Mitochondria pp 197-220 | Cite as

Mitochondrial Calcium: Role in the Normal and Ischaemic/Reperfused Myocardium

  • Elinor J. Griffiths
  • Christopher J. Bell
  • Dirki Balaska
  • Guy A. Rutter
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 2)


The role of intramitochondrial free [Ca2+] ([Ca2+]m) in regulating energy production in the heart is now well-accepted: An increase in [Ca2+]m, such as occurs during increased workload or adrenaline release, activates the mitochondrial dehydrogenases to increase NADH and hence ATP production (reviewed in (Hansford 1994; McCormack et al. 1990)). But [Ca2+]m could also potentially regulate whole-cell cell Ca2+ signalling, by reducing the free [Ca2+] available for contraction, or by ion channel regulation.


Mitochondrial Permeability Transition Pore Mitochondrial Permeability Transition Pore Mitochondrial Calcium Ischaemic Precondition Mitochondrial Calcium Uniporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akerman KE (1978) Changes in membrane potential during calcium ioninflux and efflux across the mitochondrial membrane. Biochim Biophys Acta 502 (2): 359–66PubMedGoogle Scholar
  2. Allen SP, Darley-Usmar VM, McCormack JG, Stone D (1993) Changes inmitochondrial matrix free calcium in perfused rat hearts subjected to hypoxia-reoxygenation. J Mol Cell Cardiol 25 (8): 949–58PubMedGoogle Scholar
  3. Arieli Y, Gursahani H, Eaton MM, Hernandez LA, Schaefer S (2004) Gender modulation of Ca(2+) uptake in cardiac mitochondria. J Mol Cell Cardiol 37 (2): 507–13PubMedGoogle Scholar
  4. Balaban RS (2002) Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol 34 (10): 1259–71PubMedGoogle Scholar
  5. Baron KT, Thayer SA (1997) CGP37157 modulates mitochondrial Ca2+ homeostasis in cultured rat dorsal root ganglion neurons. Eur J Pharmacol 340(2-3):295-300Google Scholar
  6. Bell CJ, Rutter GA, Griffiths EJ (2004) Calcium oscillations inmitochondria and cytosol of neonatal and adult rat cardiomyocytesdetected using targeted aequorin. J Physiol 577P:PC72Google Scholar
  7. Benzi RH, Lerch R (1992) Dissociation between contractile function and oxidative metabolism in postischemic myocardium. Attenuation by ruthenium red administered during reperfusion. Circ Res 71 (3): 567–76PubMedGoogle Scholar
  8. Bers DM (1991) Species differences and the role of sodium-calcium exchange in cardiac muscle relaxation. Ann N Y Acad Sci 639 : 375–85PubMedGoogle Scholar
  9. BeutnerG, Sharma VK, Giovannucci DR, Yule DI, Sheu SS (2001) Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 276 (24): 21482–8Google Scholar
  10. Beutner G, Sharma VK, Lin L, Ryu SY, Dirksen RT, Sheu SS (2005) Type 1 ryanodine receptor in cardiac mitochondria: Transducer of excitation-metabolism coupling. Biochim Biophys Acta 1717 (1): 1–10PubMedGoogle Scholar
  11. Brandes R, Bers DM (1996) Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery. Biophys J 71 (2): 1024–35PubMedGoogle Scholar
  12. Brandes R, Bers DM (1997) Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intactcardiac muscle. Circ Res 80 (1): 82–7PubMedGoogle Scholar
  13. Brown GC (1992) Control of respiration and ATP synthesis inmammalian mitochondria and cells. Biochem J 284 (Pt 1):1–13PubMedGoogle Scholar
  14. Buntinas L, Gunter KK, Sparagna GC, Gunter TE (2001) The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaMin liver mitochondria. Biochim Biophys Acta 1504(2-3):248–61PubMedGoogle Scholar
