Advertisement

Mitochondria pp 169-181 | Cite as

Mechanotransduction of Shear-stress at the Mitochondria

  • Abu-Bakr Al-Mehdi
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 2)

Abstract

Endothelial cells in situ experience a variety of physical forces caused by hemodynamics. Tensile stress (a perpendicular force of pressure and stretch) affects mostly the smooth muscle cells, and shear-stress (a tangential, frictional force) affects specifically the endothelial cells.

Keywords

Mitochondrial Membrane Potential Pulmonary Artery Endothelial Cell Nitric Oxide Generation Pulmonary Microvascular Endothelial Cell Physiol Genomic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abumiya T, Sasaguri T, Taba Y, Miwa Y, Miyagi M (2002) Shear stressinduces expression of vascular endothelial growth factor receptorFlk-1/KDR through the CT-rich Sp1 binding site. Arterioscler ThrombVasc Biol 22: 907–13CrossRefGoogle Scholar
  2. Al-Mehdi A, Shuman H, Fisher AB (1994) Fluorescence microtopography of oxidative stress in lung ischemia-reperfusion. Lab Invest 70: 579–87PubMedGoogle Scholar
  3. Al-Mehdi AB, Ischiropoulos H, Fisher AB (1996) Endothelial celloxidant generation during K(+)-induced membrane depolarization. JCell Physiol 166: 274–80CrossRefPubMedGoogle Scholar
  4. Al-Mehdi AB, Shuman H, Fisher AB (1997a) Intracellular generation ofreactive oxygen species during nonhypoxic lung ischemia. Am JPhysiol 272: L294–300PubMedGoogle Scholar
  5. Al-Mehdi AB, Shuman H, Fisher AB (1997b) Oxidant generation with K(+)-induced depolarization in the isolated perfused lung. Free Radic Biol Med 23: 47–56CrossRefPubMedGoogle Scholar
  6. Al-Mehdi AB, Song C, Tozawa K, Fisher AB (2000a) Ca2+- andphosphatidylinositol 3-kinase-dependent nitric oxide generation inlung endothelial cells in situ with ischemia. J Biol Chem 275: 39807–10CrossRefPubMedGoogle Scholar
  7. Al-Mehdi AB, Zhao G, Dodia C, Tozawa K, Costa K, Muzykantov V, Ross C, Blecha F, Dinauer M, Fisher AB (1998a) Endothelial NADPH oxidaseas the source of oxidants in lungs exposed to ischemia or high K+. Circ Res 83: 730–7PubMedGoogle Scholar
  8. Al-Mehdi AB, Zhao G, Fisher AB (1998b) ATP-independent membranedepolarization with ischemia in the oxygen-ventilated isolated ratlung. Am J Respir Cell Mol Biol 18: 653–61PubMedGoogle Scholar
  9. Al-Mehdi AB, Zhao G, Tozawa K, Fisher AB (2000b)Depolarization-associated iron release with abrupt reduction inpulmonary endothelial shear stress in situ. Antioxid Redox Signal 2: 335–45CrossRefPubMedGoogle Scholar
  10. Ali MH, Pearlstein DP, Mathieu CE, Schumacker PT (2004)Mitochondrial requirement for endothelial responses to cyclicstrain: implications for mechanotransduction. Am J Physiol Lung CellMol Physiol 287: L486–96CrossRefGoogle Scholar
  11. Boldogh IR, Pon LA (2006) Interactions of mitochondria with theactin cytoskeleton. Biochim Biophys ActaGoogle Scholar
  12. Brooks AR, Lelkes PI, Rubanyi GM (2002) Gene expression profiling ofhuman aortic endothelial cells exposed to disturbed flow and steadylaminar flow. Physiol Genomics 9: 27–41PubMedGoogle Scholar
  13. Chen BP, Li YS, Zhao Y, Chen KD, Li S, Lao J, Yuan S, Shyy JY, ChienS (2001) DNA microarray analysis of gene expression in endothelialcells in response to 24-h shear stress. Physiol Genomics 7: 55–63CrossRefPubMedGoogle Scholar
  14. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75: 519–60PubMedGoogle Scholar
  15. Davies PF, Dewey CF, Jr., Bussolari SR, Gordon EJ, Gimbrone MA, Jr.(1984) Influence of hemodynamic forces on vascular endothelialfunction. In vitro studies of shear stress and pinocytosis in bovineaortic cells. J Clin Invest 73: 1121–9CrossRefPubMedGoogle Scholar
  16. Davies PF, Tripathi SC (1993) Mechanical stress mechanisms and thecell. An endothelial paradigm. Circ Res 72: 239–45PubMedGoogle Scholar
  17. Davies PF, Zilberberg J, Helmke BP (2003) Spatial microstimuli inendothelial mechanosignaling. Circ Res 92: 359–70CrossRefPubMedGoogle Scholar
  18. Dewey CF, Jr., Bussolari SR, Gimbrone MA, Jr., Davies PF (1981) Thedynamic response of vascular endothelial cells to fluid shearstress. J Biomech Eng 103: 177–85CrossRefPubMedGoogle Scholar
  19. Fisher AB, Al-Mehdi AB, Manevich Y (2002) Shear stress andendothelial cell activation. Crit Care Med 30: S192–7CrossRefPubMedGoogle Scholar
  20. Fisher AB, Al-Mehdi AB, Wei Z, Song C, Manevich Y (2003) Lungischemia: endothelial cell signaling by reactive oxygen species. Aprogress report. Adv Exp Med Biol 510: 343–7PubMedGoogle Scholar
