Mitochondria pp 185-196 | Cite as

Formation of Reactive Oxygen Species in Mitochondria

  • Julio F. Turrens
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 2)


Living organisms obtain energy from the oxidation of various biomolecules, including carbohydrates, lipids and the carbon skeletons of amino acids. Under aerobic conditions, the reducing coenzymes produced during these reactions are re-oxidized in the electron transport chain, transferring electrons to molecular oxygen (E°= +800 mV) through a series of electron carriers in the respiratory chain. This electrochemical energy is converted into a proton gradient which, in turn, operates a rotor-type enzymatic complex (ATP synthase or Complex V), inducing conformational changes which cause ADP and inorganic phosphate to bind to the active site and ATP to be released (Noji and Yoshida 2001).


Reactive Oxygen Species Respiratory Chain Reactive Oxygen Species Formation Heart Mitochondrion Phospholipid Hydroperoxide Glutathione Peroxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banmeyer I, Marchand C, Clippe A, Knoops B (2005) Humanmitochondrial peroxiredoxin 5 protects from mitochondrial DNAdamages induced by hydrogen peroxide. FEBS Lett 579: 2327–2333CrossRefPubMedGoogle Scholar
  2. Beyer RE (1994) The role of ascorbate in antioxidant protection of biomembranes: Interaction with vitamin E and coenzyme Q. J Bioenerg Biomembr 26: 349–358CrossRefGoogle Scholar
  3. Cadenas E, Boveris A, Ragan CI, Stoppani AOM (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef heartmitochondria. Arch Biochem. Biophys 180: 248–257Google Scholar
  4. Chang TS, Cho CS, Park S, Yu S, Kang SW, Rhee SG (2004) Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J Biol Chem 279: 41975–41984CrossRefPubMedGoogle Scholar
  5. Clerch LB, Massaro D, Berkovich A (1998) Molecular mechanisms of antioxidant enzyme expression in lung during exposure to and recovery from hyperoxia. Am J Physiol Lung Cell Mol Physiol 274: L313–L319Google Scholar
  6. Cohen,G., Farooqui,R.,, Kesler,N. (1997) Parkinson disease: A newlink between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci USA 94: 4890–4894CrossRefPubMedGoogle Scholar
  7. Cooper JM, Schapira AH (2003) Friedreich’s Ataxia: disease mechanisms, antioxidant and Coenzyme Q10 therapy. Biofactors 18: 163–171CrossRefPubMedGoogle Scholar
  8. Crapo JD, Freeman BA, Barry BE, Turrens JF, Young SL (1983) Mechanisms of hyperoxic injury to the pulmonary micro circulation. Physiologist, 26: 170–176PubMedGoogle Scholar
  9. Das KC, Lewis-Molock Y, White CW (1995) Thiol modulation of TNFa andIL-1 induced MnSOD gene expression and activation of NF-kappaB. MolCell Biochem 148: 45–57CrossRefGoogle Scholar
  10. Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S (2005) Role of mitochondria in toxic oxidative stress. Mol Interv 5: 94–111CrossRefPubMedGoogle Scholar
  11. Forman HJ, Kennedy J (1976) Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase. Arch Biochem Biophys 173: 219–224CrossRefPubMedGoogle Scholar
  12. Genova ML, Ventura B, Giuliano G, Bovina C, Formiggini G, ParentiCG, Lenaz, G (2001) The site of production of superoxide radical inmitochondrial Complex I is not a bound ubisemiquinone but presumablyiron-sulfur cluster N2. FEBS Lett 505: 364–368CrossRefPubMedGoogle Scholar
  13. Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO (1954) Oxygen poisioning and X-irradiation: a mechanism in common. Science 119: 623–626CrossRefPubMedGoogle Scholar
  14. Giulivi C, Poderoso JJ, Boveris A (1998) Production of nitric oxide by mitochondria. J Biol Chem 273: 11038–11043CrossRefPubMedGoogle Scholar
  15. Granger DN, Hollwarth ME, Parks DA (1986) Ischemia-reperfusion injury: role of oxygen-derived free radicals. Acta Physiol Scand 126(Suppl. 548):47–63Google Scholar