  15. Bush LR, Shlafer M, Haack DW, Lucchesi BR (1980) Time-dependentchanges in canine cardiac mitochondrial function and ultra structureresulting from coronary occlusion and reperfusion. Basic Res Cardio l75 (4): 555–71PubMedGoogle Scholar
  16. Carry MM, Mrak RE, Murphy ML, Peng CF, Straub KD, Fody EP (1989) Reperfusion injury in ischemic myocardium: protective effects of ruthenium red and of nitroprusside. Am J Cardiovasc Pathol2 (4): 335–44PubMedGoogle Scholar
  17. Chacon E, Ohata H, Harper IS, Trollinger DR, Herman B, Lemasters JJ (1996) Mitochondrial free calcium transients duringexcitation-contraction coupling in rabbit cardiac myocytes. FEBS Lett 382(1-2):31–6PubMedGoogle Scholar
  18. Chacon E, Reece JM, Nieminen AL, Zahrebelski G, Herman B, Lemasters JJ (1994) Distribution of electrical potential, pH, free Ca2+, and volume inside cultured adult rabbit cardiac myocytes during chemicalhypoxia: a multiparameter digitized confocal microscopic study. Biophys J 66 (4): 942–52PubMedGoogle Scholar
  19. Chance B, Williams GR (1956) Respiratory enzymes in oxidativephosphorylation. VI. The effects of adenosine diphosphate onazide-treated mitochondria. J Biol Chem 221 (1): 477–89PubMedGoogle Scholar
  20. Clarke B, Spedding M, Patmore L, McCormack JG (1993) Protective effects of ranolazine in guinea-pig hearts during low-flow ischaemia and their association with increases in active pyruvatedehydrogenase. Br J Pharmacol 109 (3): 748–50PubMedGoogle Scholar
  21. Cox DA, Conforti L, Sperelakis N, Matlib MA (1993) Selectivity of inhibition of Na(+)-Ca2+ exchange of heart mitochondria bybenzothiazepine CGP-37157. J Cardiovasc Pharmacol 21 (4): 595–9PubMedCrossRefGoogle Scholar
  22. Cox DA, Matlib MA (1993) A role for the mitochondrial Na(+)-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria. J Biol Chem 268 (2): 938–47PubMedGoogle Scholar
  23. Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin Aof a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255 (1): 357–60PubMedGoogle Scholar
  24. Crompton M, Heid I (1978) The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria. Eur J Biochem 91 (2): 599–608Google Scholar
  25. Crompton M, Moser R, Ludi H, Carafoli E (1978) The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem 82 (1): 25–31PubMedGoogle Scholar
  26. de Jesus Garcia-Rivas G, Guerrero-Hernandez A, Guerrero-Serna G, Rodriguez-Zavala JS, Zazueta C (2005) Inhibition of themitochondrial calcium uniporter by the oxo-bridged dinuclearruthenium amine complex (Ru360) prevents from irreversible injury inpostischemic rat heart. FEBS J 272 (13): 3477–88PubMedGoogle Scholar
  27. Delcamp TJ, Dales C, Ralenkotter L, Cole PS, Hadley RW (1998) Intramitochondrial [Ca2+] and membrane potential in ventricularmyocytes exposed to anoxia-reoxygenation. Am J Physiol 275(2 Pt2): H484–94PubMedGoogle Scholar
  28. Di Lisa F, Blank PS, Colonna R, Gambassi G, Silverman HS, Stern MD, Hansford RG (1995) Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol 486 (Pt 1):1–13PubMedGoogle Scholar
  29. Di Lisa F, Canton M, Menabo R, Dodoni G, Bernardi P (2003) Mitochondria and reperfusion injury. The role of permeability transition. Basic Res Cardiol 98 (4): 235–41PubMedGoogle Scholar
  30. Duchen MR, Biscoe TJ (1992) Mitochondrial function in type I cellsisolated from rabbit arterial chemoreceptors. J Physiol 450 : 13–31PubMedGoogle Scholar
