrest. Annals of Neurology, 35, 239–243.PubMedGoogle Scholar
  102. Wilson, B. A. (1996). Cognitive functioning of adult survivors of cerebral hypoxia. Brain Injury, 10, 863–874.PubMedGoogle Scholar
  103. Yarnell, P. Y. (1976). Neurological outcome of prolonged coma survivors of out-of-hospital cardiac arrest. Stroke, 1976, 279–282.Google Scholar
  104. Young, G. B., Doig, G., & Ragazzoni, A. (2005). Anoxic-ischemic encephalopathy: Clinical and electrophysiological associations with outcome. Neurocritical Care, 2, 159–164.PubMedGoogle Scholar
  105. Zandbergen, E. G. J., de Haan, R. J., Stoutenbeek, C. P., Koelman, J. H. T. M., & Hijdra, A. (1998). Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet, 352, 1808–1812.PubMedGoogle Scholar
  106. Zandbergen, E. G., Hijdra, A., Koelman, J. H., Hart, A. A., Vos, P. E., Verbeek, M. M., et al. (2006). Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology, 66, 62–68.PubMedGoogle Scholar
  107. Zheng, Z. -J., Croft, J. B., Giles, W. H., & Mensah, G. A. (2001). Sudden cardiac death in the United States 1989 to 1998. Circulation, 104, 2158–2163.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Behavioral Neurology UnitBeth Israel Deaconess Medical CenterBostonUSA

Personalised recommendations