  21. Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, Gimbrone MA,Jr. (2001) Biomechanical activation of vascular endothelium as adeterminant of its functional phenotype. Proc Natl Acad Sci U S A98: 4478–85CrossRefPubMedGoogle Scholar
  22. Hsieh HJ, Cheng CC, Wu ST, Chiu JJ, Wung BS, Wang DL (1998) Increaseof reactive oxygen species (ROS) in endothelial cells by shear flowand involvement of ROS in shear-induced c-fos expression. J CellPhysiol 175: 156–62Google Scholar
  23. James NL, Harrison DG, Nerem RM (1995) Effects of shear onendothelial cell calcium in the presence and absence of ATP. Faseb J9: 968–73PubMedGoogle Scholar
  24. Janmey PA, Euteneuer U, Traub P, Schliwa M (1991) Viscoelasticproperties of vimentin compared with other filamentous biopolymernetworks. J Cell Biol 113: 155–60CrossRefPubMedGoogle Scholar
  25. Kallmann BA, Wagner S, Hummel V, Buttmann M, Bayas A, Tonn JC, Rieckmann P (2002) Characteristic gene expression profile of primary human cerebral endothelial cells. Faseb J 16: 589–91PubMedGoogle Scholar
  26. Kudo S, Morigaki R, Saito J, Ikeda M, Oka K, Tanishita K (2000) Shear-stress effect on mitochondrial membrane potential and albuminuptake in cultured endothelial cells. Biochem Biophys Res Commun 270: 616–21CrossRefPubMedGoogle Scholar
  27. Lansman JB (1988) Endothelial mechanosensors. Going with the flow.Nature 331: 481–2Google Scholar
  28. Liao XD, Wang XH, Jin HJ, Chen LY, Chen Q (2004) Mechanical stretchinduces mitochondria-dependent apoptosis in neonatal ratcardiomyocytes and G2/M accumulation in cardiac fibroblasts. CellRes 14: 16–26Google Scholar
  29. Malek AM, Izumo S (1996) Mechanism of endothelial cell shape changeand cytoskeletal remodeling in response to fluid shear stress. JCell Sci 109 ( Pt 4): 713–26Google Scholar
  30. Mashour GA, Boock RJ (1999) Effects of shear stress on nitric oxidelevels of human cerebral endothelial cells cultured in an artificialcapillary system. Brain Res 842: 233–8CrossRefPubMedGoogle Scholar
  31. McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu CM, Russell CG,Chittur KK (2001) DNA microarray reveals changes in gene expressionof shear stressed human umbilical vein endothelial cells. Proc NatlAcad Sci USA 98: 8955–60CrossRefGoogle Scholar
  32. Parthasarathi K, Ichimura H, Quadri S, Issekutz A, Bhattacharya J(2002) Mitochondrial reactive oxygen species regulate spatialprofile of proinflammatory responses in lung venular capillaries. JImmunol 169: 7078–86Google Scholar
  33. Peters DG, Zhang XC, Benos PV, Heidrich-O’Hare E, Ferrell RE (2002)Genomic analysis of the immediate/early response to shear stress inhuman coronary artery endothelial cells. Physiol GenomicsGoogle Scholar
  34. Resnick N, Gimbrone MA, Jr. (1995) Hemodynamic forces are complexregulators of endothelial gene expression. FASEB J 9: 874–82PubMedGoogle Scholar
  35. Song C, Al-Mehdi AB, Fisher AB (2001) An immediate endothelial cellsignaling response to lung ischemia. Am J Physiol Lung Cell MolPhysiol 281: L993–1000Google Scholar
  36. Stamatas GN, McIntire LV (2001) Rapid flow-induced responses inendothelial cells. Biotechnol Prog 17: 383–402CrossRefPubMedGoogle Scholar
  37. Stamenovic D (2005) Microtubules may harden or soften cells,depending of the extent of cell distension. J Biomech 38: 1728–32CrossRefPubMedGoogle Scholar
  38. Tozawa K, Al-Mehdi AB, Muzykantov V, Fisher AB (1999) In situimaging of intracellular calcium with ischemia in lung subpleuralmicrovascular endothelial cells. Antioxid Redox Signal 1: 145–54CrossRefPubMedGoogle Scholar
  39. Wei Z, Al-Mehdi AB, Fisher AB (2001) Signaling pathway for nitricoxide generation with simulated ischemia in flow-adapted endothelialcells. Am J Physiol Heart Circ Physiol 281: H2226–32PubMedGoogle Scholar
  40. Wei Z, Costa K, Al-Mehdi AB, Dodia C, Muzykantov V, Fisher AB (1999) Simulated ischemia in flow-adapted endothelial cells leads togeneration of reactive oxygen species and cell signaling. Circ Res 85: 682–9PubMedGoogle Scholar
  41. Wei Z, Manevich Y, Al-Mehdi AB, Chatterjee S, Fisher AB (2004) Ca2+ flux through voltage-gated channels with flow cessation inpulmonary microvascular endothelial cells. Microcirculation 11: 517–26CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Abu-Bakr Al-Mehdi

There are no affiliations available

Personalised recommendations