  31. Figueredo VM, Dresdner KP, Jr., Wolney AC, Keller AM (1991) Postischaemic reperfusion injury in the isolated rat heart: effectof ruthenium red. Cardiovasc Res 25 (4): 337–42PubMedGoogle Scholar
  32. Filippin L, Abad MC, Gastaldello S, Magalhaes PJ, Sandona D, Pozzan T (2005) Improved strategies for the delivery of GFP-based Ca2+ sensors into the mitochondrial matrix. Cell Calcium 37 (2): 129–36PubMedGoogle Scholar
  33. Fleckenstein A, Frey M, Fleckenstein-Grun G (1983) Consequences of uncontrolled calcium entry and its prevention with calciumantagonists. Eur Heart J 4 Suppl H:43–50PubMedGoogle Scholar
  34. Gallitelli MF, Schultz M, Isenberg G, Rudolf F (1999) Twitch-potentiation increases calcium in peripheral more than incentral mitochondria of guinea-pig ventricular myocytes. J Physiol 518 (Pt 2):433–47PubMedGoogle Scholar
  35. Griffiths EJ (1999a) Reversal of mitochondrial Na/Ca exchange duringmetabolic inhibition in rat cardiomyocytes. FEBS Lett 453 (3): 400–4PubMedGoogle Scholar
  36. Griffiths EJ (1999b) Species dependence of mitochondrial calcium transients during excitation-contraction coupling in isolatedcardiomyocytes. Biochem Biophys Res Commun 263 (2): 554–9PubMedGoogle Scholar
  37. Griffiths EJ (2000) Use of ruthenium red as an inhibitor of mitochondrial Ca(2+) uptake in single rat cardiomyocytes. FEBS Lett 486 (3): 257–60PubMedGoogle Scholar
  38. Griffiths EJ, Halestrap AP (1993) Pyrophosphate metabolism in the perfused heart and isolated heart mitochondria and its role inregulation of mitochondrial function by calcium. Biochem J 290 (Pt2):489-95PubMedGoogle Scholar
  39. Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific poresremain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307 (Pt 1):93–8PubMedGoogle Scholar
  40. Griffiths EJ, Ocampo CJ, Savage JS, Rutter GA, Hansford RG, Stern MD, Silverman HS (1998) Mitochondrial calcium transporting pathwaysduring hypoxia and reoxygenation in single rat cardiomyocytes. Cardiovasc Res 39 (2): 423–33PubMedGoogle Scholar
  41. Griffiths EJ, Stern MD, Silverman HS (1997a) Measurement of mitochondrial calcium in single living cardiomyocytes by selectiveremoval of cytosolic indo 1. Am J Physiol 273(1 Pt 1):C37–44PubMedGoogle Scholar
  42. Griffiths EJ, Wei SK, Haigney MC, Ocampo CJ, Stern MD, Silverman HS (1997b) Inhibition of mitochondrial calcium efflux by clonazepam inintact single rat cardiomyocytes and effects on NADH production. Cell Calcium 21 (4): 321–9PubMedGoogle Scholar
  43. Grover GJ, Dzwonczyk S, Sleph PG (1990) Ruthenium red improves postischemic contractile function in isolated rat hearts. JCardiovasc Pharmacol 16 (5): 783–9Google Scholar
  44. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol.Chem. 260 (6): 3440–3450PubMedGoogle Scholar
  45. Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondriatransport calcium. Am J Physiol 258(5 Pt 1):C755–86PubMedGoogle Scholar
  46. Gupta MP, Dixon IM, Zhao D, Dhalla NS (1989) Influence of rutheniumred on rat heart subcellular calcium transport. Can J Cardiol5 (1): 55–63PubMedGoogle Scholar
  47. Gupta MP, Innes IR, Dhalla NS (1988) Responses of contractile function to ruthenium red in rat heart. Am J Physiol 255(6 Pt2):H1413–20PubMedGoogle Scholar
  48. Gursahani HI, Schaefer S (2004) Acidification reduces mitochondrial calcium uptake in rat cardiac mitochondria. Am J Physiol Heart Circ Physiol 287(6):H2659–65PubMedGoogle Scholar