  16. Hinchliffe P, Sazanov LA (2005) Organization of iron-sulfur clustersin respiratory Complex I. Science 309: 771–774CrossRefPubMedGoogle Scholar
  17. Imai H, Nakagawa Y (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Rad Biol Med 34: 145–169CrossRefPubMedGoogle Scholar
  18. Kokoszca JE, Coskun P, Esposito LA, Wallace DC (2001) Increased mitochondrial oxidative stress in the Sod2 (+/−) mouse results inthe age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci USA 98: 2278–2283CrossRefGoogle Scholar
  19. Kotamraju S, Kalivendi SV, Konorev E, Chitambar CR, Joseph J,Kalyanaraman B (2004) Oxidant-induced iron signaling in Doxorubicin-mediated apoptosis. Methods Enzymol 378: 362–382CrossRefPubMedGoogle Scholar
  20. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human sustantia nigra neurons. Nature, in pressGoogle Scholar
  21. Kushnareva Y, Murphy A.N, Andreyev A. (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J 368, 545–553CrossRefGoogle Scholar
  22. Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52: 159–164CrossRefPubMedGoogle Scholar
  23. Lucey JF, Dangman B (1984) A reexamination of the role of oxygen inretrolental fibroplasia. Pediatrics 73: 82–96PubMedGoogle Scholar
  24. Maassen JA, Janssen GM, Hart LM (2005) Molecular mechanisms of mitochondrial diabetes (MIDD). Ann Med 37: 213–221CrossRefPubMedGoogle Scholar
  25. MacMillan-Crow LA, Cruthirds DL (2001) Invited review – Manganese superoxide dismutase in disease. Free Radic Res 34: 325–336CrossRefPubMedGoogle Scholar
  26. Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279: 49064–49073CrossRefPubMedGoogle Scholar
  27. Noji H, Yoshida M (2001) The rotary machine in the cell, ATP synthase. J Biol Chem 276: 1665–1668CrossRefPubMedGoogle Scholar
  28. Nulton-Persson, A.C., Szweda LI (2003) Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Biochemistry 42: 4235–4242CrossRefPubMedGoogle Scholar
  29. Oberley LW, St.Clair DK, Autor AP, Oberley TD (1987) Increase inmanganese superoxide dismutase activity in the mouse heart after X-irradiation. Arch Biochem Biophys 254: 69–80CrossRefPubMedGoogle Scholar
  30. Okado-Matsumoto A, Fridovich, I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276: 38388–38393CrossRefPubMedGoogle Scholar
  31. Pagano A, Barazzone-Argiroffo C (2003) Alveolar cell death in hyperoxia-induced lung injury. Ann NY Acad Sci 1010: 405–416CrossRefPubMedGoogle Scholar
  32. Phung CD, Ezieme JA, Turrens JF (1994) Hydrogen peroxide metabolismin skeletal muscle mitochondria. Arch Biochem Biophys 315: 479–482CrossRefPubMedGoogle Scholar
  33. Poderoso JJ, Lisdero C, Schöpfer F, Riobó N, Carreras MC,Cadenas E, Boveris A (1999) The regulation of mitochondrial oxygenup take by redox reactions involving nitric oxide and ubiquinol. J Biol Chem 274: 37709–37716CrossRefPubMedGoogle Scholar
  34. Privalle CT, Beyer WF Jr, Fridovich I (1989) Anaerobic induction of proMn-superoxide dismutase in Escherichia coli. J Biol Chem 264: 2758–2763PubMedGoogle Scholar
  35. Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA (1991) Detection of catalase in rat heart mitochondria. J Biol Chem 266: 22028–22034PubMedGoogle Scholar
  36. Rhee SG, Kang SW, Chang TS, Jeong W, Kim K (2001) Peroxiredoxin, an ovel family of peroxidases. IUBMB Life 52: 35–41CrossRefPubMedGoogle Scholar
  37. Richter C, Park JW, Ames BN (1988) Normal oxidative damage tomitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA85: 6465–6467CrossRefPubMedGoogle Scholar
  38. Richter C, Schweizer ,M, Ghafourifar P (1999) Mitochondria, nitricoxide, and peroxynitrite. Methods Enzymol 301: 381–393CrossRefPubMedGoogle Scholar
  39. Sastre J, Borras C, Gracia-Sala B, Lloret A, Pallardo FV, Viña J (2002) Mitochondrial damage in aging and apoptosis. Ann NY Acad Sci 959: 448–451CrossRefGoogle Scholar
  40. Schapira AH (2002) Primary and secondary defects of the mitochondrial respiratory chain. J Inherit Metab Dis 25: 207–214CrossRefPubMedGoogle Scholar