  49. Halestrap AP (1991) Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7. Implications for the protective effect of low pH against chemical and hypoxic cell damage. Biochem J 278 ( Pt 3):715–9PubMedGoogle Scholar
  50. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardialreperfusion–a target for cardioprotection. Cardiovasc Res61 (3): 372–85PubMedGoogle Scholar
  51. Hanley PJ, Mickel M, Loffler M, Brandt U, Daut J (2002) KATP channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol (Lond) 542 (3): 735–741Google Scholar
  52. Hansford RG (1994) Physiological role of mitochondrial Ca2+ transport. J Bioenerg Biomembr 26 (5): 495–508PubMedGoogle Scholar
  53. Heineman FW, Balaban RS (1993) Effects of afterload and heart rate on NAD(P)H redox state in the isolated rabbit heart. Am J Physiol264 (2 Pt2): H433–40PubMedGoogle Scholar
  54. Honda HM, Korge P, Weiss JN (2005) Mitochondria and Ischemia/Reperfusion Injury. Ann NY Acad Sci 1047 (1): 248–258PubMedGoogle Scholar
  55. Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium-treatedmitochondria. J Biol Chem 251 (16): 5069–77PubMedGoogle Scholar
  56. Jacobson J, Duchen MR (2004) Interplay between mitochondria and cellular calcium signalling. Mol Cell Biochem 256–257(1-2): 209-18PubMedGoogle Scholar
  57. Katoh H, Nishigaki N, Hayashi H (2002) Diazoxide Opens the Mitochondrial Permeability Transition Pore and Alters Ca2+ Transients in Rat Ventricular Myocytes. Circulation105 (22): 2666–2671PubMedGoogle Scholar
  58. Katz LA, Koretsky AP, Balaban RS (1987) Respiratory control in the glucose perfused heart. A 31P NMR and NADH fluorescence study. FEBS Lett 221 (2): 270–6PubMedGoogle Scholar
  59. Katz LA, Swain JA, Portman MA, Balaban RS (1989) Relation between phosphate metabolites and oxygen consumption of heart in vivo. Am JPhysiol 256 (1 Pt2): H265–74Google Scholar
  60. Kawahara K, Takase M, Yamauchi Y (2003) Ruthenium red-induced transition from ventricular fibrillation to tachycardia in isolatedrat hearts: possible involvement of changes in mitochondrial calciumuptake. Cardiovasc Pathol 12 (6): 311–21PubMedGoogle Scholar
  61. Landgraf G, Gellerich FN, Wussling MH (2004) Inhibitors of SERCA and mitochondrial Ca-uniporter decrease velocity of calcium waves in ratcardiomyocytes. Mol Cell Biochem 256-257 (1–2): 379–86PubMedGoogle Scholar
  62. Lawrence CL, Billups B, Rodrigo GC, Standen NB (2001) The KATP channel opener diazoxide protects cardiac myocytes during metabolic inhibition without causing mitochondrial depolarization orflavoprotein oxidation. Br J Pharmacol 134 (3): 535–542PubMedGoogle Scholar
  63. Lee B, Miles PD, Vargas L, Luan P, Glasco S, Kushnareva Y, Kornbrust ES, Grako KA, Wollheim CB, Maechler P, Olefsky JM, Anderson CM (2003) Inhibition of mitochondrial Na+-Ca2+ exchanger increasesmitochondrial metabolism and potentiates glucose-stimulated insulinsecretion in rat pancreatic islets. Diabetes 52 (4): 965–73PubMedGoogle Scholar
  64. Leperre A, Millart H, Prevost A, Trenque T, Kantelip JP, Keppler BK (1995) Compared effects of ruthenium red and cis [Ru(NH3)4Cl2]Cl on the isolated ischaemic-reperfused rat heart. Fundam Clin Pharmacol9 (6): 545–53PubMedGoogle Scholar
  65. Li W, Shariat-Madar Z,Powers M, Sun X, Lane RD, Garlid KD (1992) Reconstitution, identification, purification, and immunological characterization of the 110-kDa Na+/Ca2+ antiporter from beef heartmitochondria. J. Biol. Chem. 267 (25): 17983–17989PubMedGoogle Scholar
  66. Lim KHH, Javadov SA, Das M, Clarke SJ, Suleiman MS, Halestrap AP (2002) The effects of ischaemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration. J Physiol (Lond) 545 (3): 961–974Google Scholar
  67. Matlib MA, Zhou Z, Knight S, Ahmed S, Choi KM, Krause-Bauer J, Phillips R, Altschuld R, Katsube Y, Sperelakis N, Bers DM (1998) Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ insingle cardiac myocytes. J Biol Chem 273 (17): 10223–31PubMedGoogle Scholar
  68. McCormack JG, Halestrap A P, Denton RM (1990) Role of calcium ions in regulation of mammlian intramitochondrial metabolism. Physiol Rev 70 (2): 391–425PubMedGoogle Scholar
  69. McKean TA (1991) Calcium uptake by mitochondria isolated from muskrat and guinea pig hearts. J Exp Biol 157 : 133–42PubMedGoogle Scholar
  70. McMillin-Wood J,Wolkowicz PE, Chu A, Tate CA, Goldstein MA, Entman ML (1980) Calcium uptake by two preparations of mitochondria from heart. Biochim Biophys Acta 591 (2): 251–65PubMedGoogle Scholar
  71. Mironova GD, Baumann M, Kolomytkin O, Krasichkova Z, Berdimuratov A, Sirota T, Virtanen I, Saris NE (1994) Purification of the channel component of the mitochondrial calcium uniporter and its reconstitution into planar lipid bilayers. J Bioenerg Biomembr26 (2): 231–8PubMedGoogle Scholar
  72. Miyamae M, Camacho SA, Weiner MW, Figueredo VM (1996) Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts. Am J Physiol Heart Circ Physiol271 (5): H2145–2153Google Scholar
  73. Miyata H, Lakatta EG, Stern MD, Silverman HS (1992) Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia. Circ Res 71 (3): 605–13PubMedGoogle Scholar
  74. Miyata H, Silverman HS, Sollott SJ, Lakatta EG, Stern MD, Hansford RG (1991) Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. Am J Physiol 261(4 Pt2):H1123–34PubMedGoogle Scholar
  75. Moore CL (1971) Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun 42 (2): 298–305PubMedGoogle Scholar
  76. Murata M, Akao M, O’ Rourke B, Marban E (2001) Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res 89 (10): 891–8PubMedGoogle Scholar
  77. Myerburg RJ, Interian A, Jr., Mitrani RM, Kessler KM, Castellanos A (1997) Frequency of sudden cardiac death and profiles of risk. Am J Cardiol 80(5B):10F–19FPubMedGoogle Scholar
  78. Nicholls DG, Crompton M (1980) Mitochondrial calcium transport. FEBS Lett 111 (2): 261–8PubMedGoogle Scholar
  79. Panagiotopoulos S, Daly MJ, Nayler WG (1990) Effect of acidosis and alkalosis on postischemic Ca gain in isolated rat heart. Am J Physiol Heart Circ Physiol 258 (3): H821–828Google Scholar
  80. Park Y, Bowles DK, Kehrer JP (1990) Protection against hypoxic injury in isolated-perfused rat heart by ruthenium red. J Pharmacol Exp Ther 253 (2): 628–35PubMedGoogle Scholar
  81. Paucek P, Jaburek M (2004) Kinetics and ion specificity of Na(+)/Ca(2+) exchange mediated by the reconstituted beef heartmitochondrial Na(+)/Ca(2+) antiporter. Biochim Biophys Acta 1659 (1): 83–91PubMedGoogle Scholar
  82. Peng CF, Kane JJ, Straub KD, Murphy ML (1980) Improvement of mitochondrial energy production in ischemic myocardium by in vivoinfusion of ruthenium red. J Cardiovasc Pharmacol 2 (1): 45–54PubMedGoogle Scholar