  41. Schapira AHV, Hartley A, Cleeter MWJ, Cooper JM (1993) Free radicals and mitochondrial dysfunction in Parkinson’s disease. Biochem Soc Trans 21: 367–370PubMedGoogle Scholar
  42. Schriner SF, Linford NJ, Martin GM, Treuting P, Ogburn CF, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308: 1909–1911CrossRefPubMedGoogle Scholar
  43. Schumacker PT (2002) Hypoxia, anoxia, and O2 sensing: the search. Am J Physiol Cell Mol Physiol 283: L918–L921Google Scholar
  44. Semenza G (2001) HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107: 1–3CrossRefPubMedGoogle Scholar
  45. Sherer TB; Kim JH; Betarbet R; Greenamyre JT (2003) Subcutaneousroten one exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179: 9–16CrossRefPubMedGoogle Scholar
  46. Skinner Skinner KA, Crow JP, Skinner HB, Chandler RT, Thompson JA, Parks DA (1997) Free and protein-associated nitrotyrosine formation following rat liver preservation and transplantation. Arch Biochem Biophys 342: 282–288CrossRefGoogle Scholar
  47. Semenza G (2002) Signal transduction to hypoxia-inducible factor 1. Biochemical Pharmacology 5-6: 993–998CrossRefGoogle Scholar
  48. Sjostrom K, Crapo JD (1981) Adaptation to oxygen by preexposure to hypoxia: enhanced activity of mangani superoxide dismutase. Bull Europ Physiopath Resp 17(suppl.): 111–116Google Scholar
  49. Sohal RS, Sohal BH (1991) Hydrogen peroxide release by mitochondria increases during aging. Mech Ageing Dev 57: 187–202CrossRefPubMedGoogle Scholar
  50. Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004) Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24: 7788CrossRefGoogle Scholar
  51. Tretter L, Adam-Vizi V (2000) Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of a-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci 20: 8972–8979PubMedGoogle Scholar
  52. Tretter L, Adam-Vizi V (2004) Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci 24: 7771–7778CrossRefPubMedGoogle Scholar
  53. Trojanowski JQ (2003) Rotenone neurotoxicity: a new window on environmental causes of Parkinson’s disease and related brain amyloidoses. Exp Neurol 179: 6–8CrossRefPubMedGoogle Scholar
  54. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol (London) 552: 335–344.CrossRefGoogle Scholar
  55. Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237: 408–414CrossRefPubMedGoogle Scholar
  56. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191: 421–427PubMedGoogle Scholar
  57. Turrens JF, Freeman BA, Crapo JD (1982a) Hyperoxia increaseshydrogen peroxide formation by lung mitochondria and microsomes. Arch Biochem Biophys 217: 411–419CrossRefPubMedGoogle Scholar
  58. Turrens JF, Freeman BA, Levitt JG, Crapo JD (1982b) The effect ofhyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys 217: 401–410.CrossRefPubMedGoogle Scholar
  59. Ursini F, Maiorino M, Brigelius-Flohé R, Aumann KD, Roveri A,Schomburg D, Flohé,L (1995) Diversity of glutathioneperoxidases. Methods Enzymol 252: 38–53CrossRefPubMedGoogle Scholar
  60. Viña J, Borras C, Gambini J, Sastre J, Pallardo FV (2005) Why females live longer than males? Importance of the upregulation of longevity-associated genes by oestrogenic compounds. FEBS Lett 579: 2741–2745CrossRefGoogle Scholar
  61. Vinogradov AD, Grivennikova VG (2005) Generation of superoxide-radical by the NADH: ubiquinone oxidoreductase of heartmitochondria. Biochemistry (Moscow) 70: 120–7CrossRefGoogle Scholar
  62. Xu JX (2004) Radical metabolism is partner to energy metabolism inmitochondria. Ann NY Acad Sci 1011: 57–60CrossRefPubMedGoogle Scholar
  63. Ye G, Metreveli MS, Donthi RV, Xia S, Xu M, Carlson EM, Epstein PN (2004) Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes 53: 1336–1343.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Julio F. Turrens

There are no affiliations available

Personalised recommendations