  83. Piper HM, Noll T, Siegmund B (1994) Mitochondrial function in the oxygen depleted and reoxygenated myocardial cell. Cardiovasc Res 28 (1): 1–15PubMedGoogle Scholar
  84. Pozzan T, Mongillo M, Rudolf R (2003) The Theodore Bucher lecture. Investigating signal transduction with genetically encoded fluorescent probes. Eur J Biochem 270 (11): 2343–52PubMedGoogle Scholar
  85. Ridgway EB, Ashley CC (1967) Calcium transients in single muscle fibers. Biochem Biophys Res Commun 29 (2): 229–34PubMedGoogle Scholar
  86. Rizzuto R, Simpson AW, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinantaequorin. Nature 358 (6384): 325–7PubMedGoogle Scholar
  87. Robert V, Gurlini P, Tosello V, Nagai T, Miyawaki A, Di Lisa F, Pozzan T (2001) Beat-to-beat oscillations of mitochondrial [Ca2+] incardiac cells. Embo J 20 (17): 4998–5007PubMedGoogle Scholar
  88. Sanchez JA, Garcia MC, Sharma VK, Young KC, Matlib MA, Sheu S-S (2001) Mitochondria regulate inactivation of L-type Ca2+ channels inrat heart. J Physiol (Lond) 536 (2): 387–396Google Scholar
  89. Saris NE, Sirota TV, Virtanen I, Niva K, Penttila T, Dolgachova LP,Mironova GD (1993) Inhibition of the mitochondrial calcium uniporter by antibodies against a 40-kDa glycoproteinT. J Bioenerg Biomembr 25 (3): 307–12PubMedGoogle Scholar
  90. Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW (1995) Effect of substrate on mitochondrial NADH, cytosolic redoxstate, and phosphorylated compounds in isolated hearts. Am J Physiol 268 (1 Pt2): H82–91PubMedGoogle Scholar
  91. Seguchi H, Ritter M, Shizukuishi M, Ishida H, Chokoh G, Nakazawa H, Spitzer KW, Barry WH (2005) Propagation of Ca2+ release in cardiacmyocytes: role of mitochondria. Cell Calcium 38 (1): 1–9PubMedGoogle Scholar
  92. Sharikabad MN, Ostbye KM, Brors O (2001) Increased [Mg2+]o reduces Ca2+ influx and disruption of mitochondrial membrane potentialduring reoxygenation. Am J Physiol Heart Circ Physiol 281 (5): H2113–23PubMedGoogle Scholar
  93. Sharikabad MN, Ostbye KM, Brors O (2004) Effect of hydrogen peroxideon reoxygenation-induced Ca2+ accumulation in rat cardiomyocytes. Free Rad Biol Med 37 (4): 531–538PubMedGoogle Scholar
  94. Shen AC, Jennings RB (1972a) Kinetics of calcium accumulation inacute myocardial ischemic injury. Am J Pathol 67 (3): 441-52PubMedGoogle Scholar
  95. Shen AC, Jennings RB (1972b) Myocardial calcium and magnesium inacute ischemic injury. Am J Pathol 67 (3): 417–40PubMedGoogle Scholar
  96. Smets I, Caplanusi A, Despa S, Molnar Z, Radu M, vande Ven M, Ameloot M, Steels P (2004) Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am J Physiol Renal Physiol 286 (4): F784–794PubMedGoogle Scholar
  97. Sordahl LA, Stewart ML (1980) Mechanism(s) of altered mitochondrial calcium transport in acutely ischemic canine hearts. Circ Res 47 (6): 814–20.PubMedGoogle Scholar
  98. Sparagna GC, Gunter KK, Sheu SS, Gunter TE (1995) Mitochondrial calcium uptake from physiological-type pulses of calcium. Adescription of the rapid up take mode. J Biol Chem 270 (46): 27510–5.PubMedGoogle Scholar
  99. Stone D, Darley-Usmar V, Smith DR, O’Leary V (1989) Hypoxia-reoxygenation induced increase in cellular Ca2+ in myocytes and perfused hearts: the role of mitochondria. J Mol Cell Cardiol 21 (10): 963–73.PubMedGoogle Scholar
  100. Suleiman MS, Halestrap AP, Griffiths EJ (2001) Mitochondria: a target for myocardial protection. Pharmacol Ther 89 (1): 29–46.PubMedGoogle Scholar
  101. Takeo S, Tanonaka K, Iwai T, Motegi K, Hirota Y (2004) Preservation of mitochondrial function during ischemia as a possible mechanism for cardioprotection of diltiazem against ischemia/reperfusioninjury. Biochem Pharmacol 67 (3): 565–574.PubMedGoogle Scholar
  102. Territo PR, Mootha VK, French SA, Balaban RS (2000) Ca(2+)activation of heart mitochondrial oxidative phosphorylation: role ofthe F(0)/F(1)-ATPase. Am J Physiol Cell Physiol 278 (2): C423–35.PubMedGoogle Scholar
  103. Tibbits GF, Xu L, Sedarat F (2002) Ontogeny ofexcitation-contraction coupling in the mammalian heart. Comp BiochemPhysiol A Mol Integr Physiol 132 (4): 691–8.Google Scholar
  104. Triepels RH, Van Den Heuvel LP, Trijbels JM, Smeitink JA (2001) Respiratory chain complex I deficiency. Am J Med Genet 106 (1): 37–45.Google Scholar
  105. Trollinger DR, Cascio WE, Lemasters JJ (1997) Selective loading of Rhod 2 into mitochondria shows mitochondrial Ca2+ transients duringthe contractile cycle in adult rabbit cardiac myocytes. Biochem Biophys Res Commun 236 (3): 738–42.PubMedGoogle Scholar
  106. Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19 (11): 2396–404.PubMedGoogle Scholar
  107. Vasington FD, Gazzotti P, Tiozzo R, Carafoli E (1972) The effect of ruthenium red on Ca 2+ transport and respiration in rat livermitochondria. Biochim Biophys Acta 256 (1): 43–54.PubMedGoogle Scholar
  108. Visch HJ, Rutter GA, Koopman WJ, Koenderink JB, Verkaart S, de Groot T, Varadi A, Mitchell KJ, van den Heuvel LP, Smeitink JA, Willems PH (2004) Inhibition of mitochondrial Na+-Ca2+ exchange restoresagonist-induced ATP production and Ca2+ handling in human complex Ideficiency. J Biol Chem 279 (39): 40328–36.PubMedGoogle Scholar
  109. White RL, Wittenberg BA (1993) NADH fluorescence of isolated ventricular myocytes: effects of pacing, myoglobin, and oxygen supply. Biophys J 65 (1): 196–204.PubMedGoogle Scholar
  110. White RL, Wittenberg BA (1995) Effects of calcium on mitochondrial NAD(P)H in paced rat ventricular myocytes. Biophys J 69 (6): 2790–9.PubMedGoogle Scholar
  111. Winniford MD, Willerson JT, Hillis LD (1985) Calcium antagonists for acute ischemic heart disease. Am J Cardiol 55 (3): 116B–124B.PubMedGoogle Scholar
  112. Ying WL, Emerson J, Clarke MJ, Sanadi DR (1991) Inhibition of mitochondrial calcium ion transport by an oxo-bridged dinuclearruthenium ammine complex. Biochemistry 30 (20): 4949–52.PubMedGoogle Scholar
  113. Zazueta C, Zafra G, Vera G, Sanchez C, Chavez E (1998) Advances in the purification of the mitochondrial Ca2+ uniporter using the labeled inhibitor 103Ru360. J Bioenerg Biomembr 30 (5): 489–98.PubMedGoogle Scholar
  114. Zhang SZ, Gao Q, Cao CM, Bruce IC, Xia Q (2006) Involvement of the mitochondrial calcium uniporter in cardioprotection by ischemic preconditioning. Life Sci 78 (7): 738–45.PubMedGoogle Scholar
  115. Zhou Z, Matlib MA, Bers DM (1998) Cytosolic and mitochondrial Ca2+ signals in patch clamped mammalian ventricular myocytes. J Physiol 507 ( Pt 2):379–403.PubMedGoogle Scholar
  116. Zhu LP, Yu XD, Ling S, Brown RA, Kuo TH (2000) Mitochondrial Ca(2+) homeostasis in the regulation of apoptotic and necrotic cell deaths. Cell Calcium 28 (2): 107–17.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Elinor J. Griffiths
  • Christopher J. Bell
  • Dirki Balaska
  • Guy A. Rutter

There are no affiliations available

Personalised recommendations